CS483 Design and Analysis of Algorithms

Chapter 3 Decomposition of Graphs

Instructor: Fei Li
lifei@cs.gmu.edu with subject: CS483
Office hours:
Room 5326, Engineering Building, Thursday 4:30pm - 6:30pm or by appointments

Course web-site:
http://www.cs.gmu.edu/~lifei/teaching/cs483_fall09
Figures unclaimed are from books "Algorithms", and "Introduction to Algorithms"

Decomposition of Graphs

(1) Why Graphs?
(2) Depth-First Search
(3) Topological Sorting
(4) Strongly Connected Components (SCC)

Why Graphs?

Figure 3.1 (a) A map and (b) its graph.

(b)

Why Graphs?


```
Google gemputramengas
```



```
George Macon Urimesiv, Departmatt [f Computar Sclumse
```



```
    masimsivamaci
```



```
*)
```



```
Nagm,
```



```
    m,
Mamsatmmata
```



```
*)
```



```
*) \(\frac{8}{8}\)
```


Graphs

(1) A graph $G=(V, E)$ is specified by a set of vertices (nodes) V and edges E between selected pairs of vertices
(2) Edges are symmetric \rightarrow undirected graph
(3) Directions over edges \rightarrow directed graph
(4) E.g., political maps, exam conflicts, World Wide Web, etc.

Graph Representation

http://msdn2.microsoft.com/en-us/library/

Graph Traversal

Exploring a graph is rather like navigating a maze
Which parts of the graph are reachable from a given vertex?

Depth-First Search

Input: Graph $G=(V, E)$, vertex $s \in V$
Output: All vertices u reachable from s
function DFS (G)

$$
\begin{gathered}
\text { for all } v \in V \\
\text { visited(v) }=\text { false; } \\
\text { for all } v \in V \\
\text { if not visited(v) } \\
\text { explore(v); }
\end{gathered}
$$

visited(v) = true;
for each edge $(v, u) \in E$ if not visited(u) explore(u);

Depth-First Search

Figure 3.6 (a) A 12-node graph. (b) DFS search forest.

23,24

Analysis of DFS

Theorem

All nodes reachable from s can be found via DFS

Proof.

?

Theorem

The overall running time of DFS is $O(|V|+|E|)$

Proof.

(1) The time initializing each vertex is $O(|V|)$
(2) Each edge $(u, v) \in E$ is examined twice, once exploring u and once exploring v. Therefore takes $O(|E|)$ time

Topological Sorting - An Application of DFS

Input: a directed acyclic graph (DAG) G
output: A linear ordering of all its vertices, such that if G contains an edge (u, v), then, u appears before v in the ordering

Topological Sorting - An Application of DFS

(1) Run DFS to get (startingtime, finishingtime)

Topological Sorting - An Application of DFS

(1) Run DFS to get (startingtime, finishingtime)

(2) List nodes in reverse order of their finishing time

Strongly Connected Components in Directed Graphs

Definition

Two nodes u and v of a directed graph are connected if there is a path from u to v and a path from v to u.

Remark

Connectivity in undirected graphs is straightforward. A graph that is not connected can be decomposed in a natural and obvious manner into several connected components.

Remark

Every directed graph is a directed acyclic graph (DAG) of its strongly connected components (disjoint sets of V). A DAG can be linearized.

Figure 3.9 (a) A directed graph and its strongly connected components. (b) The meta-graph.

How to Find SCC?

Property 1

If the explore subroutine starts at node u, then it will terminate precisely when all nodes reachable from u have been visited. If we call explore on a node that lies somewhere in a sink strongly connected component, then we will retrieve exactly that component

What can we learn?
(1) How do we find a node that we know for sure lies in a sink strongly connected component?
(2) How do we continue once this first component has been discovered?

Property 2

The node that receives the highest ending time (i.e., post number) in a depth-first search must lie in a source strongly connected component.

How to Find SCC?

Property 3

If C and C^{\prime} are strongly connected components, and there is an edge from a node in C to a node in C^{\prime}, the the highest post number in C is larger than the highest post number in C^{\prime}

Proof.

If DFS visits component C before component C^{\prime}, then clearly all of C and C^{\prime} will be traversed before the procedure stuck. Therefore the first node visited in C will have a higher post number than any node of C^{\prime}. If C^{\prime} gets visited first, then DFS will get stuck after seeing all of C^{\prime} before seeing any of C.

What can we learn?

Remark

The strongly connected components can be linearized by arranging them in decreasing order of their highest post numbers.

Remark

The reverse graph G^{R}, the same as G but with all edges reversed, has the same SCC as G.

Strongly Connected Components

(1) Run depth-first search on G^{R}
(2) Run the undirected connected components algorithm on G, and during the depth-first search, process the vertices in decreasing order of their finishing time from step 1

The algorithm is linear-time, only the constant in the linear term is about twice that of straight DFS.

