
CS483 Design and Analysis of Algorithms

Chapter 3 Decomposition of Graphs

Instructor: Fei Li

lifei@cs.gmu.edu with subject: CS483

Office hours:
Room 5326, Engineering Building, Thursday 4:30pm - 6:30pm or

by appointments

Course web-site:
http://www.cs.gmu.edu/∼lifei/teaching/cs483 fall09

Figures unclaimed are from books “Algorithms” and “Introduction
to Algorithms” 1 / 17

Decomposition of Graphs

1 Why Graphs?

2 Depth-First Search

3 Topological Sorting

4 Strongly Connected Components (SCC)

2 / 17

Why Graphs?

3 / 17

Why Graphs?

4 / 17

Graphs

1 A graph G = (V , E) is specified by a set of vertices (nodes) V and edges E
between selected pairs of vertices

2 Edges are symmetric → undirected graph

3 Directions over edges → directed graph

4 E.g., political maps, exam conflicts, World Wide Web, etc.

5 / 17

Graph Representation

http://msdn2.microsoft.com/en-us/library/

6 / 17

Graph Traversal
Exploring a graph is rather like navigating a maze
Which parts of the graph are reachable from a given vertex?

http://www.northgacornmaze.com/images/maze 2006.jpg
7 / 17

Depth-First Search

Input: Graph G = (V , E), vertex s ∈ V
Output: All vertices u reachable from s

function DFS(G)

for all v ∈ V
visited(v) = false;

for all v ∈ V
if not visited(v)

explore(v);

function explore(G, v)

visited(v) = true;

for each edge (v , u) ∈ E
if not visited(u)

explore(u);

8 / 17

Depth-First Search

9 / 17

Analysis of DFS

Theorem

All nodes reachable from s can be found via DFS

Proof.

?

Theorem

The overall running time of DFS is O(|V | + |E |)

Proof.

1 The time initializing each vertex is O(|V |)
2 Each edge (u, v) ∈ E is examined twice, once exploring u and once exploring v .

Therefore takes O(|E |) time

10 / 17

Topological Sorting — An Application of DFS
Input: a directed acyclic graph (DAG) G
output: A linear ordering of all its vertices, such that if G contains an edge (u, v),
then, u appears before v in the ordering

11 / 17

Topological Sorting — An Application of DFS

1 Run DFS to get (startingtime, finishingtime)

2 List nodes in reverse order of their finishing time

12 / 17

Topological Sorting — An Application of DFS

1 Run DFS to get (startingtime, finishingtime)

2 List nodes in reverse order of their finishing time

13 / 17

Strongly Connected Components in Directed Graphs
Definition

Two nodes u and v of a directed graph are connected if there is a path from u to v
and a path from v to u.

Remark

Connectivity in undirected graphs is straightforward. A graph that is not connected
can be decomposed in a natural and obvious manner into several connected
components.

Remark

Every directed graph is a directed acyclic graph (DAG) of its strongly connected
components (disjoint sets of V). A DAG can be linearized.

14 / 17

How to Find SCC?

Property 1

If the explore subroutine starts at node u, then it will terminate precisely when all
nodes reachable from u have been visited. If we call explore on a node that lies
somewhere in a sink strongly connected component, then we will retrieve exactly that
component

What can we learn?

1 How do we find a node that we know for sure lies in a sink strongly connected
component?

2 How do we continue once this first component has been discovered?

Property 2

The node that receives the highest ending time (i.e., post number) in a depth-first
search must lie in a source strongly connected component.

15 / 17

How to Find SCC?

Property 3

If C and C ′ are strongly connected components, and there is an edge from a node in
C to a node in C ′, the the highest post number in C is larger than the highest post

number in C ′

Proof.

If DFS visits component C before component C ′, then clearly all of C and C ′ will be
traversed before the procedure stuck. Therefore the first node visited in C will have a
higher post number than any node of C ′. If C ′ gets visited first, then DFS will get
stuck after seeing all of C ′ before seeing any of C .

What can we learn?

Remark

The strongly connected components can be linearized by arranging them in decreasing
order of their highest post numbers.

Remark

The reverse graph G R , the same as G but with all edges reversed, has the same SCC
as G.

16 / 17

Strongly Connected Components
1 Run depth-first search on G R

2 Run the undirected connected components algorithm on G , and during the
depth-first search, process the vertices in decreasing order of their finishing time
from step 1

The algorithm is linear-time, only the constant in the linear term is about twice that of

straight DFS.
17 / 17

