CS483 Design and Analysis of Algorithms
Chapter 3 Decomposition of Graphs

Instructor: Fei Li
lifei@cs.gmu.edu with subject: CS483

Office hours:
Room 5326, Engineering Building, Thursday 4:30pm - 6:30pm or
by appointments

Course web-site:
http://www.cs.gmu.edu/~1ifei/teaching/cs483_£all09
Figures unclaimed are from books “Algorithms”’ and “Introduction
to Alcorithms”

17

Decomposition of Graphs

@ Why Graphs?

@ Depth-First Search

© Topological Sorting

@ Strongly Connected Components (SCC)

17

Why Graphs?

Figure 3.1 (a) A map and (b) its graph.

(b)

)

SOUTH AMERICA
Peru
- Brazil
olivia

Why Graphs?

Graphs

@ A graph G = (V, E) is specified by a set of vertices (nodes) V and edges E
between selected pairs of vertices

@ Edges are symmetric — undirected graph
© Directions over edges — directed graph
o E.g., political maps, exam conflicts, World Wide Web, etc.

17

Graph Representation

http://msdn2.microsoft.com/en-us/library/

Undirected Graph (b)

Adjacency List Representation (b}

17

Graph Traversal

Exploring a graph is rather like navigating a maze
Which parts of the graph are reachable from a given vertex?

7/17

Tddame / Serrrrr rmmrtthrmmmrmrrrimerrsr e el amemrrac frmmemea ONNELE S e

Depth-First Search

Input: Graph G = (V, E), vertexs € V
Output: All vertices u reachable from s

function DFS(G)

for all v € V
visited(v) = false;

for all v € V
if not visited(v)
explore(v) ;

function explore(G, v)
visited(v) = true;
for each edge (v, u) € E

if not visited(u)
explore(u);

17

Depth-First Search

Figure 3.6 (a) A 12-node graph. (b) DFS search forest.

1,10 11,22

(@) (b) (&) (c)
TS (B - .
3 > f}\f\ 3 :E |
CZBSJ >\E) 49 ; 12,21w\D !
: / : K

LY

Analysis of DFS

Theorem

All nodes reachable from s can be found via DFS

Proof.

Theorem

-~
O

The overall running time of DFS is O(|V/| + |E|)

Proof.

@ The time initializing each vertex is O(|V|)

@ Each edge (u,v) € E is examined twice, once exploring u and once exploring v.
Therefore takes O(|E|) time

O

10/17

Topological Sorting — An Application of DFS

Input: a directed acyclic graph (DAG) G
output: A linear ordering of all its vertices, such that if G contains an edge (u, v),
then, u appears before v in the ordering

Topological Sorting — An Application of DFS

@ Run DFS to get (startingtime, finishingtime)

Qe
12/17

Topological Sorting — An Application of DFS

@ Run DFS to get (startingtime, finishingtime)

@ List nodes in reverse order of their finishing time

DA
13/17

Strongly Connected Components in Directed Graphs

Definition

Two nodes u and v of a directed graph are connected if there is a path from u to v
and a path from v to u.

Remark

Connectivity in undirected graphs is straightforward. A graph that is not connected
can be decomposed in a natural and obvious manner into several connected
components.

Remark

Every directed graph is a directed acyclic graph (DAG) of its strongly connected
components (disjoint sets of V). A DAG can be linearized.

Figure 3.9 (a) A directed graph and its strongly connected components. (b) The
meta-graph.

(a)

14 /17

How to Find SCC?

Property 1

If the explore subroutine starts at node u, then it will terminate precisely when all
nodes reachable from u have been visited. If we call explore on a node that lies
somewhere in a sink strongly connected component, then we will retrieve exactly that
component

What can we learn?
@ How do we find a node that we know for sure lies in a sink strongly connected
component?
@ How do we continue once this first component has been discovered?

Property 2

The node that receives the highest ending time (i.e., post number) in a depth-first
search must lie in a source strongly connected component.

15 /17

How to Find SCC?

Property 3

If C and C’ are strongly connected components, and there is an edge from a node in
C to a node in C’, the the highest post number in C is larger than the highest post
number in C’

Proof.

If DFS visits component C before component C’, then clearly all of C and C’ will be
traversed before the procedure stuck. Therefore the first node visited in C will have a
higher post number than any node of C’. If C’ gets visited first, then DFS will get
stuck after seeing all of C’ before seeing any of C. O

What can we learn?

Remark

The strongly connected components can be linearized by arranging them in decreasing
order of their highest post numbers.

Remark

The reverse graph GR, the same as G but with all edges reversed, has the same SCC
as G.

16 /17

Strongly Connected Components

@ Run depth-first search on GR
@ Run the undirected connected components algorithm on G, and during the
depth-first search, process the vertices in decreasing order of their finishing time

from step 1

The algorithm is linear-time, only the constant in the linear term is about twice that of

straight DFS.

17 /17

