CS483 Design and Analysis of Algorithms

Chapter 2 Divide and Conquer Algorithms

Instructor: Fei Li

lifei@cs.gmu.edu with subject: CS483

Office hours:

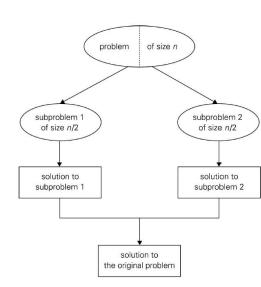
Room 5326, Engineering Building, Thursday 4:30pm - 6:30pm or by appointments

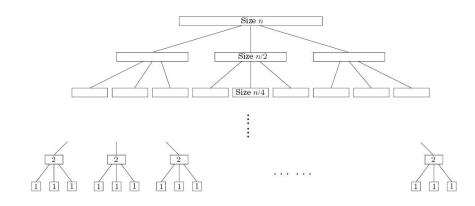
Course web-site:

http://www.cs.gmu.edu/~lifei/teaching/cs483_fall09
Figures unclaimed are from books "Algorithms", and, "Introduction to Algorithms"

Divide and Conquer Algorithms

- Breaking the problem into subproblems of the same type
- Recursively solving these subproblems
- Appropriately combining their answers





• Divide the problems into b smaller instances; a of them need to be solved. f(n) is the time spent on dividing and merging

• Divide the problems into b smaller instances; a of them need to be solved. f(n) is the time spent on dividing and merging

$$T(n) = a \cdot T(n/b) + f(n)$$

•

• Divide the problems into b smaller instances; a of them need to be solved. f(n) is the time spent on dividing and merging

$$T(n) = a \cdot T(n/b) + f(n)$$

- The iteration method
 Expand (iterate) the recurrence and express it as a summation of terms depending only on n and the initial conditions
 - The substitution method
 - Guess the form of the solution
 - Use mathematical induction to find the constants
 - **3** Master Theorem $(T(n) = a \cdot T(n/b) + f(n))$

Iteration Method — Examples

n!

$$T(n) = T(n-1) + 1$$

Tower of Hanoi

http://en.wikipedia.org/wiki/Tower_of_Hanoi

$$T(n) = 2 \cdot T(n-1) + 1$$

Iteration — Example

•
$$n! (T(n) = T(n-1) + 1)$$

$$T(n) = T(n-1) + 1$$

$$= (T(n-2) + 1) + 1$$

$$= T(n-2) + 2$$
...
$$= T(n-i) + i$$
...
$$= T(0) + n = n$$

• Tower of Hanoi $(T(n) = 2 \cdot T(n-1) + 1)$?

Iteration — Example

Tower of Hanoi $(T(n) = 2 \cdot T(n-1) + 1)$

$$T(n) = 2 \cdot T(n-1) + 1$$

$$= 2 \cdot (2 \cdot T(n-2) + 1) + 1$$

$$= 2^{2} \cdot T(n-2) + 2 + 1$$
...
$$= 2^{i} \cdot T(n-i) + 2^{i-1} + \dots + 1$$
...
$$= 2^{n-1} \cdot T(1) + 2^{n-1} + 2^{n-1} + \dots + 1$$

$$= 2^{n-1} \cdot T(1) + \sum_{i=0}^{n-2} 2^{i}$$

$$= 2^{n-1} + 2^{n-1} - 1$$

$$= 2^{n} - 1$$

Substitution Method — Count Number of Bits

• Count number of bits $(T(n) = T(\lfloor n/2 \rfloor) + 1)$

Substitution Method — Count Number of Bits

- Count number of bits (T(n) = T(|n/2|) + 1)
- Guess $T(n) \leq \log n$.

$$T(n) = T(\lfloor n/2 \rfloor) + 1$$

$$\leq \log(\lfloor n/2 \rfloor) + 1$$

$$\leq \log(n/2) + 1$$

$$\leq (\log n - \log 2) + 1$$

$$\leq \log n - 1 + 1$$

$$= \log n$$

Substitution Method — Tower of Hanoi

• Tower of Hanoi $(T(n) = 2 \cdot T(n-1) + 1)$

Substitution Method — Tower of Hanoi

- Tower of Hanoi $(T(n) = 2 \cdot T(n-1) + 1)$
- Guess $T(n) \leq 2^n$

$$T(n) = 2 \cdot T(n-1) + 1$$

 $\leq 2 \cdot 2^{n-1} + 1$
 $\leq 2^{n} + 1, \text{ wrong!}$

Substitution Method — Tower of Hanoi

- Tower of Hanoi $(T(n) = 2 \cdot T(n-1) + 1)$
- Guess $T(n) \leq 2^n$

$$T(n)$$
 = $2 \cdot T(n-1) + 1$
 $\leq 2 \cdot 2^{n-1} + 1$
 $\leq 2^{n} + 1$, wrong!

• Guess $T(n) \leq 2^n - 1$

$$T(n)$$
 = $2 \cdot T(n-1) + 1$
 $\leq 2 \cdot (2^{n-1} - 1) + 1$
= $2^n - 2 + 1$
= $2^n - 1$, correct!

• Fibonacci Numbers $(F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2})$

- Fibonacci Numbers $(F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2})$
- $F_{n-2} < F_{n-1} < F_n, \forall n \geq 1$

- Fibonacci Numbers $(F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2})$
- $\bullet \ F_{n-2} < F_{n-1} < F_n, \forall n \ge 1$
- Assume $2^{n-1} < F_n < 2^n$ Guess $F_n = c \cdot \phi^n$, $1 < \phi < 2$

- Fibonacci Numbers $(F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2})$
- \bullet $F_{n-2} < F_{n-1} < F_n, \forall n \geq 1$
- Assume $2^{n-1} < F_n < 2^n$ Guess $F_n = c \cdot \phi^n$, $1 < \phi < 2$

•

$$c \cdot \phi^{n} = c \cdot \phi^{n-1} + c \cdot \phi^{n-2}$$

$$\phi^{2} = \phi + 1$$

$$\phi = \frac{1 \pm \sqrt{5}}{2}$$

- Fibonacci Numbers $(F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2})$
- \bullet $F_{n-2} < F_{n-1} < F_n, \forall n \geq 1$
- Assume $2^{n-1} < F_n < 2^n$ Guess $F_n = c \cdot \phi^n$, $1 < \phi < 2$

•

$$c \cdot \phi^{n} = c \cdot \phi^{n-1} + c \cdot \phi^{n-2}$$

$$\phi^{2} = \phi + 1$$

$$\phi = \frac{1 \pm \sqrt{5}}{2}$$

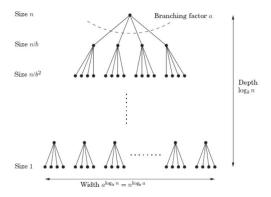
• General solution: $F_n = c_1 \cdot \phi_1^n + c_2 \cdot \phi_2^n$ $F_1 = 0, F_2 = 1$

$$F_n = \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n - \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^n$$

Master Theorem

$$T(n) = a \cdot T(n/b) + f(n)$$

Figure 2.3 Each problem of size n is divided into a subproblems of size n/b.



Master Theorem

$$T(n) = a \cdot T(n/b) + f(n)$$
, $a \ge 1, b > 1$ be constants.

Theorem

We interpret n/b to mean either $\lceil n/b \rceil$ or $\lfloor n/b \rfloor$. If $f(n) \in \Theta(n^d)$, where $d \ge 0$, then

$$T(n) = \left\{ \begin{array}{ll} \Theta(n^d) & \text{if } a < b^d \\ \Theta(n^d \log n) & \text{if } a = b^d \\ \Theta(n^{\log_b a}) & \text{if } a > b^d \end{array} \right.$$

$$T(n) = \left\{ \begin{array}{ll} \Theta(f(n)) & \text{if } f(n) = \Omega(n^{\log_b a + \epsilon}) \text{ and if } a \cdot f(n/b) \leq c \cdot f(n) \\ & \text{for some constant } c < 1 \text{ and all sufficiently large } n \\ \Theta(n^{\log_b a} \cdot \log n) & \text{if } f(n) = \Theta(n^{\log_b a}) \\ \Theta(n^{\log_b a}) & \text{if } f(n) = O(n^{\log_b a - \epsilon}) \text{ for some constant } \epsilon > 0 \end{array} \right.$$

- **1** $T(n) = 4 \cdot T(n/2) + n = ?$
- 2 $T(n) = 4 \cdot T(n/2) + n^2 = ?$
- 3 $T(n) = 4 \cdot T(n/2) + n^3 = ?$

Chapter 2 of DPV — Divide and Conquer Algorithms

- Mergesort
- Medians
- Matrix Multiplication

• Given an array of *n* numbers, sort the elements in non-decreasing order

- Given an array of *n* numbers, sort the elements in non-decreasing order
- function mergesort(A[n])

```
if (n = 1)
    return A;
else
    B = A[1, ..., [ \( \frac{n}{2} \) ]];
    C = A[[ \( \frac{n}{2} \) ] + 1, ..., n];
    mergesort(B);
    merge(B, C, A);
```

- Given an array of *n* numbers, sort the elements in non-decreasing order
- function mergesort(A[n])

```
if (n = 1)
    return A;
else
    B = A[1, ..., [ \( \frac{n}{2} \) ]];
    C = A[[ \( \frac{n}{2} \) ] + 1, ..., n];
    mergesort(B);
    mergesort(A);
    merge(B, C, A);
```

• Is this algorithm complete?

Merge two sorted arrays, B and C and put the result in A

```
function merge(B[1, ... p], C[1, ... q], A[1, ... p + q])
    i = 1; j = 1;
    for (k = 1, 2, ... p + 1)
        if (B[i] < C[i])
             A[k] = B[i]:
             i = i + 1:
        else
             A[k] = C[i];
             j = j + 1;
24, 11, 91, 10, 22, 32, 22, 3, 7, 99
```

 $T(n) = 2 \cdot T(n/2) + O(n) = O(n \cdot \log n)$

The *median* is a single representative value of a list of numbers: half of them are larger and half of them are smaller; less sensitive to outliers

$$S := \{2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1\}$$

Selection problem:

- **Input**: A list of number *S*; an integer *k*.
- **Output**: The *k*-th smallest element of *S*.

$$selection(S, 8) = ?$$

The *median* is a single representative value of a list of numbers: half of them are larger and half of them are smaller; less sensitive to outliers

$$S := \{2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1\}$$

Let us split at v = 5

$$S_L = \{2, 4, 1\}$$

 $S_V = \{5, 5\}$
 $S_R = \{36, 21, 8, 13, 11, 20\}$

$$selection(S, 8) = selection(S_R, 3).$$

$$\mathsf{selection}(S,k) = \left\{ \begin{array}{ll} \mathsf{selection}(S_L,k) & \text{if } k \leq |S_L| \\ v & \text{if } |S_L| < k \leq |S_L| + |S_v| \\ \mathsf{selection}(S_R,k-|S_L|-|S_v|) & \text{if } k > |S_L| + |S_v|. \end{array} \right.$$

The *median* is a single representative value of a list of numbers: half of them are larger and half of them are smaller; less sensitive to outliers

$$S:=\{2,\ 36,\ 5,\ 21,\ 8,\ 13,\ 11,\ 20,\ 5,\ 4,\ 1\}$$

$$\mathsf{selection}(S,8)=\mathsf{selection}(S_R,3).$$

$$\mathsf{selection}(S,k) = \left\{ \begin{array}{ll} \mathsf{selection}(S_L,k) & \text{if } k \leq |S_L| \\ v & \text{if } |S_L| < k \leq |S_L| + |S_v| \\ \mathsf{selection}(S_R,k-|S_L|-|S_v|) & \text{if } k > |S_L| + |S_v|. \end{array} \right.$$

If $|S_L| \approx |S_R|$ (i.e., pick up v to be the median),

$$T(n) = T(n/2) + O(n)$$

Pick up v randomly from S

v is good if it lies within 25% and 75% of the array it is chosen

Lemma

On average a fair coin needs to be tossed two times before a "heads" is seen

Proof.

 $E=1+\frac{1}{2}\cdot E$

Remark

v has 50% chance of being in-between [25%, 75%]. We need to pick v twice to make it good

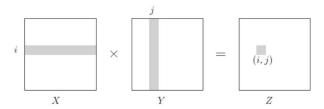
Theorem

$$T(n) \leq T((3/4) \cdot n) + O(n) = O(n)$$

The product of two $n \times n$ matrices X and Y is a third $n \times n$ matrix Z = XY, with (i, j)th entry

$$Z_{ij} = \sum_{k=1}^{n} X_{ik} Y_{kj}.$$

To make it more visual, Z_{ij} is the dot product of the *i*th row of X with the *j*th column of Y:



Matrix Multiplication (by definition):

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{12} \cdot B_{22} \end{bmatrix}$$

Matrix Multiplication (by definition):

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{12} \cdot B_{22} \end{bmatrix}$$

2

$$T(n) = 8 \cdot T(\frac{n}{2}) + O(n) = O(n^3)$$

Time complexity of the brute-force algorithm is $O(n^3)$

1 Strassen's Matrix Multiplication:

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} m_1 + m_4 - m_5 + m_7 & m_3 + m_5 \\ m_2 + m_4 & m_1 + m_3 - m_2 + m_6 \end{bmatrix}$$

- $m_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$
- $\bullet \ m_2 = (A_{21} + A_{22}) \cdot B_{11}$
- $m_3 = A_{11} \cdot (B_{12} B_{22})$
- $\bullet \ m_4 = A_{22} \cdot (B_{21} B_{11})$
- $\bullet \ m_5 = (A_{11} + A_{12}) \cdot B_{22}$
- $m_6 = (A_{21} A_{11}) \cdot (B_{11} + B_{12})$
- $m_7 = (A_{12} A_{22}) \cdot (B_{21} + B_{22})$

2

1 Strassen's Matrix Multiplication:

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} m_1 + m_4 - m_5 + m_7 & m_3 + m_5 \\ m_2 + m_4 & m_1 + m_3 - m_2 + m_6 \end{bmatrix}$$

•
$$m_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$\bullet \ m_2 = (A_{21} + A_{22}) \cdot B_{11}$$

•
$$m_3 = A_{11} \cdot (B_{12} - B_{22})$$

•
$$m_4 = A_{22} \cdot (B_{21} - B_{11})$$

•
$$m_5 = (A_{11} + A_{12}) \cdot B_{22}$$

•
$$m_6 = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$$

•
$$m_7 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$T(n) = 7 \cdot T(\frac{n}{2}) + O(n) = O(\log n^{\log_2 7}) \approx O(n^{2.81})$$

Time complexity of the brute-force algorithm is $O(n^3)$