CS483 Design and Analysis of Algorithms
Chapter 2 Divide and Conquer Algorithms

Instructor: Fei Li
lifei@cs.gmu.edu with subject: CS483

Office hours:
Room 5326, Engineering Building, Thursday 4:30pm - 6:30pm or
by appointments

Course web-site:
http://www.cs.gmu.edu/~1ifei/teaching/cs483_£all09
Figures unclaimed are from books “Algorithms”’ and “Introduction
to Alcorithms”

1/36

Divide and Conquer Algorithms

problem | of size n

@ Breaking the problem into
subproblems of the same
type

@ Recursively solving these
subproblems

Q Approprlately combining soliition 6 solution to
their answers subproblem 1 subproblem 2

subproblem 2
of size n/2

subproblem 1
of size n/2

solution to
the original problem

Divide-and-Conquer Recurrence

Size n

Divide-and-Conquer Recurrence

@ Divide the problems into b smaller instances; a of them need to be
solved. f(n) is the time spent on dividing and merging

36

Divide-and-Conquer Recurrence

@ Divide the problems into b smaller instances; a of them need to be
solved. f(n) is the time spent on dividing and merging

T(n)=a-T(n/b)+ f(n)

36

Divide-and-Conquer Recurrence

@ Divide the problems into b smaller instances; a of them need to be
solved. f(n) is the time spent on dividing and merging

T(n)=a-T(n/b)+ f(n)

@ @ The iteration method
Expand (iterate) the recurrence and express it as a summation of terms
depending only on n and the initial conditions
@ The substitution method

@ Guess the form of the solution
@ Use mathematical induction to find the constants

© Master Theorem (T(n) = a- T(n/b) + f(n))

6

36

Iteration Method — Examples

n!

@ Tower of Hanoi

T(n)=T(h—-1)+1

http://en.wikipedia.org/wiki/Tower_of_Hanoi

T(n)=2-T(h—1)+1

faQe
7/36

lteration — Example

@ nl (T(n)=T(n—-1)+1)

T(n) = T(h—-1)+1
(Tlh—2)+1)+1
= T(n—2)+2

= T(h—0)+i

T(O0)+n=n

@ Tower of Hanoi (T(n)=2-T(n—1)+1)7?

36

lteration — Example
Tower of Hanoi (T(n) =2 -T(n—1)+1)

T(n)

2. T(h—1)+1
= 2.2 T(n=2)+1)+1
= 22.T(n—2)+2+1

= 2. T(n—N+2"1+... 41

= 2" T(@) 42t 2t

n—2
= 2" T()+) 2
i=0

— 2n71+2n7171
= 2"-1

+1

36

Substitution Method — Count Number of Bits

@ Count number of bits (T(n) = T(|n/2]) + 1)

10/36

Substitution Method — Count Number of Bits

@ Count number of bits (T(n) = T(|n/2])+ 1)

@ Guess T(n) < logn.

T(n)

IA IAIA A

T(ln/2)) +1
log([n/2]) +1
log(n/2) +1
(logn—log2)+1
logn—1+4+1

log n

11/36

Substitution Method — Tower of Hanoi

@ Tower of Hanoi (T(n)=2-T(n—1)+1)

12/36

Substitution Method — Tower of Hanoi

@ Tower of Hanoi (T(n)=2-T(n—1)+1)
@ Guess T(n) <2"

T(n) 2.-T(n—1)+1
2.2"141

2" +1, wrong!

INIA I

13/36

Substitution Method — Tower of Hanoi

@ Tower of Hanoi (T(n)=2-T(n—1)+1)
@ Guess T(n) <2"

T(n) = 2-T(nh—-1)+1
< 2.2"141
< 2"+4+1, wrong!
@ Guess T(n)<2"—1
T(n) = 2-T(h—1)+1
< 2.1 -1D+1
= 2"-2+1

2" —1, correct!

14 /36

Substitution Method — Extension F,

@ Fibonacci Numbers (Fo =0, F; = 1, Fy = Fp_1 + Fp_2)

15/36

Substitution Method — Extension F,

@ Fibonacci Numbers (Fo =0, F; = 1, Fy = Fp_1 + Fp_2)
@ FhLo< F1<F,,Vn>1

16 /36

Substitution Method — Extension F,

@ Fibonacci Numbers (Fo =0, F; = 1, Fy = Fp_1 + Fp_2)
@ FhLo< F1<F,,Vn>1

@ Assume 2"l < F, < 27
Guess Fp=c-¢", 1< <2

17 /36

Substitution Method — Extension F,

@ Fibonacci Numbers (Fo =0, F; = 1, Fy = Fp_1 + Fp_2)
@ FhLo< F1<F,,Vn>1

@ Assume 2"l < F, < 27
Guess Fp=c-¢", 1< <2

(]
C.¢n — C.¢n71+c.¢n72
¢ = o+1
1++5
¢ = 2\[

18 /36

Substitution Method — Extension F,

Fibonacci Numbers (Fo = 0,F = 1,F, = Fp—1 + Fp_2)
Fno < Fpo1 < Fp,¥n2>1

Assume 2""1 < F, < 2"
Guess Fp=c-¢", 1< <2
C'¢n — C.¢n71+c.¢n72
¢ = ¢+1
1+5
¢ = >
General solution: F, =c; - ¢} + c2 - ¢
FF=0 F=1
F_ L (1+ﬁ)n 1 (17\/5),7
"T VB2 VB2

19/36

Master Theorem

T(n)=a-T(n/b)+ f(n)

Figure 2.3 Each problem of size n is divided into a subproblems of size n/b.

Size n Branching factor a

Size n/b

Size n/b?
Depth
logy n

o NN DN

Width a'8s » = plogs @

20/36

Master Theorem

T(n)=a-T(n/b)+f(n), a>1b>1 be constants.

We interpret n/b to mean either [n/b] or |n/b].
If f(n) € ©(n?), where d > 0, then

o(n9) ifa < b4
T(n)=< ©(nlogn) ifa=b?
O(n'°es 2) if a > b4

O(f(n)) if f(n) = Q(n'°853%€) and if a- f(n/b) < c - f(n)

for some constant ¢ < 1 and all sufficiently large n
O(n'°8s2 - log n) if f(n) = ©(n'°8s?)
CIGE) if f(n) = O(n'°8>2=¢€) for some constant ¢ > 0

T(n) =

Q@ T(n=4-T(n/2)+n="
Q T(n)=4-T(n/2)+n*=2

Q T(n=4-T(n/2)+n*=2

21/36

Chapter 2 of DPV — Divide and Conquer Algorithms

@ Mergesort
@ Medians
© Matrix Multiplication

22/36

Mergesort

23/36

Mergesort

@ Given an array of n numbers, sort the elements in non-decreasing order

24 /36

Mergesort

@ Given an array of n numbers, sort the elements in non-decreasing order

@ function mergesort(A[n])

if (n = 1)
return A;

else
B = AL ... [21
C=Al2]+1 .., n

mergesort (B) ;
mergesort (A) ;
merge(B, C, A);

36

Mergesort

@ Given an array of n numbers, sort the elements in non-decreasing order

@ function mergesort(A[n])

if (n = 1)
return A;

else
B = AL ... [21
C=Al2]+1 .., n

mergesort (B) ;
mergesort (A) ;
merge(B, C, A);

@ Is this algorithm complete?

26 /36

Mergesort

Merge two sorted arrays, B and C and put the result in A

function merge(B[1, .. pl, C[1, .. q], A[1,

for (k =1, 2, .. p+ 1)
if (B[i] < C[jD)
Alk] = B[il;
i=1+1;
else

24, 11, 91, 10, 22, 32, 22, 3, 7, 99

T(n)=2-T(n/2)+ O(n) = O(n - logn)

.p+aql)

27 /36

Medians

The median is a single representative value of a list of numbers: half of them are
larger and half of them are smaller; less sensitive to outliers

S5:={2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1}
Selection problem:

@ Input: A list of number S; an integer k.
@ Output: The k-th smallest element of S.

selection(S,8) =7

28 /36

Medians

The median is a single representative value of a list of numbers: half of them are
larger and half of them are smaller; less sensitive to outliers

S:=1{2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1}

Let us split at v=>5

SL = {27 4, 1}
S, = {57 5}
Sk = {36, 21, 8, 13, 11, 20}

selection(S, 8) = selection(Sg, 3).

selection(Sy, k)
selection(S, k) = v
selection(Sg, k — |S.| — |Sv])

if k<|S;]
if |S1] < k < |S1|+1Sv|
if k> |S.]+1Sv|.

29 /36

Medians

The median is a single representative value of a list of numbers: half of them are
larger and half of them are smaller; less sensitive to outliers

S:=1{2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1}

selection(S, 8) = selection(Sg, 3).

selection(Sy, k) if kK <|S5.]
selection(S, k) = v if |S| < k< |S.]+|Sv]
selection(Sg, k — S| — |Sv]) if k> |S.| +|Sv].

If |SL| = |Sr| (i.e., pick up v to be the median),

T(n) = T(n/2) + O(n)

Pick up v randomly from S

30/36

Medians

v is good if it lies within 25% and 75% of the array it is chosen

Lemma

On average a fair coin needs to be tossed two times before a “heads” is seen

Remark

v has 50% chance of being in-between [25%, 75%]. We need to pick v twice to make
it good

Theorem

T(n) < T((3/4)-n)+ O(n) = O(n)

31/36

Matrix Multiplication

The product of two n x n matrices X and Y is a third n x n matrix Z = XY, with
(i, j)th entry

n
Zy =) XuYy.
k=1

To make it more visual, Z; is the dot product of the ith row of X with the jth
column of Y:

(3:7)

32/36

Matrix Multiplication

@ Matrix Multiplication (by definition):

CGu Go | _ | Au Aw Bii B
G G Az Ax By B
Aun - Bu+Aw-Ba A B+ A B
Az Bii +Axn - B A Bio+ Az B

33/36

Matrix Multiplication

@ Matrix Multiplication (by definition):
CGu Go | _ | Au Aw Bii B
G G Az Ax By B

Aun - Bu+Aw-Ba A B+ A B
Az Bii +Axn - B A Bio+ Az B

2]

T(n)=8- T(g) +0(n) = O(n®)

Time complexity of the brute-force algorithm is O(n%)

34 /36

Matrix Multiplication

@ Strassen’s Matrix Multiplication:

i Go | _ | Au Aw B B
G Cx Axn Ax B B
_ my + my — ms + my m3 + ms
ma -+ my my + mz — m2 + me

my = (A1 + Ax) - (B + Bx)
my = (Ao + A2) - B
mz = A1 - (B2 — B»)
my = Az - (Bo1 — Bi1)
ms = (A1 + A12) - B
mg = (Az1 — A11) - (B + Bi2)
my = (A2 — Ax) - (Ba1 + Ba2)

35/36

Matrix Multiplication

@ Strassen’s Matrix Multiplication:

Ci Go _ Aun

Ca G Az

_ my + my — ms + my
my + my

my = (Ao + A2) - B
mz = A1 - (B2 — B»)
my = Az - (Bo1 — Bi1)
ms = (A1 + A12) - B

my = (A1 + A») - (Bi1 + Bx)

me = (A1 — A1) - (Bi1 + B12)
m7 = (A2 — A») - (Ba1 + B»)

A1 Bii B
Ax B B

m3 + ms
my + mz — m2 + me

T(n) =7 T(5) + O(n) = O(log n27) ~ O(n*®)

Time complexity of the brute-force algorithm is O(n®)

36

36

