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  Advanced Topics in Computer Vision  
and Robotics   

!

Classification Methods!
   !
!
!

Some slides thanks to S. Lazebnik, T. Berg, Fei-Fei Li, K. Grauman and others!

Previously !!

•  Object Recognition – Statistical Viewpoint!
!
•  Object Instance Recognition – Instance based 

methods!
1.  Local and global features!
2.  Quantization, visual vocabularies!
3.  Approximate nearest neighbour methods (k-d trees, 

k-means, hierarchical k-means of descriptors!
4.  Spatial Verification!
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Locally Sensitive Hashing!

•  Another methods for Approximate Nearest Neighbour!
•  Application: Large Scale Image Retrieval!
•  Even faster look up then binary trees, randomized 

algorithm!

•  Find       which is within the radius r of the query point, 
with a high probability!

•  Need a hash function          such that two points which 
are near by will hash to the same code!

•  Assume that each point is a bit string 0 1 0 1 0 0 ….!
•  Intuition – bin the axes, and the points which fall in the 

same bin are likely to be close,  how about higher 
dimension ?!

€ 

xj

€ 

g(x)

Locally Sensitive Hashing!

•  Idea: create several random projections and combine the 
results!

•  Create l hash tables!
•  Each will model one projection of the point!
•  Enter all the examples in the hash tables!
•  For query point, get all the examples which are in the 

same bin for all hash function, take union of these points!
•  Those will be the candidates!

•  Application; database of 13 million web images, image 
descriptor 512 dimensions, LSH examines only 
thousands examples (thousand fold speedup over 
exhaustive or k-d tree)!
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Ensemble Methods!
Support Vector Machines, !
!

Slides from S. Lazebnik, adopted slides from A. Moore !

Linear classifiers!
•  Find linear function (hyperplane) to separate positive and 

negative examples – many such hyperplanes!

0:negative
0:positive

<+⋅

≥+⋅

b
b
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wxx
wxx

Which hyperplane  
is best?!
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Support vector machines!

•  Find hyperplane that maximizes the margin between the 
positive and negative examples!

1:1)(negative
1:1)( positive
−≤+⋅−=

≥+⋅=

by
by

iii

iii

wxx
wxx

Margin!Support vectors!

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 !

Distance between point 
and hyperplane:! ||||

||
w
wx bi +⋅

For support, vectors, ! 1±=+⋅ bi wx

Therefore, the margin is  2 / ||w||  

Finding the maximum margin hyperplane!
1.  Maximize margin 2/||w|| 
2.  Correctly classify all training data: 

 
 
 
 

•  Quadratic optimization problem: 
!
!!

            Minimize  
!!

            Subject to  yi(w·xi+b) ≥ 1!

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 !
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Solving the Optimization Problem !
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Slide credit: Jinwei Gu!
!

Solving the Optimization Problem !
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Slide credit: Jinwei Gu!
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Solving the Optimization Problem !

  The solution has the form: !

( )( ) 1 0T
i i iy bα + − =w x

  From KKT condition, we know: !

  Thus, only support vectors have  ! 0iα ≠

1 SV

n

i i i i i i
i i

y yα α
= ∈

= =∑ ∑w x x

get  from  ( ) 1 0,    
where  is support vector

T
i i

i

b y b+ − =w x
x

x1!

x2!

wT  x + b = 0!

wT  x + b = -1!wT  x + b = 1!

x+!

x+!

x-!

Support Vectors!

Slide credit: Jinwei Gu!
!

Finding the maximum margin hyperplane!
•  Solution: 
 

! !!
∑= i iii y xw α

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 !

Support  
vector!

learned  
weight!
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Finding the maximum margin hyperplane!
•  Solution: 
 

! !  b = yi – w·xi   for any support vector 
!

•  Classification function (decision boundary): 
 
!

•  Notice that it relies on an inner product between the test 
point x and the support vectors xi!

•  Solving the optimization problem also involves 
computing the inner products xi · xj between all pairs of 
training points!

∑= i iii y xw α

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 !

byb
i iii +⋅=+⋅ ∑ xxxw α

•  Datasets that are linearly separable work out great: 
!

!
•  But what if the dataset is just too hard?  
!

!
•  We can map it to a higher-dimensional space:!

0 x 

0 x 

0 x 

x2 

Nonlinear SVMs!

Slide credit: Andrew Moore!
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Φ:  x → φ(x) 

Nonlinear SVMs!
•  General idea: the original input space can always be 

mapped to some higher-dimensional feature space 
where the training set is separable:!

Slide credit: Andrew Moore!

Recall Solving the Optimization Problem !

SV
( ) T T

i i
i

g b bα
∈

= + = +∑x w x x x

  The linear discriminant function is: !

  Notice it relies on a dot product between the test point x 
and the support vectors xi!

Slide credit: Jinwei Gu!
!
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Nonlinear SVM: Optimization!

  Formulation: (Lagrangian Dual Problem)!

1 1 1

1maximize  ( , )
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  The solution of the discriminant function is!

SV
( ) ( , )i i

i
g K bα

∈

= +∑x x x

  The optimization technique is the same.!

Slide credit: Jinwei Gu!
!

  With this mapping, our discriminant function is now: 

SV
( ) ( ) ( ) ( )T T

i i
i

g b bφ α φ φ
∈

= + = +∑x w x x x

  No need to know this mapping explicitly, because we only use 
the dot product of feature vectors in both the training and test. 

  A kernel function is defined as a function that corresponds to a 
dot product of two feature vectors in some expanded feature 
space: 

( , ) ( ) ( )T
i j i jK φ φ≡x x x x

Slide credit: Jinwei Gu 
 

Nonlinear SVMs – Kernel Trick 
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  Linear kernel: 

2

2( , ) exp( )
2
i j

i jK
σ

−
= −

x x
x x

( , ) T
i j i jK =x x x x

( , ) (1 )T p
i j i jK = +x x x x

0 1( , ) tanh( )T
i j i jK β β= +x x x x

  Examples of commonly-used kernel functions: 

  Polynomial kernel: 

  Gaussian (Radial-Basis Function (RBF) ) kernel: 

  Sigmoid: 

Slide credit: Jinwei Gu!
!

Nonlinear SVMs – Kernel Trick 

Kernels for bags of features!

•  Histogram intersection kernel: 
 
 
!

•  Generalized Gaussian kernel: 
 
!

•   
!

•  D can be Euclidean distance, χ2 distance, Earth 
Mover’s Distance, etc.!
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J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, 
Local Features and Kernels for Classifcation of Texture and Object Categories: A 
Comprehensive Study, IJCV 2007!
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Support Vector Machine: Algorithm!

•  1. Choose a kernel function!

•  2. Choose a value for C – bound on maximum 
weight for each support vector!

•  3. Solve the quadratic programming problem 
(many software packages available)!

•  4. Construct the discriminant function from the 
support vectors !

Slide credit: Jinwei Gu!
!

Some Issues!
•  Choice of kernel!
    - Gaussian or polynomial kernel is default!
    - if ineffective, more elaborate kernels are needed!
    - domain experts can give assistance in formulating appropriate 

similarity measures!
!
•  Choice of kernel parameters!
   - e.g. σ in Gaussian kernel!
   - σ is the distance between closest points with different classifications !
   - In the absence of reliable criteria, applications rely on the use of a 

validation set or cross-validation to set such parameters. !
!

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt !
Slide credit: Jinwei Gu!
!
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Summary: Support Vector Machine!

•  1. Large Margin Classifier !
–  Better generalization ability & less over-fitting!

•  2. The Kernel Trick!
–  Map data points to higher dimensional space in 

order to make them linearly separable.!
–  Since only dot product is used, we do not need to 

represent the mapping explicitly.!

Slide credit: Jinwei Gu!
!

Summary: SVMs for image classification!
1.  Pick an image representation (in our case, bag of 

features)!
2.  Pick a kernel function for that representation!
3.  Compute the matrix of kernel values between every pair 

of training examples!
4.  Feed the kernel matrix into your favorite SVM solver to 

obtain support vectors and weights!
5.  At test time: compute kernel values for your test example 

and each support vector, and combine them with the 
learned weights to get the value of the decision function!
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What about multi-class SVMs?!

•  Unfortunately, there is no “definitive” multi-class SVM 
formulation!

•  In practice, we have to obtain a multi-class SVM by 
combining multiple two-class SVMs !

•  One vs. others!
–  Traning: learn an SVM for each class vs. the others!
–  Testing: apply each SVM to test example and assign to 

it the class of the SVM that returns the highest decision 
value!

•  One vs. one!
–  Training: learn an SVM for each pair of classes!
–  Testing: each learned SVM “votes” for a class to assign 

to the test example!

SVMs: Pros and cons!
•  Pros!

–  Many publicly available SVM packages: 
http://www.kernel-machines.org/software!

–  Kernel-based framework is very powerful, flexible!
–  SVMs work very well in practice, even with very 

small training sample sizes 
!

•  Cons!
–  No “direct” multi-class SVM, must combine two-

class SVMs!
–  Computation, memory !

•  During training time, must compute matrix of 
kernel values for every pair of examples!

•  Learning can take a very long time for large-
scale problems!
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Multi-class classification!

•  How to deal with multiple classes!
•  One vs. all strategy !
•  For N classes train N different classifiers !
•  For class 1 positive examples – others negative 

examples!
•  How to combine the classifiers  ? !
•  Each will output some confidence score!
•  Final prediction will be the class with highest 

confidence score !
€ 

hθ (x)

Bias and Variance!

•  Modeling issues:  overfiting, underfiting!
•  How do you know how good is your model !
•  Example: regression (linear, vs 3rd order polynomial)!
•  Intuition: models which underfit have large bias!
•  Models which overfit have large variance!
•  Idea: fit the model to different subsets of data, if we fit the 

line that line will have roughly similar parameters, but large 
test error – small variance, large bias!

•  If we fit overfit, each model will have small error but the 
parameters of the model will have large variance!
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Bias and Variance!

•  Modeling issues:  overfiting, underfiting in classification!
•  How do you know how good is your model !
•  0/1 classification error: proportion of misclassified examples!
•  Training error and test error!
•  Picture of variance bias trade-off: curvature of decision 

boundary!
•  How do you choose good model in practice ? !
•  Hold-out-cross-validation !
•  Split data into 70% train and 30% cross-validation!
•  Generate N different models, pick the one with lowest error 

on cross-validation set!
!

Cross-validation: Example 

4-fold cross-validation 

It allows to use ¾ of the available data for 
training, while making use of all of the data to 
assess performance 
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k-fold Cross-validation 

  In general: we perform k runs. Each run uses (k-1)/k of 
the available data for training. 

  If the number of data is very limited, we can set k=N 
(total number of data points). This gives the leave-one-
out cross-validation technique. 

 
  

k-fold Cross-validation: Drawbacks 

 Computationally expensive: number of training runs is 
increased by a factor of k. 

 A single models may have multiple complexity 
parameters: exploring combinations of settings could 
require a number of training runs that is exponential in 
the number of parameters. 
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In practice!

•  What are the choices if the first choice does not 
work ?!

•  i.e. large generalization error!
•  If the model has high bias – it is too simple: consider 

adding more features or using deeper decision tree!
•  If the model has high variance – it is too complex: fits 

the idiosyncracy of the data: remove features, or get 
more data !

Ensemble Methods!

•  So far we considered only single hypothesis !
•  Methods which consider whole ensemble of 

hypotheses , from some hypothesis space and 
combine their prediction!

•  One idea – consider majority vote N=5 hypotheses, if 
at least 3 classify it correctly then it is correct label 
(majority vote)!

•  Example: multiple separating lines for non-linearly 
separable classes, note individual hypotheses are 
simple!

•  Most popular idea: Boosting!
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•  Defines a classifier using an additive model:!

!

•  We need to define a family of weak classifiers!

!

Boosting!

Strong !
classifier!

Weak classifier!

Weight!
Features!
vector!

from a family of weak classifiers!

Boosting!

•  Each training example has associated!
•  At the beginning all !
•  Generate first hypothesis      , some example correct, some no!
•  Idea: next do better of misclassified examples!
•  Increase weights of misclassified examples, decrease weight !
    of correctly classified examples, etc …!
•  Final ensemble is weighted majority combination of all 

examples!

€ 

wi

€ 

wi =1

€ 

h1



19!

Each data 
point has!

a class label:!
!

wt =1!
and a weight:!

+1 (  )!
-1 (  )!

yt =!

Boosting!

•  It is a sequential procedure:!
!

!

xt=1!

xt=2!

xt!

Slide credit: Antonio Torralba!
!

Toy example!
Weak learners from the family of lines!

h => p(error) = 0.5  it is at chance!

Each data 
point has!

a class label:!
!

wt =1!
and a weight:!

Slide credit: Antonio Torralba!
!
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Toy example!

This one seems to be the best!

Each data 
point has!

a class label:!
!

wt =1!
and a weight:!

This is a ‘weak classifier’: It performs slightly better than chance.!
Slide credit: Antonio Torralba!
!

Toy example!

We set a new problem for which the previous weak classifier !
performs at chance again!

Each data 
point has!

a class label:!
!

wt     wt exp{-yt Ht}!
We update the weights:!

Slide credit: Antonio Torralba!
!
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Toy example!

We set a new problem for which the previous weak classifier !
performs at chance again!

Each data 
point has a 
class label:!

!

wt     wt exp{-yt Ht}!
We update the weights:!

Slide credit: Antonio Torralba!
!

Toy example!

We set a new problem for which the previous weak classifier !
performs at chance again!

Each data 
point has!

a class label:!
!

wt     wt exp{-yt Ht}!

We update the !
weights:!

Slide credit: Antonio Torralba!
!
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Toy example!

We set a new problem for which the previous weak classifier !
performs at chance again!

Each data 
point has!

a class label:!
!

wt     wt exp{-yt Ht}!

We update the !
weights:!

Slide credit: Antonio Torralba!
!

Toy example!

The strong (non- linear) classifier is built as the combination of 
all the weak (linear) classifiers.!

f1! f2!

f3!

f4!

Slide credit: Antonio Torralba!
!
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Adaboost!

Slide credit: Antonio Torralba!
!

Boosting!

•  Advantages of boosting!
–  Integrates classification with feature selection!
–  Complexity of training is linear instead of quadratic in 

the number of training examples!
–  Flexibility in the choice of weak learners, boosting 

scheme!
–  Testing is fast!
–  Easy to implement!

•  Disadvantages!
–  Needs many training examples!
–  Often doesn’t work as well as SVM (especially for 

many-class problems)!
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47 

AdaBoost learning algorithm!

Generic category recognition: 
basic framework 

•  Build/train object model 

–  Choose a representation 

–  Learn or fit parameters of model / classifier  

•  Generate candidates in new image 

•  Score the candidates 
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Window-based models 
Building an object model 

Car/non-car 
Classifier 

Yes, car. 

No, not a car. 

Given the representation, train a binary classifier 

Discriminative classifier construction 

106 examples 

Nearest neighbor 

Shakhnarovich, Viola, Darrell 2003 
Berg, Berg, Malik 2005... 

Neural networks 

LeCun, Bottou, Bengio, Haffner 1998 
Rowley, Baluja, Kanade 1998 
… 
 
 

Support Vector Machines Conditional Random Fields 

McCallum, Freitag, Pereira 2000; Kumar, 
Hebert 2003 
… 

Guyon, Vapnik 
Heisele, Serre, Poggio, 2001,… 

Slide adapted from Antonio Torralba 

Boosting 

Viola, Jones 2001, Torralba et al. 
2004, Opelt et al. 2006,… 
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Window-based models 
Generating and scoring candidates 

Car/non-car 
Classifier 

Window-based object detection: recap 

Car/non-car 
Classifier 

Feature 
extraction 

Training examples 

Training: 
1.  Obtain training data 
2.  Define features 
3.  Define classifier 

Given new image: 
1.  Slide window 
2.  Score by classifier 

Kristen Grauman 
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Face detection 

•  Basic idea: slide a window across image and evaluate 
a face model at every location 
 
 
 
 
 
 
 
 
 

Face detection 
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Face detection 

Behold a state-of-the-art face detector! 
(Courtesy Boris Babenko) 

Consumer application: Apple iPhoto 

http://www.apple.com/ilife/iphoto/!



29!

Consumer application: Apple iPhoto 

•  Can be trained to recognize pets! 

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats!

Consumer application: Apple iPhoto 

•  Things iPhoto thinks are faces 
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Funny Nikon ads 
"The Nikon S60 detects up to 12 faces."!

Funny Nikon ads 
"The Nikon S60 detects up to 12 faces."!
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Challenges of face detection 

•  Sliding window detector must evaluate tens of thousands 
of location/scale combinations 

•  Faces are rare:  0–10 per image 
–  For computational efficiency, we should try to spend 

as little time as possible on the non-face windows 

–  A megapixel image has ~106 pixels and a comparable 
number of candidate face locations 

–  To avoid having a false positive in every image image, 
our false positive rate has to be less than 10-6 

The Viola/Jones Face Detector 

•  A seminal approach to real-time object detection  
•  Training is slow, but detection is very fast 
•  Key ideas 

–  Integral images for fast feature evaluation 
–  Boosting for feature selection 
–  Attentional cascade for fast rejection of non-face 

windows 

P. Viola and M. Jones. 
Rapid object detection using a boosted cascade of simple features. CVPR 
2001. !
P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004. !
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Face detection!

Challenges of face detection!

•  Sliding window detector must evaluate tens of thousands 
of location/scale combinations!

•  Faces are rare:  0–10 per image!
–  For computational efficiency, we should try to spend 

as little time as possible on the non-face windows!
–  A megapixel image has ~106 pixels and a comparable 

number of candidate face locations!
–  To avoid having a false positive in every image image, 

our false positive rate has to be less than 10-6!
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The Viola/Jones Face Detector!

•  A seminal approach to real-time object detection !
•  Training is slow, but detection is very fast!
•  Key ideas!

–  Integral images for fast feature evaluation!
–  Boosting for feature selection!
–  Attentional cascade for fast rejection of non-face 

windows!

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004. !

66 

A totally different idea!

•  Use many very simple features!
•  Learn cascade of tests for target object!
•  Efficient if: !

–  features easy to compute!
–  cascade short!
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Integral Image 
Def: The integral image at location (x,y), is the sum of 
the pixel values above and to the left of (x,y), 
inclusive. We can calculate the integral image 
representation of the image in a single pass.   

(x,y) 

s(x,y) = s(x,y-1) + i(x,y) 

ii(x,y) = ii(x-1,y) - s(x,y) 

(0,0) 
x 

y Slide credit: Gyozo Gidofalvi 

ii(x,y) – value of the integral 
image – sum of all pixels above 
and left of (x,y)  

s(x,y) – cummulative row sum 

68 

Efficient Computation of Rectangle Value 

Using the integral image representation 
one can compute the value of any 
rectangular sum in constant time.  

Example: Rectangle D 

ii(4) + ii(1) – ii(2) – ii(3)  

As a result two-, three-, and four-rectangular features can be computed 
with 6, 8 and 9 array references respectively. 

Idea: Compute lot of simple features – outputs of convolution with the 
box like filters 

Object detection: classification problem   
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Using Many Simple Features!

•  Viola Jones / Haar Features!

(Generalized) Haar Features: 
 
•  rectangular blocks, white or black 
•  3 types of features: 

•  two rectangles: horizontal/vertical 
•  three rectangles 
•  four rectangles  

•  in 24x24 window: 180,000 possible     
  features 
 
 

Example!

Source!

Result!



36!

Feature selection!

•  For a 24x24 detection region, the number of possible 
rectangle features is ~160,000!!

Feature selection!

•  For a 24x24 detection region, the number of possible 
rectangle features is ~160,000! !

•  At test time, it is impractical to evaluate the entire 
feature set !

•  Can we create a good classifier using just a small 
subset of all possible features?!

•  How to select such a subset?!



37!

Boosting!

•  Boosting is a classification scheme that works by 
combining weak learners into a more accurate ensemble 
classifier!
–  A weak learner need only do better than chance!

•  Training consists of multiple boosting rounds!
–  During each boosting round, we select a weak learner 

that does well on examples that were hard for the 
previous weak learners!

–  “Hardness” is captured by weights attached to training 
examples!

Y. Freund and R. Schapire, A short introduction to boosting, Journal of 
Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999. !

74 

Problem!

•  For a 24x24 detection region, the number of possible 
rectangle features is ~160,000! !

•  At test time, it is impractical to evaluate the entire feature set !
•  Can we create a good classifier using just a small subset of 

all possible features?!
•  How to select such a subset?!
•  Feature here is equivalent with weak hypothesis !

•  Answer: Boosting [AdaBoost, Freund/Shapire]!
–  Finds small set of features that are “sufficient”!
–  Generalizes very well !
–  Requires positive and negative examples!
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AdaBoost Idea (in Viola/Jones):!

•  Given set of “weak” classifiers:!
–  Pick best one!
–  Reweight training examples, so that misclassified 

images have larger weight!
–  Reiterate; then linearly combine resulting classifiers!

Weak classifiers: Haar features!

Boosting for face detection!

•  Define weak learners based on rectangle 
features!

⎩
⎨
⎧ >

=
otherwise   0

)( if   1
)( tttt

t

pxfp
xh

θ

window!

value of rectangle feature!

parity! threshold!
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•  Define weak learners based on rectangle features!
•  For each round of boosting:!

–  Evaluate each rectangle filter on each example!
–  Select best threshold for each filter !
–  Select best filter/threshold combination!
–  Reweight examples!

•  Computational complexity of learning: O(MNK)!
–  M rounds, N examples, K features!

Boosting for face detection!

Boosting for face detection!

•  First two features selected by boosting:!
•   
 
 
 
 
 
 
 
 
 
 
This feature combination can yield 100% detection 
rate and 50% false positive rate!
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Example Classifier for Face Detection!

ROC curve for 200 feature classifier 

A classifier with 200 rectangle features was learned  
using AdaBoost 
 
95% correct detection on test set with 1 in 14084 
false positives. 
 

Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce 

80 

Classifier are Efficient!

•  Given a nested set of classifier 
hypothesis classes!

vs  false  neg  determined by 
% False Pos 

%
 D

et
ec

tio
n 

0                                               50 

50
   

   
   

   
   

   
   

   
   

   
   

   
   

 1
00
 

IMAGE 
SUB-WINDOW 

Classifier 1 

F 

NON-FACE 

F 

NON-FACE 

FACE Classifier 3 
T 

F 

NON-FACE 

T T T 
Classifier 2 

F 

NON-FACE 

Slide credit: Frank Dellaert, Paul Viola, Forsyth&Ponce 
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Cascaded Classifier!

1 Feature 5 Features 

F 

50% 
20 Features 

20% 2% 
FACE 

NON-FACE 

F 

NON-FACE 

F 

NON-FACE 

IMAGE 
SUB-WINDOW 

•  A 1 feature classifier achieves 100% detection rate 
and about 50% false positive rate.!

•  A 5 feature classifier achieves 100% detection rate 
and 40% false positive rate (20% cumulative)!
–  using data from previous stage. !

•  A 20 feature classifier achieve 100% detection rate 
with 10% false positive rate (2% cumulative)!

Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce 
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Output of Face Detector on Test Images!

Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce 
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Viola-Jones detector: summary 

Train with 5K positives, 350M negatives 
Real-time detector using 38 layer cascade 
6061 features in all layers 
 
[Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv/] 
 
 
 
 
 
 
 
 

Faces 

Non-faces 

Train cascade of 
classifiers with 
AdaBoost 

Selected features, 
thresholds, and weights 

New image 
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Kristen Grauman 

Cascading classifiers for detection 

•  Form a cascade with low false negative rates early on 
•  Apply less accurate but faster classifiers first to immediately 

discard windows that clearly appear to be negative 
Kristen Grauman 
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Solving other “Face” Tasks  

Facial Feature Localization 

Demographic 
Analysis 

Profile Detection  

Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce 
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Face Localization Features 

•  Learned features reflect the task 

Slide credit: Frank Dellaert, Paul Viola, Forsyth&Ponce 
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Face Profile Detection 

Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce 

Pedestrian detection 

•  Detecting upright, walking humans also possible using sliding 
window’s appearance/texture; e.g., 

SVM with Haar wavelets 
[Papageorgiou & Poggio, IJCV 
2000] 

Space-time rectangle 
features [Viola, Jones & 
Snow, ICCV 2003] 

SVM with HoGs [Dalal & 
Triggs, CVPR 2005] 

Kristen Grauman 
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Finding Cars (DARPA Urban Challenge) 

•  Hand-labeled images of generic car rear-ends 
•  Training time: ~5 hours, offline 

1100 images 

Credit: Hendrik Dahlkamp 
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Generating even more examples 

•  Generic classifier finds all cars in recorded video. 
•  Compute offline and store in database 

28700 images 

Credit: Hendrik Dahlkamp 
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Window-based detection: strengths 

•  Sliding window detection and global appearance 
descriptors: 
–  Simple detection protocol to implement 
–  Good feature choices critical 
–  Past successes for certain classes 

Kristen Grauman 

Window-based detection: Limitations 

•  High computational complexity  
–  For example: 250,000 locations x 30 orientations x 4 

scales = 30,000,000 evaluations! 
–  If training binary detectors independently, means cost 

increases linearly with number of classes 
•  With so many windows, false positive rate better be low 

Kristen Grauman 
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Limitations (continued) 

•  Not all objects are “box” shaped 

Kristen Grauman 

Limitations (continued) 

•  Non-rigid, deformable objects not captured well with 
representations assuming a fixed 2d structure; or 
must assume fixed viewpoint 

•  Objects with less-regular textures not captured well 
with holistic appearance-based descriptions 

Kristen Grauman 
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Limitations (continued) 

•  If considering windows in isolation, context is lost 

Figure credit: Derek Hoiem 

Sliding window Detector’s view 

Limitations (continued) 

•  In practice, often entails large, cropped training set 
(expensive)  

•  Requiring good match to a global appearance 
description can lead to sensitivity to partial occlusions 

Image credit: Adam, Rivlin, & Shimshoni 
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Summary 

•  Basic pipeline for window-based detection 

–  Model/representation/classifier choice 

–  Sliding window and classifier scoring 

•  Boosting classifiers: general idea 

•  Viola-Jones face detector 

–  Exemplar of basic paradigm 

–  Plus key ideas: rectangular features, Adaboost for 
feature selection, cascade 

•  Pros and cons of window-based detection 

98 

Summary Viola-Jones 

•  Rectangle features 
•  Integral images for fast computation 
•  Boosting for feature selection 
•  Attentional cascade for fast rejection of negative 

windows 

•  Many simple features 
–  Generalized Haar features (multi-rectangles) 
–  Easy and efficient to compute 

•  Discriminative Learning:  
–  finds a small subset for object recognition 
–  Uses AdaBoost 

•  Result: Feature Cascade 
–  15fps on 700Mhz Laptop (=fast!) 

•  Applications, Face detection, Car detection, Many 
others 
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Summary: Discriminative methods!

•  Nearest-neighbor and k-nearest-neighbor classifiers!
–  L1 distance, χ2 distance, quadratic distance,  

Earth Mover’s Distance!
•  Support vector machines!

–  Linear classifiers!
–  Margin maximization!
–  The kernel trick!
–  Kernel functions: histogram intersection, generalized 

Gaussian, pyramid match!
–  Multi-class!

•  Of course, there are many other classifiers out there!
–  Neural networks, boosting, decision trees, …!

Examples of sliding window based 
detectors!

Face detection, Pedestrian detection!
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Human detection 

•  HOG features 
•  Cue integration 
•  Ensemble of classifiers 
•  ROC curve 
 
 
 
•  Reading: Assigned papers 

Human detection with HOG 

•  Histogram of oriented 
gradients 

•  Using local gradients to 
represent positive and 
negative examples 
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Histogram of oriented gradients 

HOG descriptors 
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Results with MIT dataset 

Results with INRIA dataset 
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Results 

Cal Tech Pedestrian Dataset 

A large annoated dataset with performance evaluation  
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Performance evaluation 

Results (cont’d) 
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Results (cont’d) 

Results (cont’d) 
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Results (cont’d) 

Slide credit: Dan Klein!
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Representation Alternatives!

Sparse Coding Introduction!
!
!

Adopted from: Deep Learning Methods for 
Vision, CVPR 2012 Tutorial!

Relentless research on visual recognition 

9/10/13 127 

Caltech 101 

PASCAL VOC 

80 Million Tiny Images 

ImageNet 
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The pipeline of machine visual perception 

9/10/13 128 

Low-level 
sensing 

Pre-
processing 

Feature 
extract. 

Feature 
selection 

Inference: 
prediction, 
recognition 

• Most critical for accuracy 
• Account for most of the computation for testing 
• Most time-consuming in development cycle 
• Often hand-craft in practice 

Most Efforts in 
Machine Learning   

Computer vision features 

SIFT Spin image 

HoG RIFT 

Slide Credit: Andrew Ng 

GLOH 
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Learning features from data 

9/10/13 130 

Low-level 
sensing 

Pre-
processing 

Feature 
extract. 

Feature 
selection 

Inference: 
prediction, 
recognition 

Feature Learning:  
instead of design features,  
let’s design feature learners 

Machine Learning   

Learning features from data via sparse coding 

9/10/13 131 

Low-level 
sensing 

Pre-
processing 

Feature 
extract. 

Feature 
selection 

Inference: 
prediction, 
recognition 

Sparse coding offers an effective building 
block to learn useful features 
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Outline 

1.  Sparse coding for image classification 
2.  Understanding sparse coding 
3.  Hierarchical sparse coding 
4.  Other topics: e.g. structured model, scale-up, 

discriminative training 
5.  Summary 

9/10/13 132 

 “BoW representation + SPM” Paradigm - I 

9/10/13 133 
Figure credit: Fei-Fei Li 

Bag-of-visual-words representation 
(BoW) based on VQ coding 
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 “BoW representation + SPM” Paradigm - II 

9/10/13 134 
Figure credit: Svetlana Lazebnik 

Spatial pyramid matching:  
pooling in different scales and locations 

Image Classification using “BoW＋SPM” 

9/10/13 
135 

VQ Coding  

Dense SIFT 

Spatial Pooling 

Classifier 

   Image Classification 
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The Architecture of “Coding + Pooling” 

136 

•  e.g., convolutional neural net, HMAX, BoW, … 

Coding                           Pooling                  Coding                 Pooling 

“BoW+SPM” has two coding+pooling layers 

137 

e.g, SIFT, HOG 

VQ Coding Average Pooling  
(obtain histogram) 

SVM Local Gradients Pooling 

SIFT feature itself follows a coding+pooling operation  
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Develop better coding methods 

138 

Better Coding Better Pooling Better 
Classifier 

Better Coding Better Pooling 

- Coding: nonlinear mapping data into another feature space 
- Better coding methods:  sparse coding, RBMs, auto-encoders 

What is sparse coding 

9/10/13 139 

min
a,�

mX

i=1

������
xi �

kX

j=1

ai,j⇥j

������

2

+ �
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i=1

kX

j=1
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Sparse coding (Olshausen & Field,1996). Originally 
developed to explain early visual processing in the brain 
(edge detection).  

Training: given a set of random patches x, learning a 
dictionary of bases [Φ1, Φ2, …] 

Coding: for data vector x, solve LASSO to find the 
sparse coefficient vector a 
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Sparse coding: training time 

Input: Images x1, x2, …, xm (each in Rd)!
Learn: Dictionary of bases φ1, φ2, …, φk (also Rd).!

min
a,�

mX

i=1

������
xi �

kX

j=1

ai,j⇥j

������

2

+ �
mX

i=1

kX

j=1

|ai,j |

Alternating optimization:  
1.  Fix dictionary φ1, φ2, …, φk , optimize a (a standard 

LASSO problem）!

2.  Fix activations a, optimize dictionary φ1, φ2, …, φk   (a 
convex QP problem) 

Sparse coding: testing time 

Input: Novel image patch x (in Rd) and previously learned φi’s!
Output: Representation [ai,1, ai,2, …, ai,κ] of image patch xi. !

≈ 0.8 *                   + 0.3 *                     + 0.5 * 

Represent	  xi as:	  ai =	  [0,	  0,	  …,	  0,	  0.8,	  0,	  …,	  0,	  0.3,	  0,	  …,	  0,	  0.5,	  …]	  	  

min
a,�

mX

i=1

������
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Sparse coding illustration 
	  	  	  	  Natural	  Images	   Learned	  bases	  (φ1	  ,	  …,	  φ64):	  	  “Edges”	  
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≈ 0.8 *                   + 0.3 *                     + 0.5 * 

     x      ≈ 0.8 *       φ
36         +  0.3 *        φ42          

+ 0.5 *       φ63	  [a1,	  …,	  a64]	  =	  [0,	  0,	  …,	  0,	  0.8,	  0,	  …,	  0,	  0.3,	  0,	  …,	  0,	  0.5,	  0]	  	  
(feature	  representaDon)	  	  

Test	  example	

Compact	  &	  easily	  interpretable	  Slide credit: Andrew Ng 

Classification Result on Caltech 101 

9/10/13 144 

64%  
SIFT VQ + 
Nonlinear SVM 

~50% 
Pixel Sparse Coding 
+ Linear SVM 

 9K images, 101 classes 


