
1!

 Advanced Topics in Computer Vision  
and Robotics  

!

Classification Methods!
 !
!
!

Some slides thanks to S. Lazebnik, T. Berg, Fei-Fei Li, K. Grauman and others!

Previously !!

•  Object Recognition – Statistical Viewpoint!
!
•  Object Instance Recognition – Instance based

methods!
1.  Local and global features!
2.  Quantization, visual vocabularies!
3.  Approximate nearest neighbour methods (k-d trees,

k-means, hierarchical k-means of descriptors!
4.  Spatial Verification!

2!

Locally Sensitive Hashing!

•  Another methods for Approximate Nearest Neighbour!
•  Application: Large Scale Image Retrieval!
•  Even faster look up then binary trees, randomized

algorithm!

•  Find which is within the radius r of the query point,
with a high probability!

•  Need a hash function such that two points which
are near by will hash to the same code!

•  Assume that each point is a bit string 0 1 0 1 0 0 ….!
•  Intuition – bin the axes, and the points which fall in the

same bin are likely to be close, how about higher
dimension ?!

€

xj

€

g(x)

Locally Sensitive Hashing!

•  Idea: create several random projections and combine the
results!

•  Create l hash tables!
•  Each will model one projection of the point!
•  Enter all the examples in the hash tables!
•  For query point, get all the examples which are in the

same bin for all hash function, take union of these points!
•  Those will be the candidates!

•  Application; database of 13 million web images, image
descriptor 512 dimensions, LSH examines only
thousands examples (thousand fold speedup over
exhaustive or k-d tree)!

€

g1(x),g2(x)gl (x)

3!

Ensemble Methods!
Support Vector Machines, !
!

Slides from S. Lazebnik, adopted slides from A. Moore !

Linear classifiers!
•  Find linear function (hyperplane) to separate positive and

negative examples – many such hyperplanes!

0:negative
0:positive

<+⋅

≥+⋅

b
b

ii

ii

wxx
wxx

Which hyperplane  
is best?!

4!

Support vector machines!

•  Find hyperplane that maximizes the margin between the
positive and negative examples!

1:1)(negative
1:1)(positive
−≤+⋅−=

≥+⋅=

by
by

iii

iii

wxx
wxx

Margin!Support vectors!

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 !

Distance between point
and hyperplane:! ||||

||
w
wx bi +⋅

For support, vectors, ! 1±=+⋅ bi wx

Therefore, the margin is 2 / ||w||

Finding the maximum margin hyperplane!
1.  Maximize margin 2/||w||
2.  Correctly classify all training data: 

 

•  Quadratic optimization problem: 
!
!!

 Minimize  
!!

 Subject to yi(w·xi+b) ≥ 1!

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 !

wwT
2
1

1:1)(negative
1:1)(positive
−≤+⋅−=

≥+⋅=

by
by

iii

iii

wxx
wxx

5!

Solving the Optimization Problem !

() 1T
i iy b+ ≥w x

21minimize
2
w

s.t.!

Quadratic
programmi

ng !
with linear
constraints!

()2

1

1minimize (, ,) () 1
2

n
T

p i i i i
i

L b y bα α
=

= − + −∑w w w x

s.t.!

Lagrangi
an !

Function !

0iα ≥

Slide credit: Jinwei Gu!
!

Solving the Optimization Problem !

()2

1

1minimize (, ,) () 1
2

n
T

p i i i i
i

L b y bα α
=

= − + −∑w w w x

s.t.! 0iα ≥

1 1 1

1maximize
2

n n n
T

i i j i j i j
i i j

y yα αα
= = =

−∑ ∑∑ x x

s.t.! 0iα ≥
1

0
n

i i
i

yα
=

=∑, and!

Lagrangian
Dual !

Problem!

Slide credit: Jinwei Gu!
!

6!

Solving the Optimization Problem !

  The solution has the form: !

()() 1 0T
i i iy bα + − =w x

  From KKT condition, we know: !

  Thus, only support vectors have ! 0iα ≠

1 SV

n

i i i i i i
i i

y yα α
= ∈

= =∑ ∑w x x

get from () 1 0,
where is support vector

T
i i

i

b y b+ − =w x
x

x1!

x2!

wT x + b = 0!

wT x + b = -1!wT x + b = 1!

x+!

x+!

x-!

Support Vectors!

Slide credit: Jinwei Gu!
!

Finding the maximum margin hyperplane!
•  Solution: 
 

! !!
∑= i iii y xw α

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 !

Support  
vector!

learned  
weight!

7!

Finding the maximum margin hyperplane!
•  Solution: 
 

! ! b = yi – w·xi for any support vector 
!

•  Classification function (decision boundary): 
 
!

•  Notice that it relies on an inner product between the test
point x and the support vectors xi!

•  Solving the optimization problem also involves
computing the inner products xi · xj between all pairs of
training points!

∑= i iii y xw α

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 !

byb
i iii +⋅=+⋅ ∑ xxxw α

•  Datasets that are linearly separable work out great: 
!

!
•  But what if the dataset is just too hard?  
!

!
•  We can map it to a higher-dimensional space:!

0 x

0 x

0 x

x2

Nonlinear SVMs!

Slide credit: Andrew Moore!

8!

Φ: x → φ(x)

Nonlinear SVMs!
•  General idea: the original input space can always be

mapped to some higher-dimensional feature space
where the training set is separable:!

Slide credit: Andrew Moore!

Recall Solving the Optimization Problem !

SV
() T T

i i
i

g b bα
∈

= + = +∑x w x x x

  The linear discriminant function is: !

  Notice it relies on a dot product between the test point x
and the support vectors xi!

Slide credit: Jinwei Gu!
!

9!

Nonlinear SVM: Optimization!

  Formulation: (Lagrangian Dual Problem)!

1 1 1

1maximize (,)
2

n n n

i i j i j i j
i i j

y y Kα αα
= = =

−∑ ∑∑ x x

such that! 0 i Cα≤ ≤

1
0

n

i i
i

yα
=

=∑

  The solution of the discriminant function is!

SV
() (,)i i

i
g K bα

∈

= +∑x x x

  The optimization technique is the same.!

Slide credit: Jinwei Gu!
!

  With this mapping, our discriminant function is now:

SV
() () () ()T T

i i
i

g b bφ α φ φ
∈

= + = +∑x w x x x

  No need to know this mapping explicitly, because we only use
the dot product of feature vectors in both the training and test.

  A kernel function is defined as a function that corresponds to a
dot product of two feature vectors in some expanded feature
space:

(,) () ()T
i j i jK φ φ≡x x x x

Slide credit: Jinwei Gu

Nonlinear SVMs – Kernel Trick

10!

  Linear kernel:

2

2(,) exp()
2
i j

i jK
σ

−
= −

x x
x x

(,) T
i j i jK =x x x x

(,) (1)T p
i j i jK = +x x x x

0 1(,) tanh()T
i j i jK β β= +x x x x

  Examples of commonly-used kernel functions:

  Polynomial kernel:

  Gaussian (Radial-Basis Function (RBF)) kernel:

  Sigmoid:

Slide credit: Jinwei Gu!
!

Nonlinear SVMs – Kernel Trick

Kernels for bags of features!

•  Histogram intersection kernel: 
 
 
!

•  Generalized Gaussian kernel: 
 
!

•   
!

•  D can be Euclidean distance, χ2 distance, Earth
Mover’s Distance, etc.!

∑
=

=
N

i
ihihhhI

1
2121))(),(min(),(

⎟
⎠

⎞
⎜
⎝

⎛−= 2
2121),(1exp),(hhD

A
hhK

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,
Local Features and Kernels for Classifcation of Texture and Object Categories: A
Comprehensive Study, IJCV 2007!

11!

Support Vector Machine: Algorithm!

•  1. Choose a kernel function!

•  2. Choose a value for C – bound on maximum
weight for each support vector!

•  3. Solve the quadratic programming problem
(many software packages available)!

•  4. Construct the discriminant function from the
support vectors !

Slide credit: Jinwei Gu!
!

Some Issues!
•  Choice of kernel!
 - Gaussian or polynomial kernel is default!
 - if ineffective, more elaborate kernels are needed!
 - domain experts can give assistance in formulating appropriate

similarity measures!
!
•  Choice of kernel parameters!
 - e.g. σ in Gaussian kernel!
 - σ is the distance between closest points with different classifications !
 - In the absence of reliable criteria, applications rely on the use of a

validation set or cross-validation to set such parameters. !
!

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt !
Slide credit: Jinwei Gu!
!

12!

Summary: Support Vector Machine!

•  1. Large Margin Classifier !
–  Better generalization ability & less over-fitting!

•  2. The Kernel Trick!
–  Map data points to higher dimensional space in

order to make them linearly separable.!
–  Since only dot product is used, we do not need to

represent the mapping explicitly.!

Slide credit: Jinwei Gu!
!

Summary: SVMs for image classification!
1.  Pick an image representation (in our case, bag of

features)!
2.  Pick a kernel function for that representation!
3.  Compute the matrix of kernel values between every pair

of training examples!
4.  Feed the kernel matrix into your favorite SVM solver to

obtain support vectors and weights!
5.  At test time: compute kernel values for your test example

and each support vector, and combine them with the
learned weights to get the value of the decision function!

13!

What about multi-class SVMs?!

•  Unfortunately, there is no “definitive” multi-class SVM
formulation!

•  In practice, we have to obtain a multi-class SVM by
combining multiple two-class SVMs !

•  One vs. others!
–  Traning: learn an SVM for each class vs. the others!
–  Testing: apply each SVM to test example and assign to

it the class of the SVM that returns the highest decision
value!

•  One vs. one!
–  Training: learn an SVM for each pair of classes!
–  Testing: each learned SVM “votes” for a class to assign

to the test example!

SVMs: Pros and cons!
•  Pros!

–  Many publicly available SVM packages: 
http://www.kernel-machines.org/software!

–  Kernel-based framework is very powerful, flexible!
–  SVMs work very well in practice, even with very

small training sample sizes 
!

•  Cons!
–  No “direct” multi-class SVM, must combine two-

class SVMs!
–  Computation, memory !

•  During training time, must compute matrix of
kernel values for every pair of examples!

•  Learning can take a very long time for large-
scale problems!

14!

Multi-class classification!

•  How to deal with multiple classes!
•  One vs. all strategy !
•  For N classes train N different classifiers !
•  For class 1 positive examples – others negative

examples!
•  How to combine the classifiers ? !
•  Each will output some confidence score!
•  Final prediction will be the class with highest

confidence score !
€

hθ (x)

Bias and Variance!

•  Modeling issues: overfiting, underfiting!
•  How do you know how good is your model !
•  Example: regression (linear, vs 3rd order polynomial)!
•  Intuition: models which underfit have large bias!
•  Models which overfit have large variance!
•  Idea: fit the model to different subsets of data, if we fit the

line that line will have roughly similar parameters, but large
test error – small variance, large bias!

•  If we fit overfit, each model will have small error but the
parameters of the model will have large variance!

15!

Bias and Variance!

•  Modeling issues: overfiting, underfiting in classification!
•  How do you know how good is your model !
•  0/1 classification error: proportion of misclassified examples!
•  Training error and test error!
•  Picture of variance bias trade-off: curvature of decision

boundary!
•  How do you choose good model in practice ? !
•  Hold-out-cross-validation !
•  Split data into 70% train and 30% cross-validation!
•  Generate N different models, pick the one with lowest error

on cross-validation set!
!

Cross-validation: Example

4-fold cross-validation

It allows to use ¾ of the available data for
training, while making use of all of the data to
assess performance

16!

k-fold Cross-validation

  In general: we perform k runs. Each run uses (k-1)/k of
the available data for training.

  If the number of data is very limited, we can set k=N
(total number of data points). This gives the leave-one-
out cross-validation technique.

k-fold Cross-validation: Drawbacks

 Computationally expensive: number of training runs is
increased by a factor of k.

 A single models may have multiple complexity
parameters: exploring combinations of settings could
require a number of training runs that is exponential in
the number of parameters.

17!

In practice!

•  What are the choices if the first choice does not
work ?!

•  i.e. large generalization error!
•  If the model has high bias – it is too simple: consider

adding more features or using deeper decision tree!
•  If the model has high variance – it is too complex: fits

the idiosyncracy of the data: remove features, or get
more data !

Ensemble Methods!

•  So far we considered only single hypothesis !
•  Methods which consider whole ensemble of

hypotheses , from some hypothesis space and
combine their prediction!

•  One idea – consider majority vote N=5 hypotheses, if
at least 3 classify it correctly then it is correct label
(majority vote)!

•  Example: multiple separating lines for non-linearly
separable classes, note individual hypotheses are
simple!

•  Most popular idea: Boosting!

18!

•  Defines a classifier using an additive model:!

!

•  We need to define a family of weak classifiers!

!

Boosting!

Strong !
classifier!

Weak classifier!

Weight!
Features!
vector!

from a family of weak classifiers!

Boosting!

•  Each training example has associated!
•  At the beginning all !
•  Generate first hypothesis , some example correct, some no!
•  Idea: next do better of misclassified examples!
•  Increase weights of misclassified examples, decrease weight !
 of correctly classified examples, etc …!
•  Final ensemble is weighted majority combination of all

examples!

€

wi

€

wi =1

€

h1

19!

Each data
point has!

a class label:!
!

wt =1!
and a weight:!

+1 ()!
-1 ()!

yt =!

Boosting!

•  It is a sequential procedure:!
!

!

xt=1!

xt=2!

xt!

Slide credit: Antonio Torralba!
!

Toy example!
Weak learners from the family of lines!

h => p(error) = 0.5 it is at chance!

Each data
point has!

a class label:!
!

wt =1!
and a weight:!

Slide credit: Antonio Torralba!
!

20!

Toy example!

This one seems to be the best!

Each data
point has!

a class label:!
!

wt =1!
and a weight:!

This is a ‘weak classifier’: It performs slightly better than chance.!
Slide credit: Antonio Torralba!
!

Toy example!

We set a new problem for which the previous weak classifier !
performs at chance again!

Each data
point has!

a class label:!
!

wt wt exp{-yt Ht}!
We update the weights:!

Slide credit: Antonio Torralba!
!

21!

Toy example!

We set a new problem for which the previous weak classifier !
performs at chance again!

Each data
point has a
class label:!

!

wt wt exp{-yt Ht}!
We update the weights:!

Slide credit: Antonio Torralba!
!

Toy example!

We set a new problem for which the previous weak classifier !
performs at chance again!

Each data
point has!

a class label:!
!

wt wt exp{-yt Ht}!

We update the !
weights:!

Slide credit: Antonio Torralba!
!

22!

Toy example!

We set a new problem for which the previous weak classifier !
performs at chance again!

Each data
point has!

a class label:!
!

wt wt exp{-yt Ht}!

We update the !
weights:!

Slide credit: Antonio Torralba!
!

Toy example!

The strong (non- linear) classifier is built as the combination of
all the weak (linear) classifiers.!

f1! f2!

f3!

f4!

Slide credit: Antonio Torralba!
!

23!

Adaboost!

Slide credit: Antonio Torralba!
!

Boosting!

•  Advantages of boosting!
–  Integrates classification with feature selection!
–  Complexity of training is linear instead of quadratic in

the number of training examples!
–  Flexibility in the choice of weak learners, boosting

scheme!
–  Testing is fast!
–  Easy to implement!

•  Disadvantages!
–  Needs many training examples!
–  Often doesn’t work as well as SVM (especially for

many-class problems)!

24!

47

AdaBoost learning algorithm!

Generic category recognition:
basic framework

•  Build/train object model

–  Choose a representation

–  Learn or fit parameters of model / classifier

•  Generate candidates in new image

•  Score the candidates

25!

Window-based models
Building an object model

Car/non-car
Classifier

Yes, car.

No, not a car.

Given the representation, train a binary classifier

Discriminative classifier construction

106 examples

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
…

Support Vector Machines Conditional Random Fields

McCallum, Freitag, Pereira 2000; Kumar,
Hebert 2003
…

Guyon, Vapnik
Heisele, Serre, Poggio, 2001,…

Slide adapted from Antonio Torralba

Boosting

Viola, Jones 2001, Torralba et al.
2004, Opelt et al. 2006,…

26!

Window-based models
Generating and scoring candidates

Car/non-car
Classifier

Window-based object detection: recap

Car/non-car
Classifier

Feature
extraction

Training examples

Training:
1.  Obtain training data
2.  Define features
3.  Define classifier

Given new image:
1.  Slide window
2.  Score by classifier

Kristen Grauman

27!

Face detection

•  Basic idea: slide a window across image and evaluate
a face model at every location

Face detection

28!

Face detection

Behold a state-of-the-art face detector!
(Courtesy Boris Babenko)

Consumer application: Apple iPhoto

http://www.apple.com/ilife/iphoto/!

29!

Consumer application: Apple iPhoto

•  Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats!

Consumer application: Apple iPhoto

•  Things iPhoto thinks are faces

30!

Funny Nikon ads
"The Nikon S60 detects up to 12 faces."!

Funny Nikon ads
"The Nikon S60 detects up to 12 faces."!

31!

Challenges of face detection

•  Sliding window detector must evaluate tens of thousands
of location/scale combinations

•  Faces are rare: 0–10 per image
–  For computational efficiency, we should try to spend

as little time as possible on the non-face windows

–  A megapixel image has ~106 pixels and a comparable
number of candidate face locations

–  To avoid having a false positive in every image image,
our false positive rate has to be less than 10-6

The Viola/Jones Face Detector

•  A seminal approach to real-time object detection
•  Training is slow, but detection is very fast
•  Key ideas

–  Integral images for fast feature evaluation
–  Boosting for feature selection
–  Attentional cascade for fast rejection of non-face

windows

P. Viola and M. Jones.
Rapid object detection using a boosted cascade of simple features. CVPR
2001. !
P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004. !

32!

Face detection!

Challenges of face detection!

•  Sliding window detector must evaluate tens of thousands
of location/scale combinations!

•  Faces are rare: 0–10 per image!
–  For computational efficiency, we should try to spend

as little time as possible on the non-face windows!
–  A megapixel image has ~106 pixels and a comparable

number of candidate face locations!
–  To avoid having a false positive in every image image,

our false positive rate has to be less than 10-6!

33!

The Viola/Jones Face Detector!

•  A seminal approach to real-time object detection !
•  Training is slow, but detection is very fast!
•  Key ideas!

–  Integral images for fast feature evaluation!
–  Boosting for feature selection!
–  Attentional cascade for fast rejection of non-face

windows!

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004. !

66

A totally different idea!

•  Use many very simple features!
•  Learn cascade of tests for target object!
•  Efficient if: !

–  features easy to compute!
–  cascade short!

34!

67

Integral Image
Def: The integral image at location (x,y), is the sum of
the pixel values above and to the left of (x,y),
inclusive. We can calculate the integral image
representation of the image in a single pass.

(x,y)

s(x,y) = s(x,y-1) + i(x,y)

ii(x,y) = ii(x-1,y) - s(x,y)

(0,0)
x

y Slide credit: Gyozo Gidofalvi

ii(x,y) – value of the integral
image – sum of all pixels above
and left of (x,y)

s(x,y) – cummulative row sum

68

Efficient Computation of Rectangle Value

Using the integral image representation
one can compute the value of any
rectangular sum in constant time.

Example: Rectangle D

ii(4) + ii(1) – ii(2) – ii(3)

As a result two-, three-, and four-rectangular features can be computed
with 6, 8 and 9 array references respectively.

Idea: Compute lot of simple features – outputs of convolution with the
box like filters

Object detection: classification problem

35!

69

Using Many Simple Features!

•  Viola Jones / Haar Features!

(Generalized) Haar Features:

•  rectangular blocks, white or black
•  3 types of features:

•  two rectangles: horizontal/vertical
•  three rectangles
•  four rectangles

•  in 24x24 window: 180,000 possible
 features

Example!

Source!

Result!

36!

Feature selection!

•  For a 24x24 detection region, the number of possible
rectangle features is ~160,000!!

Feature selection!

•  For a 24x24 detection region, the number of possible
rectangle features is ~160,000! !

•  At test time, it is impractical to evaluate the entire
feature set !

•  Can we create a good classifier using just a small
subset of all possible features?!

•  How to select such a subset?!

37!

Boosting!

•  Boosting is a classification scheme that works by
combining weak learners into a more accurate ensemble
classifier!
–  A weak learner need only do better than chance!

•  Training consists of multiple boosting rounds!
–  During each boosting round, we select a weak learner

that does well on examples that were hard for the
previous weak learners!

–  “Hardness” is captured by weights attached to training
examples!

Y. Freund and R. Schapire, A short introduction to boosting, Journal of
Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999. !

74

Problem!

•  For a 24x24 detection region, the number of possible
rectangle features is ~160,000! !

•  At test time, it is impractical to evaluate the entire feature set !
•  Can we create a good classifier using just a small subset of

all possible features?!
•  How to select such a subset?!
•  Feature here is equivalent with weak hypothesis !

•  Answer: Boosting [AdaBoost, Freund/Shapire]!
–  Finds small set of features that are “sufficient”!
–  Generalizes very well !
–  Requires positive and negative examples!

38!

75

AdaBoost Idea (in Viola/Jones):!

•  Given set of “weak” classifiers:!
–  Pick best one!
–  Reweight training examples, so that misclassified

images have larger weight!
–  Reiterate; then linearly combine resulting classifiers!

Weak classifiers: Haar features!

Boosting for face detection!

•  Define weak learners based on rectangle
features!

⎩
⎨
⎧ >

=
otherwise 0

)(if 1
)(tttt

t

pxfp
xh

θ

window!

value of rectangle feature!

parity! threshold!

39!

•  Define weak learners based on rectangle features!
•  For each round of boosting:!

–  Evaluate each rectangle filter on each example!
–  Select best threshold for each filter !
–  Select best filter/threshold combination!
–  Reweight examples!

•  Computational complexity of learning: O(MNK)!
–  M rounds, N examples, K features!

Boosting for face detection!

Boosting for face detection!

•  First two features selected by boosting:!
•   
 
 
 
 
 
 
 
 
 
 
This feature combination can yield 100% detection
rate and 50% false positive rate!

40!

79

Example Classifier for Face Detection!

ROC curve for 200 feature classifier

A classifier with 200 rectangle features was learned
using AdaBoost

95% correct detection on test set with 1 in 14084
false positives.

Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce

80

Classifier are Efficient!

•  Given a nested set of classifier
hypothesis classes!

vs false neg determined by
% False Pos

%
 D

et
ec

tio
n

0 50

50

 1
00

IMAGE
SUB-WINDOW

Classifier 1

F

NON-FACE

F

NON-FACE

FACE Classifier 3
T

F

NON-FACE

T T T
Classifier 2

F

NON-FACE

Slide credit: Frank Dellaert, Paul Viola, Forsyth&Ponce

41!

81

Cascaded Classifier!

1 Feature 5 Features

F

50%
20 Features

20% 2%
FACE

NON-FACE

F

NON-FACE

F

NON-FACE

IMAGE
SUB-WINDOW

•  A 1 feature classifier achieves 100% detection rate
and about 50% false positive rate.!

•  A 5 feature classifier achieves 100% detection rate
and 40% false positive rate (20% cumulative)!
–  using data from previous stage. !

•  A 20 feature classifier achieve 100% detection rate
with 10% false positive rate (2% cumulative)!

Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce

82

Output of Face Detector on Test Images!

Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce

42!

Viola-Jones detector: summary

Train with 5K positives, 350M negatives
Real-time detector using 38 layer cascade
6061 features in all layers

[Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv/]

Faces

Non-faces

Train cascade of
classifiers with
AdaBoost

Selected features,
thresholds, and weights

New image

Ap
pl

y
to

 e
ac

h

su
bw

in
do

w

Kristen Grauman

Cascading classifiers for detection

•  Form a cascade with low false negative rates early on
•  Apply less accurate but faster classifiers first to immediately

discard windows that clearly appear to be negative
Kristen Grauman

43!

85

Solving other “Face” Tasks

Facial Feature Localization

Demographic
Analysis

Profile Detection

Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce

86

Face Localization Features

•  Learned features reflect the task

Slide credit: Frank Dellaert, Paul Viola, Forsyth&Ponce

44!

87

Face Profile Detection

Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce

Pedestrian detection

•  Detecting upright, walking humans also possible using sliding
window’s appearance/texture; e.g.,

SVM with Haar wavelets
[Papageorgiou & Poggio, IJCV
2000]

Space-time rectangle
features [Viola, Jones &
Snow, ICCV 2003]

SVM with HoGs [Dalal &
Triggs, CVPR 2005]

Kristen Grauman

45!

89

Finding Cars (DARPA Urban Challenge)

•  Hand-labeled images of generic car rear-ends
•  Training time: ~5 hours, offline

1100 images

Credit: Hendrik Dahlkamp

90

Generating even more examples

•  Generic classifier finds all cars in recorded video.
•  Compute offline and store in database

28700 images

Credit: Hendrik Dahlkamp

46!

Window-based detection: strengths

•  Sliding window detection and global appearance
descriptors:
–  Simple detection protocol to implement
–  Good feature choices critical
–  Past successes for certain classes

Kristen Grauman

Window-based detection: Limitations

•  High computational complexity
–  For example: 250,000 locations x 30 orientations x 4

scales = 30,000,000 evaluations!
–  If training binary detectors independently, means cost

increases linearly with number of classes
•  With so many windows, false positive rate better be low

Kristen Grauman

47!

Limitations (continued)

•  Not all objects are “box” shaped

Kristen Grauman

Limitations (continued)

•  Non-rigid, deformable objects not captured well with
representations assuming a fixed 2d structure; or
must assume fixed viewpoint

•  Objects with less-regular textures not captured well
with holistic appearance-based descriptions

Kristen Grauman

48!

Limitations (continued)

•  If considering windows in isolation, context is lost

Figure credit: Derek Hoiem

Sliding window Detector’s view

Limitations (continued)

•  In practice, often entails large, cropped training set
(expensive)

•  Requiring good match to a global appearance
description can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni

49!

Summary

•  Basic pipeline for window-based detection

–  Model/representation/classifier choice

–  Sliding window and classifier scoring

•  Boosting classifiers: general idea

•  Viola-Jones face detector

–  Exemplar of basic paradigm

–  Plus key ideas: rectangular features, Adaboost for
feature selection, cascade

•  Pros and cons of window-based detection

98

Summary Viola-Jones

•  Rectangle features
•  Integral images for fast computation
•  Boosting for feature selection
•  Attentional cascade for fast rejection of negative

windows

•  Many simple features
–  Generalized Haar features (multi-rectangles)
–  Easy and efficient to compute

•  Discriminative Learning:
–  finds a small subset for object recognition
–  Uses AdaBoost

•  Result: Feature Cascade
–  15fps on 700Mhz Laptop (=fast!)

•  Applications, Face detection, Car detection, Many
others

50!

Summary: Discriminative methods!

•  Nearest-neighbor and k-nearest-neighbor classifiers!
–  L1 distance, χ2 distance, quadratic distance,  

Earth Mover’s Distance!
•  Support vector machines!

–  Linear classifiers!
–  Margin maximization!
–  The kernel trick!
–  Kernel functions: histogram intersection, generalized

Gaussian, pyramid match!
–  Multi-class!

•  Of course, there are many other classifiers out there!
–  Neural networks, boosting, decision trees, …!

Examples of sliding window based
detectors!

Face detection, Pedestrian detection!

51!

Human detection

•  HOG features
•  Cue integration
•  Ensemble of classifiers
•  ROC curve

•  Reading: Assigned papers

Human detection with HOG

•  Histogram of oriented
gradients

•  Using local gradients to
represent positive and
negative examples

52!

Histogram of oriented gradients

HOG descriptors

53!

Results with MIT dataset

Results with INRIA dataset

54!

Results

Cal Tech Pedestrian Dataset

A large annoated dataset with performance evaluation

55!

Performance evaluation

Results (cont’d)

56!

Results (cont’d)

Results (cont’d)

57!

Results (cont’d)

Slide credit: Dan Klein!

58!

Representation Alternatives!

Sparse Coding Introduction!
!
!

Adopted from: Deep Learning Methods for
Vision, CVPR 2012 Tutorial!

Relentless research on visual recognition

9/10/13 127

Caltech 101

PASCAL VOC

80 Million Tiny Images

ImageNet

59!

The pipeline of machine visual perception

9/10/13 128

Low-level
sensing

Pre-
processing

Feature
extract.

Feature
selection

Inference:
prediction,
recognition

• Most critical for accuracy
• Account for most of the computation for testing
• Most time-consuming in development cycle
• Often hand-craft in practice

Most Efforts in
Machine Learning

Computer vision features

SIFT Spin image

HoG RIFT

Slide Credit: Andrew Ng

GLOH

60!

Learning features from data

9/10/13 130

Low-level
sensing

Pre-
processing

Feature
extract.

Feature
selection

Inference:
prediction,
recognition

Feature Learning:
instead of design features,
let’s design feature learners

Machine Learning

Learning features from data via sparse coding

9/10/13 131

Low-level
sensing

Pre-
processing

Feature
extract.

Feature
selection

Inference:
prediction,
recognition

Sparse coding offers an effective building
block to learn useful features

61!

Outline

1.  Sparse coding for image classification
2.  Understanding sparse coding
3.  Hierarchical sparse coding
4.  Other topics: e.g. structured model, scale-up,

discriminative training
5.  Summary

9/10/13 132

 “BoW representation + SPM” Paradigm - I

9/10/13 133
Figure credit: Fei-Fei Li

Bag-of-visual-words representation
(BoW) based on VQ coding

62!

 “BoW representation + SPM” Paradigm - II

9/10/13 134
Figure credit: Svetlana Lazebnik

Spatial pyramid matching:
pooling in different scales and locations

Image Classification using “BoW＋SPM”

9/10/13
135

VQ Coding

Dense SIFT

Spatial Pooling

Classifier

 Image Classification

63!

The Architecture of “Coding + Pooling”

136

•  e.g., convolutional neural net, HMAX, BoW, …

Coding Pooling Coding Pooling

“BoW+SPM” has two coding+pooling layers

137

e.g, SIFT, HOG

VQ Coding Average Pooling
(obtain histogram)

SVM Local Gradients Pooling

SIFT feature itself follows a coding+pooling operation

64!

Develop better coding methods

138

Better Coding Better Pooling Better
Classifier

Better Coding Better Pooling

- Coding: nonlinear mapping data into another feature space
- Better coding methods: sparse coding, RBMs, auto-encoders

What is sparse coding

9/10/13 139

min
a,�

mX

i=1

������
xi �

kX

j=1

ai,j⇥j

������

2

+ �
mX

i=1

kX

j=1

|ai,j |

Sparse coding (Olshausen & Field,1996). Originally
developed to explain early visual processing in the brain
(edge detection).

Training: given a set of random patches x, learning a
dictionary of bases [Φ1, Φ2, …]

Coding: for data vector x, solve LASSO to find the
sparse coefficient vector a

65!

Sparse coding: training time

Input: Images x1, x2, …, xm (each in Rd)!
Learn: Dictionary of bases φ1, φ2, …, φk (also Rd).!

min
a,�

mX

i=1

������
xi �

kX

j=1

ai,j⇥j

������

2

+ �
mX

i=1

kX

j=1

|ai,j |

Alternating optimization:
1.  Fix dictionary φ1, φ2, …, φk , optimize a (a standard

LASSO problem）!

2.  Fix activations a, optimize dictionary φ1, φ2, …, φk (a
convex QP problem)

Sparse coding: testing time

Input: Novel image patch x (in Rd) and previously learned φi’s!
Output: Representation [ai,1, ai,2, …, ai,κ] of image patch xi. !

≈ 0.8 * + 0.3 * + 0.5 *

Represent	 xi as:	 ai =	 [0,	 0,	 …,	 0,	 0.8,	 0,	 …,	 0,	 0.3,	 0,	 …,	 0,	 0.5,	 …]	 	

min
a,�

mX

i=1

������
xi �

kX

j=1

ai,j⇥j

������

2

+ �
mX

i=1

kX

j=1

|ai,j |

66!

Sparse coding illustration
	 	 	 	 Natural	 Images	 Learned	 bases	 (φ1	 ,	 …,	 φ64):	 	 “Edges”	

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

≈ 0.8 * + 0.3 * + 0.5 *

 x ≈ 0.8 * φ
36 + 0.3 * φ42

+ 0.5 * φ63	 [a1,	 …,	 a64]	 =	 [0,	 0,	 …,	 0,	 0.8,	 0,	 …,	 0,	 0.3,	 0,	 …,	 0,	 0.5,	 0]	 	
(feature	 representaDon)	 	

Test	 example	

Compact	 &	 easily	 interpretable	 Slide credit: Andrew Ng

Classification Result on Caltech 101

9/10/13 144

64%
SIFT VQ +
Nonlinear SVM

~50%
Pixel Sparse Coding
+ Linear SVM

 9K images, 101 classes

