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  Advanced Topics in Computer Vision  
and Robotics   

!

Classification Methods!
   !
!
!

Some slides thanks to S. Lazebnik, T. Berg, Fei-Fei Li, K. Grauman and others!

Simple Example of Recognition  
Statistical Viewpoint!

•  Suppose a we obtain measurement z!
•  What is P(zebra|z)?!
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Causal vs. Diagnostic Reasoning!

•  P(zebra|z) is diagnostic.!
•  P(z|zebra) is causal.!
•  Often causal knowledge is easier to obtain.!
•  Bayes rule allows us to use causal knowledge:!

€ 

P(zebra | z) = P(z | zebra)P(zebra)
P(z)

count frequencies!!

4 

Combining Evidence!

•  Suppose we obtain another observation z2.!

•  How can we integrate this new information?!

•  More generally, how can we estimate 
P(x| z1...zn )?!
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Example: Second Measurement !

•  P(z2|zebra) = 0.5   P(z2|¬zebra) = 0.6 
•  P(zebra|z1)=2/3 

€ 

P(zebra | z2,z1) =
P(z2 | zebra) P(zebra | z1)

P(z2 | zebra) P(zebra | z1) + P(z2 |¬zebra) P(¬zebra | z1)

=

1
2
⋅
2
3

1
2
⋅
2
3

+
3
5
⋅
1
3

=
5
8

= 0.625

•  z2 lowers the probability that the picture is zebra.!

Object categorization:  
the statistical viewpoint!

)|( imagezebrap

)( ezebra|imagnop
vs.!

•  MAP decision:!
!

€ 

P(x y) =
P(y | x) P(x)

P(y)
=

likelihood ⋅ prior
evidence
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Object categorization:  
the statistical viewpoint!

)|( imagezebrap

)( ezebra|imagnop
vs.!

•  Bayes rule:!
!

)()|()|( zebrapzebraimagepimagezebrap ∝

    posterior!      likelihood!     prior!

•  MAP decision:!
!

Object categorization:  
the statistical viewpoint!

•  Discriminative methods: model posterior!

•  Generative methods: model likelihood and prior!

)()|()|( zebrapzebraimagepimagezebrap ∝

    posterior!      likelihood!     prior!
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Discriminative methods!

•  Direct modeling of !

Zebra!
Non-zebra!

Decision  
boundary!

)|( imagezebrap

•  Model                               and !

Generative methods!
)|( zebraimagep ) |( zebranoimagep

Low ! Middle!

High! MiddleLow!

)|( zebranoimagep)|( zebraimagep
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Generative vs. discriminative methods!
•  Generative methods!

+ Interpretable !
+ Can be learned using images from just a single category!
– Sometimes we don’t need to model the likelihood when 

all we want is to make a decision  
!

•  Discriminative methods!
+ Efficient!
+ Often produce better classification rates!
– Can be hard to interpret!
– Require positive and negative training data!
!

Discriminative Methods!

•  Object/scene category recognition!
•  Multi-class classification problem!
•  Supervised setting !
•  Given examples of images with category labels!
•  Learn classifier to predict labels of new images!
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Discriminative methods!

•  Brief overview of machine learning !
•  Linear regression !
•  Logistic regression!
•  Decision trees!
•  Boosting idea!
•  SVM !

Slides from Russell and Norvig, AI book!

Inductive learning method!

•  Construct/adjust h to agree with f on training set!
•  (h is consistent if it agrees with f on all examples)!
!
•  E.g., curve fitting:!
!
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Inductive learning method!

•  Construct/adjust h to agree with f on training set!
•  (h is consistent if it agrees with f on all examples)!
!
•  E.g., curve fitting:!

•  Ockham’s razor: prefer the simplest hypothesis 
consistent with data!

Learning decision trees!

•  Problem: decide whether to wait for a table at a restaurant, based 
on the following attributes:!
1.  Alternate: is there an alternative restaurant nearby?!
2.  Bar: is there a comfortable bar area to wait in?!
3.  Fri/Sat: is today Friday or Saturday?!
4.  Hungry: are we hungry?!
5.  Patrons: number of people in the restaurant (None, Some, Full)!
6.  Price: price range ($, $$, $$$)!
7.  Raining: is it raining outside?!
8.  Reservation: have we made a reservation?!
9.  Type: kind of restaurant (French, Italian, Thai, Burger)!
10.  WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)!
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Attribute-based representations!
•  Examples described by attribute values (Boolean, discrete, 

continuous)!
•  E.g., situations where I will/won't wait for a table:!

!

•  Classification of examples is positive (T) or negative (F)!
!

Decision trees!
•  One possible representation for hypotheses!
•  E.g., here is the “true” tree for deciding whether to 

wait:!
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Decision tree learning!

•  Aim: find a small tree consistent with the training examples!
•  Idea: (recursively) choose "most significant" attribute as root of 

(sub)tree!

Choosing an attribute!

•  Idea: a good attribute splits the examples into 
subsets that are (ideally) "all positive" or "all negative"!

!

•  Patrons? is a better choice!
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Using information theory!

•  To implement Choose-Attribute in the DTL 
algorithm!

•  Information Content (Entropy):!
•  I(P(v1), … , P(vn)) = Σi=1 -P(vi) log2 P(vi)!

•  For a training set containing p positive examples and 
n negative examples:!

np
n

np
n

np
p

np
p

np
n

np
pI

++
−

++
−=

++ 22 loglog),(

Information gain!

•  A chosen attribute A divides the training set E into 
subsets E1, … , Ev according to their values for A, 
where A has v  distinct values.!

•  Information Gain (IG) or reduction in entropy from the 
attribute test:!

•  Choose the attribute with the largest IG!
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Information gain!

•  For the training set, p = n = 6, I(6/12, 6/12) = 1 bit!

•  Consider the attributes Patrons and Type (and others too):!

•  Patrons has the highest IG of all attributes and so is chosen by 
the DTL algorithm as the root!
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Example contd.!

•  Decision tree learned from the 12 examples:!

•  Substantially simpler than “true” tree---a more 
complex hypothesis isn’t justified by small amount of 
data!
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Linear regression!

•  Fit function to the data so you can predict future values!
•  Given data (x1,y1), (x2, y2), … (xn, yn)!
•  Find such hypothesis f, such that y = f(x) has small 

error of future data !
•  Choose the form of function and estimate the data 

using linear least squares techniques (in closed form, 
or gradient descent)!

Logistic Regression!
•  Similar as linear regression, but now y’s are only +/- or 0/1!
•      denoting positive or negative examples of a class!
•  We know that our function should have values 0 or 1!
•  Transform to continuous setting – construct such as h 

where function would have values only between 0-1 !

•  g(.) is a sigmoid, logistic function!

•  Property of the derivative!

h�(x) = g(�T x) =
1

1 + e��T x

g(z) =
1

1 + e�z

g�(z) = g(z)(1� g(z))



16!

Logistic Regression!

•  How do we find parameter!
•  Find such parameters so as to maximize likelihood of the 

data assume  that !

•  More compactly !

•  Resulting gradient ascent rule!

•  Closely related to perceptron learning algorithm where 
values are forced to be 0-1 - no clear probabilistic 
interpretation  !

�

p(y|x; �) = (h�)y(1� h�)(1�y)

⇥j = ⇥j + �(y(i) � h�(x(i)))x(i)

P (y = 1|x; �) = h�(x)
P (y = 0|x; �) = 1� h�(x)

Getting Ready!

•  Install vlfeat.org!
•  Install openCV!
•  svmlib!
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Instance Based Learning!

•  Nearest neighbor methods!
•  Non-parametric learning!
•  Define similarity measure !
•  Hamming distance with Boolean attributes!

!
•  K-d trees!
•  Locality sensitive hashing!
•  Min-hash!

Distance Functions!
•  Minkowski Distance  Lp norm!

•  For p = 1 Manhattan distance (often used for dissimilar 
attributes)!

•  For p = 2 Euclidean Distance!
•  Normalize each dimension (compute mean and standard 

deviation) and rescale all values to zero mean and unit 
variance!

•  Mahalanobis Distance – takes into account covariance 
between dimensions – where S is a covariance matrix!

Lp(xi, xq ) = ( (x j,i − xq,i )
p )1/p

j
∑

d(xi, xq ) = (x − y)T S−1(x − y)
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K-Nearest Neighbor!

•  Features!
–  All instances correspond to points in an n-

dimensional Euclidean space!
–  Classification is delayed till a new instance arrives!
–  Classification done by comparing feature vectors 

of the different points!
–  Target function may be discrete or real-valued!

1-Nearest Neighbor!
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3-Nearest Neighbor!

K-Nearest Neighbor!

•  An arbitrary instance is represented by
!(a1(x), a2(x), a3(x),.., an(x))!

–  ai(x) denotes features!
•  Euclidean distance between two instances!
!d(xi, xj)=sqrt (sum for r=1 to n (ar(xi) - ar(xj))2)!

•  Continuous valued target function!
–   mean value of the k nearest training examples!
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Voronoi Diagram!

•  Decision surface formed by the training examples!

Distance-Weighted Nearest Neighbor 
Algorithm!

•  Assign weights to the neighbors based on their 
‘distance’ from the query point!
–  Weight ‘may’ be inverse square of the distances!

•  All training points may influence a particular instance!
•  Points in the local neighbourhood will influence an 

instance!
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K-NN and irrelevant features 
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Remarks!

•  Highly effective inductive inference method for noisy 
training data and complex target functions!

•  Target function for a whole space may be described 
as a combination of less complex local 
approximations!

•  Learning is very simple!
•  Classification is time consuming!

•  Curse of dimensionality!
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Curse of dimensionality!
!
•  Curse of dimensionality – nearest neighbors in high-

dimensional spaces are very far – we often do not have 
enough data!

•  E.g. for N uniformly distributed points in n dimensional 
space length of average neighbourhood is !

•  Average volume containing k points!
•  Average of the edge length  of the cube!

•  For n=2 ,  l = 0.003!
•  For n=17  half edge length!
•  For n=200 94% of the length on the unit cube !

l = (k / N )1/n
ln = k / N

Nearest neighbours!

•  Instance based learning is simple and effective!
•  Naively comparing a test example against entire training 

set is expensive !
•  Important issue – structure data intelligently in order to 

avoid comparing against every point!
•  Structuring multi-dimensional data: !
•  Option: k-dimensional array of buckets; uniformly 

partition each dimension (ideal if data is uniformly 
distributed – which is never the case in multiple 
dimensions!

•  2D example!
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Nearest Neighbours!

•  Another alternative – quad tree – each 
dimension partitioned in two – the cells with 
lot of data are partitioned further !

•  Binary tree splits each dimension in half!
•  Memory intensive,  in 2D quadtree!

Nearest Neighbours!

•  k-d Tree - binary tree, which has both dimension number 
and splitting values at each node!

•  Splits the space into (hyper) rectangles!
•  Searching for a point in the tree is accomplished by 

traversing the tree O(lg(n)) if there are n datapoints!
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Nearest Neighbour Seach!

•  Depth first search to nearest neighbour !
•  End up in hyper rectangle, find the nearest 

point there – not necessarily the nearest 
neighbour!

•  There can be another point then leaf which is 
closer!

Constructing a kD-tree!

•  Select dimension to spliting values!
•  Select the dimension to split on !
•  Do this recursively for each child of the split!
•  Want to split along dimension along which examples 

are well spread!
    1. choose the dimension with greatest variances!
    2. choose the dimension with greatest range!
•  Want to split in the middle – median, mean!
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Constructing KD tree!

References!

•  Wikipedia on kD-tree!
•  Introductory tutorial in kD-tree Andrew Moore!
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Quantization!

•  KD trees effective approximate NN search!

•  Alternatives for local feature representations !
•  Quantization of the descriptor space !
•  Takes advantage of the repeatability of descriptors!
•  Many descriptors occur in more then one image!

•  Generates descriptor codebook – visual vocabulary!
•  Compact representation of local features!

K-means 

 
•  One of the most popular iterative descent 

clustering methods. 

•  Features: quantitative type. 

•  Dissimilarity measure: Euclidean distance. 

•  First flat k-means 
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K-means 
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K-means: The Algorithm 

 
 

 

 

 

{ }

clusters; assignedcurrently   theof means  thegiving

,,  therespect to with minimized is 

scattercluster  within  total the, assignmentcluster  aGiven  1.

1
1

2∑ ∑
= ∈

−
K

k
K

Ci
kik

k

C

C

mmmx 

{ }

mean;cluster current closest   thepoint toeach  assigningby 

  respect to with minimized is 

,,, means ofset current  aGiven  2.

1

2

1

∑ ∑
= ∈

−
K

k Ci
kik

K

CC
k

mx

mm 

change.not  do sassignment  theuntil iterated are 2 and 1 Steps 3.

K-means: Properties and Limitations 

 
 

 

 

 

•  The algorithm converges to a local minimum 

•  The solution depends on the initial partition 

•  One should start the algorithm with many different 
random choices for the initial means, and choose the 
solution having smallest value of the objective function 
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K-means: Properties and Limitations 

 
 

 

 

 

•  The algorithm is sensitive to outliers 

•  A variation of K-means improves upon robustness  (K-
medoids): 

•   Centers for each cluster are restricted to be one 
of the points assigned to the cluster; 

•  The center (medoid) is set to be the point that 
minimizes the total distance to other points in the 
cluster; 

•  K-medoids is more computationally intensive than 
K-means. 

K-means: Properties and Limitations 

 
 

 

 

 

•  The algorithm requires the number of clusters K;  
•  Often K is unknown, and must be estimated from the data: 
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An Application of K-means:  
(Lossy) Data compression 

•  Original image has N pixels 
•  Each pixel  (R,G,B) values 
•  Each value is stored with 8 bits of precision 
•  Transmitting the whole image costs 24N bits 
Compression achieved by K-means: 
•  Identify each pixel with the corresponding centroid 
•  We have K such centroids  we need                bits per pixel 
•  For each centroid we need 24 bits 
•  Transmitting the whole image costs 24K + N log2K bits 
•  Original image = 240x180=43,200 pixels  43,200x24=1,036,800 bits 
•  Compressed images:  
 
K=2: 43,248 bits            K=3: 86,472           K=10: 173,040 bits 

K   2log

Applications Computer Vision Object 
Recognition, Image Based Retrieval !

Applications of NN and clustering techniques 
in computer vision!
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Example Problems!

•  Problem1: Given an image find me similar image/
duplicate in the database!

•  Problem 2: Given an image, is this an image of a car ? 
Given database of images labeled as cars, faces, 
aeroplanes!

•  Problem 3: Given a document, what is the topic of the 
document ? !

•  Problem 4: Given an image, find me the closest image 
(looking most alike) in a large database !

•  Issues: definition of the similarity between two images, 
two documents (the key), deployment of clustering, large 
scale instance based learning!

Recognition using local features!

•  Define a set of local feature templates (we will 
discuss in more detail how to do this in Computer 
Vision section)!

•  Define similarity measure between two images!

•  Bags of visual features models!
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Bag-of-features models!

Many slides adapted from S. Lazebnik, Fei-Fei Li, Rob Fergus, and Antonio Torralba and many!
others!

Origin 2: Bag-of-words models!
•  Orderless document representation: frequencies of words 

from a dictionary  Salton & McGill (1983)!
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Origin 2: Bag-of-words models!

US Presidential Speeches Tag Cloud  
http://chir.ag/phernalia/preztags/ 

•  Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)!

Origin 2: Bag-of-words models!

US Presidential Speeches Tag Cloud  
http://chir.ag/phernalia/preztags/ 

•  Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)!
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Origin 2: Bag-of-words models!

US Presidential Speeches Tag Cloud  
http://chir.ag/phernalia/preztags/ 

•  Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)!

Bags of features for object recognition!

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)!

face, flowers, building!

•  Works pretty well for image-level classification!
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Bag of features: outline!

1.  Extract features!

Bag of features: outline!

1.  Extract features!
2.  Learn “visual vocabulary”!



36!
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3.  Quantize features using visual vocabulary !

Bag of features: outline!

1.  Extract features!
2.  Learn “visual vocabulary”!
3.  Quantize features using visual vocabulary !
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Bag of features: outline!

1.  Extract features!
2.  Learn “visual vocabulary”!
3.  Quantize features using visual vocabulary !
4.  Represent images by frequencies of  

“visual words” !

•  Regular grid!
–  Vogel & Schiele, 2003!
–  Fei-Fei & Perona, 2005!

1. Feature extraction!
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•  Regular grid!
–  Vogel & Schiele, 2003!
–  Fei-Fei & Perona, 2005!

•  Interest point detector!
–  Csurka et al. 2004!
–  Fei-Fei & Perona, 2005!
–  Sivic et al. 2005!

1. Feature extraction!

Normalize 
patch!

Detect patches!
[Mikojaczyk and Schmid 
’02]!
[Mata, Chum, Urban & 
Pajdla, ’02] !
[Sivic & Zisserman, ’03]!

Compute 
SIFT 

descriptor!

      
[Lowe’99]!

Slide credit: Josef Sivic!

1. Feature extraction!
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…!

1. Feature extraction!

2. Learning the visual vocabulary!

…!
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2. Learning the visual vocabulary!

Clustering!

…!

Slide credit: Josef Sivic!

2. Learning the visual vocabulary!

Clustering!

…!

Slide credit: Josef Sivic!

Visual vocabulary!
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K-means clustering!
•  Want to minimize sum of squared Euclidean 

distances between points xi and their nearest cluster 
centers mk 
 
 
!

•  Algorithm:!
•  Randomly initialize K cluster centers!
•  Iterate until convergence:!

–  Assign each data point to the nearest center!
–  Recompute each cluster center as the mean of all 

points assigned to it!

∑ ∑ −=
k

k
i

ki mxMXD
cluster

cluster
inpoint

2)(),(

Expectation Maximization!

•  Probabilistic version of k-means clustering !
•  Soft assignments of points to clusters!
•  Weighted recomputation of cluster centers!
•  Probabilistic formulation (20.3)!

•  Blackboard!
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From clustering to vector quantization!

•  Clustering is a common method for learning a visual 
vocabulary or codebook!
–  Unsupervised learning process!
–  Each cluster center produced by k-means becomes a 

codevector!
–  Codebook can be learned on separate training set!
–  Provided the training set is sufficiently representative, 

the codebook will be “universal” 
!

•  The codebook is used for quantizing features!
–  A vector quantizer takes a feature vector and maps it to 

the index of the nearest codevector in a codebook!
–  Codebook = visual vocabulary!
–  Codevector = visual word  
!

Example visual vocabulary 

Fei-Fei et al. 2005!
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Image patch examples of  visual words 

Sivic et al. 2005!

Visual vocabularies: Issues!

•  How to choose vocabulary size?!
–  Too small: visual words not representative of all 

patches!
–  Too large: quantization artifacts, overfitting!

•  Generative or discriminative learning?!
•  Computational efficiency!

–  Vocabulary trees  
(Nister & Stewenius, 2006)!
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Hierarchical k-means!
•  We have many, many of these features !
•  100000 images ~1000 features per image!
•  If we can get repeatable, discriminative features, !
•  then recognition can scale to very large databases !
•  using the vocabulary tree and indexing approach!

•  Quantize the feature descriptor space + efficient search    !
•  Hierarchical k-means - Nister&Stewenius [CVPR 2006]!
•  Visual vocabulary trees!

Slides from Nister & Stewenius 06!

Building Visual Vocabulary Tree!

Slides from Nister & Stewenius 06!
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Slides from Nister & Stewenius 06!

Building Visual Vocabulary Tree!

Slides from Nister & Stewenius 06!

Building Visual Vocabulary Tree!
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Slides from Nister & Stewenius 06!

Building Visual Vocabulary Tree!

Building Visual Vocabulary Tree!

Slides from Nister & Stewenius 06!
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Slides from Nister & Stewenius 06!

Slides from Nister & Stewenius 06!
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Vocabulary 
Tree!

Slides from Nister & Stewenius 06!

Vocabulary 
Tree!

Slides from Nister & Stewenius 06!



49!

Vocabulary 
Tree!

Slides from Nister & Stewenius 06!

Vocabulary 
Tree!

Slides from Nister & Stewenius 06!
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Vocabulary Trees!
•  Easy  to add/remove images from the database!
•  Suitable for incremental approach !
•  Suitable for creating single generic vocabulary!
•   !
•  Approach !
•  Extract descriptors from many/many images!
•  Acquire enough statistics about the descriptor distribution!
•  Run k-means hierarchically k- is the branching factor of the 

tree!
•  E.g. Branching factor of 10 and 6 levels – million leaves !

Slides from Nister & Stewenius 06!

Vocabulary Trees!
•  Training phase – add images to the database!
•  Extract descriptors – drop it down the tree!
•  Each node has an inverted file index!
•  Index to that image is added to all inverted files!

•  When we want to query image !
•  Pass each descriptor down the tree!
•  Accumulate scores for each image in the database!

•  At each level do      dot products total of       dot products!
•  For        leafs and integer descriptors we need           bytes 

for 1M leaf!
•  nodes use 143 MB of memory! Slides from Nister & Stewenius 06!
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Slides from Nister & Stewenius 06!

Application !

•  Vocabulary trees for finding closest image in 
the database!
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Slides from Nister & Stewenius 06!

Slides from Nister & Stewenius 06!
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Slides from Nister & Stewenius 06!

Slides from Nister & Stewenius 06!
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TF-IDF scoring!

•  TF-IDF term frequency – inverse document frequency!
•  Used in the information retrieval and text mining !
•  To evaluate how important is a word to document!

•  Importance depends on how many times the word appears in 
document – offset by number of occurrence of that word in the 
whole document corpus!

•  In image based retrieval !
•  image ~ document analogy!
•  visual word ~ word analogy!

TF-IDF scoring!
•  TF-IDF term frequency – inverse document frequency!
•  Number of occurrences of a word in a document / number of 

occurrences of all words in the document!

•  Number of documents / number of documents where term appears!

•  High weight of a word/term is when it has high frequency and low 
term document frequency !
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Inverted file index!

•  Idea – large number of images (documents) – how to 
find out quickly which image does the word occur ? !

•  Forward index – list of words per document!

•  Inverted index – list of documents per word!
•  Once the word is encountered – we can quickly figure 

out which image it belongs to !

Word 1   {1, 2 , 10, 12} !
Word 2   {0, 2, 100, 7, 18}!
Word 3   {5, 10, 12}!
   …!

Size Matters! Improves!
Retrieval!

Improves!
Speed!

Performance improves with the !
Size of the database!

Here the results of particular object instance retrieval, database!
Of ~ 40,000 objects, real-time performance!

Slides from Nister & Stewenius 06!


