
1!

 Advanced Topics in Computer Vision  
and Robotics  

!

Classification Methods!
 !
!
!

Some slides thanks to S. Lazebnik, T. Berg, Fei-Fei Li, K. Grauman and others!

Simple Example of Recognition  
Statistical Viewpoint!

•  Suppose a we obtain measurement z!
•  What is P(zebra|z)?!

2!

3

Causal vs. Diagnostic Reasoning!

•  P(zebra|z) is diagnostic.!
•  P(z|zebra) is causal.!
•  Often causal knowledge is easier to obtain.!
•  Bayes rule allows us to use causal knowledge:!

€

P(zebra | z) = P(z | zebra)P(zebra)
P(z)

count frequencies!!

4

Combining Evidence!

•  Suppose we obtain another observation z2.!

•  How can we integrate this new information?!

•  More generally, how can we estimate 
P(x| z1...zn)?!

3!

5

Example: Second Measurement !

•  P(z2|zebra) = 0.5 P(z2|¬zebra) = 0.6
•  P(zebra|z1)=2/3

€

P(zebra | z2,z1) =
P(z2 | zebra) P(zebra | z1)

P(z2 | zebra) P(zebra | z1) + P(z2 |¬zebra) P(¬zebra | z1)

=

1
2
⋅
2
3

1
2
⋅
2
3

+
3
5
⋅
1
3

=
5
8

= 0.625

•  z2 lowers the probability that the picture is zebra.!

Object categorization:  
the statistical viewpoint!

)|(imagezebrap

)(ezebra|imagnop
vs.!

•  MAP decision:!
!

€

P(x y) =
P(y | x) P(x)

P(y)
=

likelihood ⋅ prior
evidence

4!

Object categorization:  
the statistical viewpoint!

)|(imagezebrap

)(ezebra|imagnop
vs.!

•  Bayes rule:!
!

)()|()|(zebrapzebraimagepimagezebrap ∝

 posterior! likelihood! prior!

•  MAP decision:!
!

Object categorization:  
the statistical viewpoint!

•  Discriminative methods: model posterior!

•  Generative methods: model likelihood and prior!

)()|()|(zebrapzebraimagepimagezebrap ∝

 posterior! likelihood! prior!

5!

Discriminative methods!

•  Direct modeling of !

Zebra!
Non-zebra!

Decision  
boundary!

)|(imagezebrap

•  Model and !

Generative methods!
)|(zebraimagep) |(zebranoimagep

Low ! Middle!

High! MiddleLow!

)|(zebranoimagep)|(zebraimagep

6!

Generative vs. discriminative methods!
•  Generative methods!

+ Interpretable !
+ Can be learned using images from just a single category!
– Sometimes we don’t need to model the likelihood when

all we want is to make a decision  
!

•  Discriminative methods!
+ Efficient!
+ Often produce better classification rates!
– Can be hard to interpret!
– Require positive and negative training data!
!

Discriminative Methods!

•  Object/scene category recognition!
•  Multi-class classification problem!
•  Supervised setting !
•  Given examples of images with category labels!
•  Learn classifier to predict labels of new images!

7!

Discriminative methods!

•  Brief overview of machine learning !
•  Linear regression !
•  Logistic regression!
•  Decision trees!
•  Boosting idea!
•  SVM !

Slides from Russell and Norvig, AI book!

Inductive learning method!

•  Construct/adjust h to agree with f on training set!
•  (h is consistent if it agrees with f on all examples)!
!
•  E.g., curve fitting:!
!

8!

Inductive learning method!

•  Construct/adjust h to agree with f on training set!
•  (h is consistent if it agrees with f on all examples)!
!
•  E.g., curve fitting:!
!

Inductive learning method!

•  Construct/adjust h to agree with f on training set!
•  (h is consistent if it agrees with f on all examples)!
!
•  E.g., curve fitting:!
!

9!

Inductive learning method!

•  Construct/adjust h to agree with f on training set!
•  (h is consistent if it agrees with f on all examples)!
!
•  E.g., curve fitting:!
!

Inductive learning method!
•  Construct/adjust h to agree with f on training set!
•  (h is consistent if it agrees with f on all examples)!
!
•  E.g., curve fitting:!

10!

Inductive learning method!

•  Construct/adjust h to agree with f on training set!
•  (h is consistent if it agrees with f on all examples)!
!
•  E.g., curve fitting:!

•  Ockham’s razor: prefer the simplest hypothesis
consistent with data!

Learning decision trees!

•  Problem: decide whether to wait for a table at a restaurant, based
on the following attributes:!
1.  Alternate: is there an alternative restaurant nearby?!
2.  Bar: is there a comfortable bar area to wait in?!
3.  Fri/Sat: is today Friday or Saturday?!
4.  Hungry: are we hungry?!
5.  Patrons: number of people in the restaurant (None, Some, Full)!
6.  Price: price range ($, $$, $$$)!
7.  Raining: is it raining outside?!
8.  Reservation: have we made a reservation?!
9.  Type: kind of restaurant (French, Italian, Thai, Burger)!
10.  WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)!

11!

Attribute-based representations!
•  Examples described by attribute values (Boolean, discrete,

continuous)!
•  E.g., situations where I will/won't wait for a table:!

!

•  Classification of examples is positive (T) or negative (F)!
!

Decision trees!
•  One possible representation for hypotheses!
•  E.g., here is the “true” tree for deciding whether to

wait:!

12!

Decision tree learning!

•  Aim: find a small tree consistent with the training examples!
•  Idea: (recursively) choose "most significant" attribute as root of

(sub)tree!

Choosing an attribute!

•  Idea: a good attribute splits the examples into
subsets that are (ideally) "all positive" or "all negative"!

!

•  Patrons? is a better choice!

13!

Using information theory!

•  To implement Choose-Attribute in the DTL
algorithm!

•  Information Content (Entropy):!
•  I(P(v1), … , P(vn)) = Σi=1 -P(vi) log2 P(vi)!

•  For a training set containing p positive examples and
n negative examples:!

np
n

np
n

np
p

np
p

np
n

np
pI

++
−

++
−=

++ 22 loglog),(

Information gain!

•  A chosen attribute A divides the training set E into
subsets E1, … , Ev according to their values for A,
where A has v distinct values.!

•  Information Gain (IG) or reduction in entropy from the
attribute test:!

•  Choose the attribute with the largest IG!

∑
= +++

+
=

v

i ii

i

ii

iii

np
n

np
pI

np
npAremainder

1
),()(

)(),()(Aremainder
np
n

np
pIAIG −

++
=

14!

Information gain!

•  For the training set, p = n = 6, I(6/12, 6/12) = 1 bit!

•  Consider the attributes Patrons and Type (and others too):!

•  Patrons has the highest IG of all attributes and so is chosen by
the DTL algorithm as the root!

bits 0)]
4
2,

4
2(

12
4)

4
2,

4
2(

12
4)

2
1,

2
1(

12
2)

2
1,

2
1(

12
2[1)(

bits 0541.)]
6
4,

6
2(

12
6)0,1(

12
4)1,0(

12
2[1)(

=+++−=

=++−=

IIIITypeIG

IIIPatronsIG

Example contd.!

•  Decision tree learned from the 12 examples:!

•  Substantially simpler than “true” tree---a more
complex hypothesis isn’t justified by small amount of
data!

15!

Linear regression!

•  Fit function to the data so you can predict future values!
•  Given data (x1,y1), (x2, y2), … (xn, yn)!
•  Find such hypothesis f, such that y = f(x) has small

error of future data !
•  Choose the form of function and estimate the data

using linear least squares techniques (in closed form,
or gradient descent)!

Logistic Regression!
•  Similar as linear regression, but now y’s are only +/- or 0/1!
•  denoting positive or negative examples of a class!
•  We know that our function should have values 0 or 1!
•  Transform to continuous setting – construct such as h

where function would have values only between 0-1 !

•  g(.) is a sigmoid, logistic function!

•  Property of the derivative!

h�(x) = g(�T x) =
1

1 + e��T x

g(z) =
1

1 + e�z

g�(z) = g(z)(1� g(z))

16!

Logistic Regression!

•  How do we find parameter!
•  Find such parameters so as to maximize likelihood of the

data assume that !

•  More compactly !

•  Resulting gradient ascent rule!

•  Closely related to perceptron learning algorithm where
values are forced to be 0-1 - no clear probabilistic
interpretation !

�

p(y|x; �) = (h�)y(1� h�)(1�y)

⇥j = ⇥j + �(y(i) � h�(x(i)))x(i)

P (y = 1|x; �) = h�(x)
P (y = 0|x; �) = 1� h�(x)

Getting Ready!

•  Install vlfeat.org!
•  Install openCV!
•  svmlib!

17!

Instance Based Learning!

•  Nearest neighbor methods!
•  Non-parametric learning!
•  Define similarity measure !
•  Hamming distance with Boolean attributes!

!
•  K-d trees!
•  Locality sensitive hashing!
•  Min-hash!

Distance Functions!
•  Minkowski Distance Lp norm!

•  For p = 1 Manhattan distance (often used for dissimilar
attributes)!

•  For p = 2 Euclidean Distance!
•  Normalize each dimension (compute mean and standard

deviation) and rescale all values to zero mean and unit
variance!

•  Mahalanobis Distance – takes into account covariance
between dimensions – where S is a covariance matrix!

Lp(xi, xq) = ((x j,i − xq,i)
p)1/p

j
∑

d(xi, xq) = (x − y)T S−1(x − y)

18!

K-Nearest Neighbor!

•  Features!
–  All instances correspond to points in an n-

dimensional Euclidean space!
–  Classification is delayed till a new instance arrives!
–  Classification done by comparing feature vectors

of the different points!
–  Target function may be discrete or real-valued!

1-Nearest Neighbor!

19!

3-Nearest Neighbor!

K-Nearest Neighbor!

•  An arbitrary instance is represented by
!(a1(x), a2(x), a3(x),.., an(x))!

–  ai(x) denotes features!
•  Euclidean distance between two instances!
!d(xi, xj)=sqrt (sum for r=1 to n (ar(xi) - ar(xj))2)!

•  Continuous valued target function!
–  mean value of the k nearest training examples!

20!

Voronoi Diagram!

•  Decision surface formed by the training examples!

Distance-Weighted Nearest Neighbor
Algorithm!

•  Assign weights to the neighbors based on their
‘distance’ from the query point!
–  Weight ‘may’ be inverse square of the distances!

•  All training points may influence a particular instance!
•  Points in the local neighbourhood will influence an

instance!

21!

46!

K-NN and irrelevant features

+!+!+! +!+!+! +! +!o!o! o! o!o!o! o!o!o!o!o! o!o!o! o!o! o!o!?!

+!

+!

+!

+!

+!

+!
+! +!

o!

o!
o! o!

o!

o!

o!
o!

o!

o!

o!

o!o!

o! o!

o!

o!

o!?!

Remarks!

•  Highly effective inductive inference method for noisy
training data and complex target functions!

•  Target function for a whole space may be described
as a combination of less complex local
approximations!

•  Learning is very simple!
•  Classification is time consuming!

•  Curse of dimensionality!

22!

Curse of dimensionality!
!
•  Curse of dimensionality – nearest neighbors in high-

dimensional spaces are very far – we often do not have
enough data!

•  E.g. for N uniformly distributed points in n dimensional
space length of average neighbourhood is !

•  Average volume containing k points!
•  Average of the edge length of the cube!

•  For n=2 , l = 0.003!
•  For n=17 half edge length!
•  For n=200 94% of the length on the unit cube !

l = (k / N)1/n
ln = k / N

Nearest neighbours!

•  Instance based learning is simple and effective!
•  Naively comparing a test example against entire training

set is expensive !
•  Important issue – structure data intelligently in order to

avoid comparing against every point!
•  Structuring multi-dimensional data: !
•  Option: k-dimensional array of buckets; uniformly

partition each dimension (ideal if data is uniformly
distributed – which is never the case in multiple
dimensions!

•  2D example!

23!

Nearest Neighbours!

•  Another alternative – quad tree – each
dimension partitioned in two – the cells with
lot of data are partitioned further !

•  Binary tree splits each dimension in half!
•  Memory intensive, in 2D quadtree!

Nearest Neighbours!

•  k-d Tree - binary tree, which has both dimension number
and splitting values at each node!

•  Splits the space into (hyper) rectangles!
•  Searching for a point in the tree is accomplished by

traversing the tree O(lg(n)) if there are n datapoints!

24!

Nearest Neighbour Seach!

•  Depth first search to nearest neighbour !
•  End up in hyper rectangle, find the nearest

point there – not necessarily the nearest
neighbour!

•  There can be another point then leaf which is
closer!

Constructing a kD-tree!

•  Select dimension to spliting values!
•  Select the dimension to split on !
•  Do this recursively for each child of the split!
•  Want to split along dimension along which examples

are well spread!
 1. choose the dimension with greatest variances!
 2. choose the dimension with greatest range!
•  Want to split in the middle – median, mean!

25!

Constructing KD tree!

References!

•  Wikipedia on kD-tree!
•  Introductory tutorial in kD-tree Andrew Moore!

26!

Quantization!

•  KD trees effective approximate NN search!

•  Alternatives for local feature representations !
•  Quantization of the descriptor space !
•  Takes advantage of the repeatability of descriptors!
•  Many descriptors occur in more then one image!

•  Generates descriptor codebook – visual vocabulary!
•  Compact representation of local features!

K-means

•  One of the most popular iterative descent

clustering methods.

•  Features: quantitative type.

•  Dissimilarity measure: Euclidean distance.

•  First flat k-means

27!

K-means

() ∑∑∑
= ∈ ∈

−=
K

k Ci Cj
ji

k k

CW
1

2

2
1

:becomes "" The

xx

scatter point cluster within

()

()

() () ()

kk

Ci
ki

k
k

kjkiji

K

k Ci
kik

CC

C
C

CCW

CW

k

k

cluster in points ofnumber theis

cluster ofr mean vecto theis 1
where

) rewritingby (obtained

:asrewritten becan

1

2

∑

∑ ∑

∈

= ∈

=

−−−=−

−=

xx

xxxxxx

xx

K-means

∑ ∑
= ∈

−
K

k Ci
kikC

k

C
1

2min

:is objective The

xx

)0 settingby obtained is (this

minarg

 data ofset any for
:noticingby problem thissolvecan We

2

2

=
∂

−∂

−=

∑

∑

∈

∈

m

mx

mxx
m

Si
i

Si
iS

S

∑ ∑
= ∈

−
K

k Ci
kikC

k
k

C
1

2

,
min

:problemon optimizati enlarged thesolvecan weSo

mx
m

28!

K-means: The Algorithm

{ }

clusters; assignedcurrently theof means thegiving

,, therespect to with minimized is

scattercluster within total the, assignmentcluster aGiven 1.

1
1

2∑ ∑
= ∈

−
K

k
K

Ci
kik

k

C

C

mmmx

{ }

mean;cluster current closest thepoint toeach assigningby

 respect to with minimized is

,,, means ofset current aGiven 2.

1

2

1

∑ ∑
= ∈

−
K

k Ci
kik

K

CC
k

mx

mm

change.not do sassignment theuntil iterated are 2 and 1 Steps 3.

K-means: Properties and Limitations

•  The algorithm converges to a local minimum

•  The solution depends on the initial partition

•  One should start the algorithm with many different
random choices for the initial means, and choose the
solution having smallest value of the objective function

29!

K-means: Properties and Limitations

•  The algorithm is sensitive to outliers

•  A variation of K-means improves upon robustness (K-
medoids):

•  Centers for each cluster are restricted to be one
of the points assigned to the cluster;

•  The center (medoid) is set to be the point that
minimizes the total distance to other points in the
cluster;

•  K-medoids is more computationally intensive than
K-means.

K-means: Properties and Limitations

•  The algorithm requires the number of clusters K;
•  Often K is unknown, and must be estimated from the data:

{ }
{ }max21

max

,,, Compute
,,2,1can test We

WWW
KK

∈

max21 :generalIn WWW >>>

WKK
WWKK

K

KK

 of decreasesmaller provide splitsfurther ,when

expect can we,when
data, in the clusters ofnumber actual

1
∗

+
∗

∗

>

>><

=

kWK ofplot in the shape" elbow"an gidentifyinby ˆSet ∗

30!

An Application of K-means:
(Lossy) Data compression

•  Original image has N pixels
•  Each pixel (R,G,B) values
•  Each value is stored with 8 bits of precision
•  Transmitting the whole image costs 24N bits
Compression achieved by K-means:
•  Identify each pixel with the corresponding centroid
•  We have K such centroids we need bits per pixel
•  For each centroid we need 24 bits
•  Transmitting the whole image costs 24K + N log2K bits
•  Original image = 240x180=43,200 pixels 43,200x24=1,036,800 bits
•  Compressed images:

K=2: 43,248 bits K=3: 86,472 K=10: 173,040 bits

K 2log

Applications Computer Vision Object
Recognition, Image Based Retrieval !

Applications of NN and clustering techniques
in computer vision!

31!

Example Problems!

•  Problem1: Given an image find me similar image/
duplicate in the database!

•  Problem 2: Given an image, is this an image of a car ?
Given database of images labeled as cars, faces,
aeroplanes!

•  Problem 3: Given a document, what is the topic of the
document ? !

•  Problem 4: Given an image, find me the closest image
(looking most alike) in a large database !

•  Issues: definition of the similarity between two images,
two documents (the key), deployment of clustering, large
scale instance based learning!

Recognition using local features!

•  Define a set of local feature templates (we will
discuss in more detail how to do this in Computer
Vision section)!

•  Define similarity measure between two images!

•  Bags of visual features models!

32!

Bag-of-features models!

Many slides adapted from S. Lazebnik, Fei-Fei Li, Rob Fergus, and Antonio Torralba and many!
others!

Origin 2: Bag-of-words models!
•  Orderless document representation: frequencies of words

from a dictionary Salton & McGill (1983)!

33!

Origin 2: Bag-of-words models!

US Presidential Speeches Tag Cloud  
http://chir.ag/phernalia/preztags/

•  Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)!

Origin 2: Bag-of-words models!

US Presidential Speeches Tag Cloud  
http://chir.ag/phernalia/preztags/

•  Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)!

34!

Origin 2: Bag-of-words models!

US Presidential Speeches Tag Cloud  
http://chir.ag/phernalia/preztags/

•  Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)!

Bags of features for object recognition!

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)!

face, flowers, building!

•  Works pretty well for image-level classification!

35!

Bag of features: outline!

1.  Extract features!

Bag of features: outline!

1.  Extract features!
2.  Learn “visual vocabulary”!

36!

Bag of features: outline!

1.  Extract features!
2.  Learn “visual vocabulary”!
3.  Quantize features using visual vocabulary !

Bag of features: outline!

1.  Extract features!
2.  Learn “visual vocabulary”!
3.  Quantize features using visual vocabulary !

37!

Bag of features: outline!

1.  Extract features!
2.  Learn “visual vocabulary”!
3.  Quantize features using visual vocabulary !
4.  Represent images by frequencies of  

“visual words” !

•  Regular grid!
–  Vogel & Schiele, 2003!
–  Fei-Fei & Perona, 2005!

1. Feature extraction!

38!

•  Regular grid!
–  Vogel & Schiele, 2003!
–  Fei-Fei & Perona, 2005!

•  Interest point detector!
–  Csurka et al. 2004!
–  Fei-Fei & Perona, 2005!
–  Sivic et al. 2005!

1. Feature extraction!

Normalize
patch!

Detect patches!
[Mikojaczyk and Schmid
’02]!
[Mata, Chum, Urban &
Pajdla, ’02] !
[Sivic & Zisserman, ’03]!

Compute
SIFT

descriptor!

[Lowe’99]!

Slide credit: Josef Sivic!

1. Feature extraction!

39!

…!

1. Feature extraction!

2. Learning the visual vocabulary!

…!

40!

2. Learning the visual vocabulary!

Clustering!

…!

Slide credit: Josef Sivic!

2. Learning the visual vocabulary!

Clustering!

…!

Slide credit: Josef Sivic!

Visual vocabulary!

41!

K-means clustering!
•  Want to minimize sum of squared Euclidean

distances between points xi and their nearest cluster
centers mk 
 
 
!

•  Algorithm:!
•  Randomly initialize K cluster centers!
•  Iterate until convergence:!

–  Assign each data point to the nearest center!
–  Recompute each cluster center as the mean of all

points assigned to it!

∑ ∑ −=
k

k
i

ki mxMXD
cluster

cluster
inpoint

2)(),(

Expectation Maximization!

•  Probabilistic version of k-means clustering !
•  Soft assignments of points to clusters!
•  Weighted recomputation of cluster centers!
•  Probabilistic formulation (20.3)!

•  Blackboard!

42!

From clustering to vector quantization!

•  Clustering is a common method for learning a visual
vocabulary or codebook!
–  Unsupervised learning process!
–  Each cluster center produced by k-means becomes a

codevector!
–  Codebook can be learned on separate training set!
–  Provided the training set is sufficiently representative,

the codebook will be “universal” 
!

•  The codebook is used for quantizing features!
–  A vector quantizer takes a feature vector and maps it to

the index of the nearest codevector in a codebook!
–  Codebook = visual vocabulary!
–  Codevector = visual word  
!

Example visual vocabulary

Fei-Fei et al. 2005!

43!

Image patch examples of visual words

Sivic et al. 2005!

Visual vocabularies: Issues!

•  How to choose vocabulary size?!
–  Too small: visual words not representative of all

patches!
–  Too large: quantization artifacts, overfitting!

•  Generative or discriminative learning?!
•  Computational efficiency!

–  Vocabulary trees  
(Nister & Stewenius, 2006)!

44!

Hierarchical k-means!
•  We have many, many of these features !
•  100000 images ~1000 features per image!
•  If we can get repeatable, discriminative features, !
•  then recognition can scale to very large databases !
•  using the vocabulary tree and indexing approach!

•  Quantize the feature descriptor space + efficient search !
•  Hierarchical k-means - Nister&Stewenius [CVPR 2006]!
•  Visual vocabulary trees!

Slides from Nister & Stewenius 06!

Building Visual Vocabulary Tree!

Slides from Nister & Stewenius 06!

45!

Slides from Nister & Stewenius 06!

Building Visual Vocabulary Tree!

Slides from Nister & Stewenius 06!

Building Visual Vocabulary Tree!

46!

Slides from Nister & Stewenius 06!

Building Visual Vocabulary Tree!

Building Visual Vocabulary Tree!

Slides from Nister & Stewenius 06!

47!

Slides from Nister & Stewenius 06!

Slides from Nister & Stewenius 06!

48!

Vocabulary
Tree!

Slides from Nister & Stewenius 06!

Vocabulary
Tree!

Slides from Nister & Stewenius 06!

49!

Vocabulary
Tree!

Slides from Nister & Stewenius 06!

Vocabulary
Tree!

Slides from Nister & Stewenius 06!

50!

Vocabulary Trees!
•  Easy to add/remove images from the database!
•  Suitable for incremental approach !
•  Suitable for creating single generic vocabulary!
•  !
•  Approach !
•  Extract descriptors from many/many images!
•  Acquire enough statistics about the descriptor distribution!
•  Run k-means hierarchically k- is the branching factor of the

tree!
•  E.g. Branching factor of 10 and 6 levels – million leaves !

Slides from Nister & Stewenius 06!

Vocabulary Trees!
•  Training phase – add images to the database!
•  Extract descriptors – drop it down the tree!
•  Each node has an inverted file index!
•  Index to that image is added to all inverted files!

•  When we want to query image !
•  Pass each descriptor down the tree!
•  Accumulate scores for each image in the database!

•  At each level do dot products total of dot products!
•  For leafs and integer descriptors we need bytes

for 1M leaf!
•  nodes use 143 MB of memory! Slides from Nister & Stewenius 06!

51!

Slides from Nister & Stewenius 06!

Application !

•  Vocabulary trees for finding closest image in
the database!

52!

Slides from Nister & Stewenius 06!

Slides from Nister & Stewenius 06!

53!

Slides from Nister & Stewenius 06!

Slides from Nister & Stewenius 06!

54!

TF-IDF scoring!

•  TF-IDF term frequency – inverse document frequency!
•  Used in the information retrieval and text mining !
•  To evaluate how important is a word to document!

•  Importance depends on how many times the word appears in
document – offset by number of occurrence of that word in the
whole document corpus!

•  In image based retrieval !
•  image ~ document analogy!
•  visual word ~ word analogy!

TF-IDF scoring!
•  TF-IDF term frequency – inverse document frequency!
•  Number of occurrences of a word in a document / number of

occurrences of all words in the document!

•  Number of documents / number of documents where term appears!

•  High weight of a word/term is when it has high frequency and low
term document frequency !

55!

Inverted file index!

•  Idea – large number of images (documents) – how to
find out quickly which image does the word occur ? !

•  Forward index – list of words per document!

•  Inverted index – list of documents per word!
•  Once the word is encountered – we can quickly figure

out which image it belongs to !

Word 1 {1, 2 , 10, 12} !
Word 2 {0, 2, 100, 7, 18}!
Word 3 {5, 10, 12}!
 …!

Size Matters! Improves!
Retrieval!

Improves!
Speed!

Performance improves with the !
Size of the database!

Here the results of particular object instance retrieval, database!
Of ~ 40,000 objects, real-time performance!

Slides from Nister & Stewenius 06!

