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Abstract. In this paper, we study general questions about the solvability of the
Kruppa's equations and show that, in several special cases, the Kruppa's equations
can be renormalized and become linear. In particular, for cases when the camera
motion is such that its rotation axis is parallel or perpendicular to translation, we can
obtain linear algorithms for self-calibration. A further study of these cases not only
reveals generic diÆculties with degeneracy in conventional self-calibration methods
based on the nonlinear Kruppa's equations, but also clari�es some incomplete discus-
sion in the literature about the solutions of the Kruppa's equations. We demonstrate
that Kruppa's equations do not provide suÆcient constraints on camera calibration
and give a complete account of exactly what is missing in Kruppa's equations.
In particular, a clear relationship between the Kruppa's equations and chirality is
revealed. The results then resolve the discrepancy between the Kruppa's equations
and the necessary and suÆcient condition for a unique calibration. Simulation results
are presented demonstrating the sensitivity and robustness of the proposed linear
algorithms.
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1. Introduction

The problem of camera self-calibration refers to the problem of ob-
taining intrinsic parameters of a camera using only information from
image measurements, without any a priori knowledge about the motion
between frames and the structure of the observed scene. The orig-
inal question of determining whether the image measurements only
are suÆcient for obtaining intrinsic parameters of a camera as �rst
answered in (Maybank and Faugeras, 1992). The proposed approach
and solution utilize invariant properties of the image of the so called
absolute conic. Since the absolute conic is invariant under Euclidean
transformations (i.e., its representation is independent of the position
of the camera) and depends only on the camera intrinsic parameters,
the recovery of the image of the absolute conic is then equivalent to
the recovery of the camera intrinsic parameter matrix. The constraints
on the absolute conic are captured by the so called Kruppa's equations
initially discovered by Kruppa in 1913. In Section 3, we will provide a
much more concise derivation of the Kruppa's equations.

Certain algebraic and numerical approaches for solving the Kruppa's
equations were �rst discussed in (Maybank and Faugeras, 1992). Some
alternative and additional schemes have been explored in (Luong and
Faugeras, 1997; Zeller and Faugeras, 1996). Nevertheless, it has been
well-known that, in the presence of noise, these Kruppa's equation
based approaches are not guaranteed to provide a good estimate of the
camera calibration and many erroneous solutions will occur (Bougnoux,
1998). Because of this, we decide to revisit the Kruppa's equation based
approach in this paper. More speci�cally, we address the following two
questions:

1. Under what conditions do the Kruppa's equations become degener-
ate or ill-conditioned?

2. When conditions for degeneracy are satis�ed, how do the self -
calibration algorithms need to be modi�ed?

In this paper, we show that the answer to the former question is rather
unfortunate: for camera motions such that the rotation axis is parallel
or perpendicular to the translation, the (normalized or unnormalized)
Kruppa's equations may become degenerate. This explains why conven-
tional approaches to self-calibration based on the (nonlinear) Kruppa's
equations sometimes fail. Most practical images are, in fact, taken
through motions close to these two types. The parallel case shows up
very frequently in motion of aerial vehicles such as an helicopter. The
perpendicular case is interesting in mobile robot navigation, where
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the main rotation of the on-board camera are yaw and pitch, whose
axes are perpendicular to the direction of robot heading. In this paper,
we take one step further to show that when such motions occur, the
corresponding Kruppa's equations can be renormalized and become
linear. This fact allows us to correct (or salvage) classical Kruppa's
equation based self-calibration algorithms so as to obtain much more
stable linear self-calibration algorithms, other than the pure rotation
case known to Hartley (Hartley, 1997). Our study also clari�es and
completes previous analysis and results in the literature regarding the
solutions of the Kruppa's equations (Zeller and Faugeras, 1996). This
is discussed in Section 3.2.
Relations to Previous Works: Besides the Kruppa's equation based
self-calibration approach, alternative methods have also been stud-
ied extensively. For example some of them use the so called absolute
quadric constraints (Triggs, 1997), modulus constraints (Pollefeys and
Luc Van Gool, 1999) and chirality constraints (Hartley, 1998). Others
approaches restrict to special cases such as stationary camera (Hart-
ley, 1997) or to time-varying focal-length (Heyden and Astrom, 1997;
Polleyfeys and Koch and Luc Van Gool, 1998). We hope that, by a
more detailed study of the Kruppa's equations, we may gain a better
understanding of the relationships among the various self-calibration
methods. This is discussed in Section 3.3.

2. Epipolar Geometry Basics

To introduce the notation, we �rst review in this section the well-known
epipolar geometry and some properties of fundamental matrix to aid
the derivation and study of Kruppa's equations.

The camera motion is represented by (R;T ) where R is a rotation
matrix as an element in the special orthogonal group SO(3) and T 2 R3

is a three dimensional vector representing the translation of the camera.
That is, (R;T ) represents a rigid body motion as an element in the
special Euclidean group SE(3). In homogeneous coordinates, SE(3)
can be represented as:

SE(3) =

�
g :=

�
R T
0 1

�
2 R4�4

�
: (1)

The three dimensional coordinates (with respect to the camera frame)
of a generic point p in the world are related by the following Euclidean
transformation:

p(t) = R(t)p(t0) + T (t); 8t; t0 2 R: (2)
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4 Ma, Vidal, Ko�seck�a and Sastry

We use the matrix A 2 R3�3 to represent the intrinsic parameters of the
camera, which we also refer to as the calibration matrix of the camera.
In this paper, without loss of generality, we will assume det(A) = 1,
i.e., A is an element in the special linear group SL(3). SL(3) is the
group consisting of 3 � 3 real matrices with determinant equal to 1.
Our choice of A is slightly di�erent from (and more general than) the
traditional choice in the literature, as it is justi�ed in Appendix A. As
we will soon see, mathematically, it is more natural to deal with. The
(uncalibrated) image x (on a chosen image plane in R3 ) of the point p
at time t is given through the following equation:

�(t)x(t) = Ap(t); 8t 2 R: (3)

where �(t) 2 R is a scalar encoding the depth of the point p. Note that
this model does not di�erentiate the spherical or perspective projection.

Since we primarily consider the two-view case in this paper, to
simplify the notation, we will drop the time dependency from the
motion (R(t); T (t)) and simply denote it as (R;T ), and also use x1;x2
as shorthand for x(t0);x(t) respectively. Also, for a three dimensional
vector u 2 R3 , we can always associate to it a skew symmetric matrixbu 2 R3�3 such that the cross product u� v = buv for all v 2 R3 .1

It is well known that the two image points x1 and x2 satisfy the
epipolar constraint:

xT2A
�T bTRA�1x1 = 0: (4)

The matrix F = A�T bTRA�1 2 R3�3 is the so called fundamental
matrix in Computer Vision literature. When A = I, the fundamental
matrix simply becomes bTR which is called essential matrix and plays
a very important role in motion recovery (Maybank, 1993). The fol-
lowing simple but extremely useful lemma will allow us to write the
fundamental matrix in a more convenient form:

LEMMA 1 (Hat Operator). If T 2 R3 and A 2 SL(3), then AT bTA =
\A�1T .

Proof: Since both ATc(�)A and \A�1(�) are linear maps from R3 to R3�3 ,
using the fact that det(A) = 1, one may directly verify that these two
linear maps are equal on the bases: (1; 0; 0)T , (0; 1; 0)T ; (0; 0; 1)T .

This simple lemma will be frequently used throughout the paper. Given
the above relationship, the fundamental matrix can be written as:

F = A�T bTRA�1 = A�T bTA�1ARA�1 = cT 0ARA�1 (5)
1 In the computer vision literature, such a skew symmetric matrix is also often

denoted as u�. But we here use the notation consistent to that used in robotics,
where bu is used to denote to elements in the Lie algebra so(3) of SO(3).
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where T 0 = AT 2 R3 is the epipole. This equation in fact has an
more intrinsic meaning: an uncalibrated camera in a calibrated world
is mathematically equivalent to a calibrated camera in an uncalibrated
world (for more details see Appendix A). As we will soon see, the last
form of the fundamental matrix in the above equation is the most useful
one for deriving and solving the Kruppa's equations.

3. The Kruppa's Equations

Without loss of generality, we may assume that both the rotation R and
translation T are non-trivial, i.e., R 6= I and T 6= 0 hence the epipolar
constraint (4) is not degenerate and the fundamental matrix can be
estimated (Maybank, 1993). The camera self-calibration problem can
then be formulated as recovery of the symmetric matrix ! = A�TA�1

or !�1 = AAT from fundamental matrices.2 It can be shown that,
even if we have chosen A to be an arbitrary element in SL(3), A can
only be recovered up to a rotation, i.e., as an element in the quo-
tient space SL(3)=SO(3), for more details see Appendix A. Note that
SL(3)=SO(3) is only a 5-dimensional space. From the fundamental ma-

trix F = cT 0ARA�1, the epipole vector T 0 can be directly computed (up
to an arbitrary scale) as the (left) null space of F . Given a fundamental
matrix F , its scale, usually denoted as �, is de�ned as the norm of T 0.
If � = kT 0k = 1, such a F is called a normalized fundamental matrix.3

For now, let us assume that the fundamental matrix F happens to be
normalized.

Motivated by a more intrinsic interpretation of self-calibration out-
lined in Appendix A, we suggest an alternative approach for deriving
constraints (essentially the Kruppa's equations) on the unknown !, in
order to capture the interaction between the part of fundamental matrix
related to rotation and translation. Suppose the standard basis of R3

is e1 = (1; 0; 0)T ; e2 = (0; 1; 0)T ; e3 = (0; 0; 1)T 2 R3 . Then there exists
a rotation matrix R0 2 SO(3) such that R0T

0 = e3. Using Lemma 1,

we have cT 0 = RT
0 be3R0. De�ne matrix D 2 R3�3 to be:

D = R0F = be3R0ARA
�1 = [�e2; e1; 0]

TR0ARA
�1: (6)

ThenD has the formD = [�1; �2; 0]
T with �1; �2 2 R

3 being the �rst and
second row vectors of D. We then have �1 = A�TRTAT (�RT

0 e2) and
�2 = A�TRTATRT

0 e1. De�ne vectors �1; �2 2 R
3 as �1 = RT

0 e1; �2 =

2 In computer vision literature, ! is also referred to as the absolute conic.
3 Here k � k represents the standard 2-norm.
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�RT
0 e2, then it is direct to check that !�1 satis�es:

�T1 !
�1�1 = �T2 !

�1�2; �T2 !
�1�2 = �T1 !

�1�1; �T1 !
�1�2 = �T1 !

�1�2:(7)

We thus obtain three linear constraints on the matrix !�1, the in-
verse (dual) of the matrix (conic) !. These constraints can be used to
compute !�1 hence !.

The above derivation is based on the assumption that the fundamen-
tal matrix F is normalized, i.e., kT 0k = 1. However, since the epipolar
constraint is homogeneous in the fundamental matrix F , it can only
be determined up to an arbitrary scale. Suppose � is the length of the
vector T 0 2 R3 in F = cT 0ARA�1. Consequently, the vectors �1 and
�2 are also scaled by the same �. Then the ratio between the left and
right hand side quantities in each equation of (7) is equal to �2. This
reduces two constraints on !�1, the so called Kruppa's equations (after
its initial discovery by Kruppa in 1913):

�2 =
�T1 !

�1�1
�T2 !

�1�2
=
�T2 !

�1�2
�T1 !

�1�1
=
�T1 !

�1�2
�T1 !

�1�2
: (8)

Alternative means of obtaining the Kruppa's equations are by utilizing
algebraic relationships between projective geometric quantities (May-
bank and Faugeras, 1992) or via SVD characterization of F (Hartley,
1997). Here we obtain the same equations from a quite di�erent ap-
proach. Equation (8) further reveals the geometric meaning of the
Kruppa ratio �2: it is the square of the length of the vector T 0 in the
fundamental matrix F . This discovery turns out to be quite useful when
we later discuss the renormalization of Kruppa's equations. In general,
each fundamental matrix provides at most two algebraic constraints on
!�1, assuming that the two equations in (8) happen to be algebraically
independent. Since the symmetric matrix ! has �ve degrees of freedom,
in general at least three fundamental matrices are needed to uniquely
determine !. Nevertheless, as we will soon see, this is not the case for
many special camera motions.

COMMENT 1. One must be aware that solving Kruppa's equations
for camera calibration is not equivalent to the camera self-calibration
problem in the sense that there may exist solutions of Kruppa's equa-
tions which are not solutions of a \valid" self-calibration. Given a
non-critical set of camera motions, the associated Kruppa's equations
do not necessarily give enough constraints to solve for the calibration
matrix A. See Section 3.3 for a more detailed account.

The above derivation of Kruppa's equations is straightforward, but
the expression (8) depends on a particular choice of the rotation ma-
trix R0 { note that such a choice is not unique. However, there is
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an even simpler way to get an equivalent expression for the Kruppa's
equations in a matrix form. Given a normalized fundamental matrix
F = cT 0ARA�1, it is then straightforward to check that !�1 = AAT

must satisfy the following equation:

F!�1F T = cT 0!�1cT 0
T
: (9)

We call this equation the normalized matrix Kruppa's equation. It is
readily seen that this equation is equivalent to (7). If F is not normal-

ized and is scaled by � 2 R, i.e., F = �cT 0ARA�1,4 we then have the
matrix Kruppa's equation:

F!�1F T = �2cT 0!�1cT 0
T
: (10)

This equation is equivalent to the scalar version given by (8) and is
independent of the choice of the rotation matrix R0. In fact, the matrix
form reveals that the nature of Kruppa's equations is nothing but inner
product invariants of the group ASO(3)A�1.

3.1. Solving Kruppa's Equations

Algebraic properties of Kruppa's equations have been extensively stud-
ied (see e.g. (Maybank and Faugeras, 1992; Zeller and Faugeras, 1996)).
However, conditions on dependency among Kruppa's equations ob-
tained from the fundamental matrix have not been fully discovered.
Therefore it is hard to tell in practice whether a given set of Kruppa's
equations suÆce to guarantee a unique solution for calibration. As we
will soon see in this section, for very rich class of camera motions which
commonly occur in many practical applications, the Kruppa's equations
will become degenerate. Moreover, since the Kruppa's equations (8)
or (10) are nonlinear in !�1, most self-calibration algorithms based
on directly solving these equations su�er from being computationally
expensive or having multiple local minima (Bougnoux, 1998; Luong and
Faugeras, 1997). These reasons have motivated us to study the geomet-
ric nature of Kruppa's equations in order to gain a better understanding
of the diÆculties commonly encountered in camera self-calibration. Our
attempt to resolve these diÆculties will lead to simpli�ed algorithms
for self-calibration. These algorithms are linear and better conditioned
for these special class of camera motions.

Given a fundamental matrix F = cT 0ARA�1 with T 0 of unit length,
the normalized matrix Kruppa's equation (9) can be rewritten in the
following way:

cT 0(!�1 �ARA�1!�1A�TRTAT )cT 0
T
= 0: (11)

4 Without loss of generality, from now on, we always assume kT 0k = 1.
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8 Ma, Vidal, Ko�seck�a and Sastry

According to this form, if we de�ne C = A�TRTAT , a linear (Lya-
punov) map � : R3�3 ! R3�3 as � : X 7! X � CTXC, and a linear

map � : R3�3 ! R3�3 as � : Y 7! cT 0YcT 0
T
, then the solution !�1 of

equation (11) is exactly the (symmetric real) kernel of the composition
map:

� Æ � : R3�3 �
�! R3�3 �

�! R3�3 : (12)

This interpretation of Kruppa's equations clearly decomposes e�ects
of the rotational and translational parts of the motion: if there is no
translation, i.e., T = 0, then there is no map � ; if the translation is
non-zero, the kernel is enlarged due to the composition with map � . In
general, the kernel of � is only 2 dimensional. A more precise statement
is given by the lemma below:

LEMMA 2 (Lyapunov Map). Given a rotation matrix R not of the

form ebuk� for some k 2 Z and some u 2 R3 of unit length, the symmet-
ric real kernel associated with the map � de�ned above is 2 dimensional.
Otherwise, the symmetric real kernel is 4 dimensional if k is odd and
6 dimensional if k is even.

Proof of this lemma directly follows from properties of a Lyapunov map
(Callier and Desoer, 1991). According to this lemma, with two general
rotations, the conic ! hence the camera calibration A can be uniquely
determined.

In general, the symmetric real kernel of the composition map � Æ �
is believed to be 3 dimensional. As we will see in the next section,
this is not always true. In many cases of practical importance, this
kernel may become 4 dimensional instead, which exactly corresponds
to certain degeneracy of the Kruppa's equations. While the solutions
for the unnormalized Kruppa's equations are even more complicated
due to the unknown scale �, the following lemma demonstrates that
the conditions on uniqueness depend only on the camera motion.

LEMMA 3. Given a fundamental matrix F = cT 0ARA�1 with T 0 =
AT , a real symmetric matrix X 2 R3�3 is a solution of FXF T =

�2cT 0XcT 0
T

if and only if Y = A�1XA�T is a solution of EY ET =
�2 bTY bT T with E = bTR.
Using Lemma 1, the proof of this lemma is simply algebraic. This
simple lemma, however, states a very important fact: given a set of

fundamental matrices Fi =
cT 0
iARiA

�1 with T 0
i = ATi; i = 1; : : : ; n,

there is a one-to-one correspondence between the set of solutions of the

equations: FiXF
T
i = �2i

cT 0
iX

cT 0
i

T
; i = 1; : : : ; n and the set of solutions of
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the equations: EiY E
T
i = �2i

bTiY bTiT ; i = 1; : : : ; n where Ei = bTiRi are
essential matrices associated to the given fundamental matrices. Note
that these essential matrices are determined only by the camera motion.
Therefore, the conditions of uniqueness of the solution of Kruppa's
equations only depend on the camera motion. Our next task is then to
study how the solutions of Kruppa's equations depend on the camera
motion.

3.2. Renormalization and Degeneracy of Kruppa's

Equations

From the derivation of the Kruppa's equations (8) or (10), we observe
that the reason why they are nonlinear is that we do not usually know
the scale �. It is then helpful to know under what conditions the matrix
Kruppa's equation will have the same solutions as the normalized one,
i.e., with � set to 1. Here we will study two special cases for which
we are able to know directly what the missing � is. The fundamental
matrix can then be renormalized and we can therefore solve the camera
calibration from the normalized matrix Kruppa's equations, which are
linear! These two cases are when the rotation axis is parallel or per-
pendicular to the translation. That is, if the motion is represented by
(R;T ) 2 SE(3) and the unit vector u 2 R3 is the axis of R 2 SO(3),5

then the two cases are when u is parallel or perpendicular to T . As we
will soon see, these two cases are of great theoretical importance: Not
only does the calibration algorithm become linear, but it also reveals
certain subtleties of the Kruppa's equations and explains when the
nonlinear Kruppa's equations are most likely to become ill-conditioned.

LEMMA 4. Consider a camera motion (R;T ) 2 SE(3) where R = ebu�,
� 2 (0; �) and the axis u 2 R3 is parallel or perpendicular to T . If  2 R
and positive de�nite matrix Y are a solution to the matrix Kruppa's
equation: bTRY RT bT T = 2 bTY bT T associated to the essential matrixbTR, then we must have 2 = 1. Consequently, Y is a solution of the
normalized matrix Kruppa's equation: bTRY RT bT T = bTY bT T .

Proof: Without loss of generality we assume kTk = 1. For the parallel
case, let x 2 R3 be a vector of unit length in the plane spanned by
the column vectors of bT . All such x lie on a unit circle. There exists
x0 2 R

3 on the circle such that xT0 Y x0 is maximum. We then have
xT0RYR

Tx0 = 2xT0 Y x0, hence 
2 � 1. Similarly, if we pick x0 such

that xT0 Y x0 is minimum, we have 2 � 1. Therefore, 2 = 1. For the

5 R can always be written of the form R = ebu� for some � 2 [0; �] and u 2 S2.
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perpendicular case, since the columns of bT span the subspace which is
perpendicular to the vector T , the eigenvector u of R is in this subspace.
Thus we have: uTRYRTu = 2uTY u ) uTY u = 2uTY u: Hence
2 = 1 if Y is positive de�nite.

Combining Lemma 4 and Lemma 3, we immediately have:

THEOREM 1 (Renormalization of Kruppa's Equations). Consider an

unnormalized fundamental matrix F = cT 0ARA�1 where R = ebu�, � 2
(0; �) and the axis u 2 R3 is parallel or perpendicular to T = A�1T 0.
Let e = T 0=kT 0k 2 R3 . Then if � 2 R and a positive de�nite matrix !
are a solution to the matrix Kruppa's equation: F!�1F T = �2be!�1beT ,
we must have �2 = kT 0k2.

This theorem claims that, for the two types of special motions con-
sidered here, there is no solution for � in the Kruppa's equation (10)
besides the true scale of the fundamental matrix. Hence we can decom-
pose the problem into �nding � �rst and then solving for ! or !�1.
The following theorem allows to directly compute the scale � in the
two special cases for a given fundamental matrix:

THEOREM 2 (Renormalization of Fundamental Matrix). Given an un-

normalized fundamental matrix F = �cT 0ARA�1 with kT 0k = 1, if

T = A�1T 0 is parallel to the axis of R, then �2 is kF TcT 0Fk, and if
T is perpendicular to the axis of R, then � is one of the two non-zero
eigenvalues of F TcT 0.

Proof: Note that, since cT 0
TcT 0 is a projection matrix to the plane

spanned by the column vectors of cT 0, we have the identity cT 0
TcT 0cT 0 =cT 0. First we prove the parallel case. It can be veri�ed that, in general,

F TcT 0F = �2\ARTT . Since the axis of R is parallel to T , we have RTT =
T hence F TcT 0F = �2cT 0. For the perpendicular case, let u 2 R3 be the
axis of R. By assumption T = A�1T 0 is perpendicular to u. Then there
exists v 2 R3 such that u = bTA�1v. Then it is direct to check that cT 0v
is the eigenvector of F TcT 0 corresponding to the eigenvalue �.

Then for these two types of special motions, the associated fundamental
matrix can be immediately normalized by being divided by the scale �.
Once the fundamental matrices are normalized, the problem of �nding
the calibration matrix !�1 from normalized matrix Kruppa's equations
(9) becomes a simple linear one. A normalized matrix Kruppa's equa-
tion in general imposes three linearly independent constraints on the
unknown calibration matrix given by (7). However, this is no longer
the case for the special motions that we are considering here.
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THEOREM 3 (Degeneracy of Normalized Kruppa's Equations). Con-

sider a camera motion (R; T ) 2 SE(3) where R = ebu� has the angle
� 2 (0; �). If the axis u 2 R3 is parallel or perpendicular to T , then the

normalized matrix Kruppa's equation: bTRY RT bT T = bTY bT T imposes
only two linearly independent constraints on the symmetric matrix Y .

Proof: For the parallel case, by restricting Y to the plane spanned by
the column vectors of bT , it yields a symmetric matrix ~Y in R2�2 . The
rotation matrix R 2 SO(3) restricted to this plane is a rotation ~R 2
SO(2). The normalized matrix Kruppa's equation is then equivalent to
~Y � ~R ~Y ~RT = 0. Since 0 < � < �, this equation imposes exactly two con-
straints on the three dimensional space of 2�2 real symmetric matrices.
The identity I2�2 is the only solution. Hence the normalized Kruppa's
equation imposes exactly two linearly independent constraints on Y .

For the perpendicular case, since u is in the plane spanned by the
column vectors of bT , there exist v 2 R3 such that (u; v) form an or-
thonormal basis of the plane. Then the normalized matrix Kruppa's
equation is equivalent to:

bTRY RT bT T = bTY bT T , (u; v)TRY RT (u; v) = (u; v)T Y (u; v):

Since RTu = u, the above matrix equation is equivalent to two equa-
tions:

vTRY u = vTY u; vTRY RT v = vTY v: (13)

These are the only two constraints on Y imposed by the normalized
Kruppa's equation.

According to this theorem, although we can renormalize the fun-
damental matrix when rotation axis and translation are parallel or
perpendicular, we only get two independent constraints from the re-
sulting (normalized) Kruppa's equation corresponding to a single fun-
damental matrix, i.e., one of the three linear equations in (7) depends
on the other two. So degeneracy does occur to normalized Kruppa's
equations. Hence for these motions, in general, we still need three
such fundamental matrices to uniquely determine the unknown cali-
bration. What happens to the unnormalized Kruppa's equations? If
we do not renormalize the fundamental matrix and directly use the
unnormalized Kruppa's equations (8) to solve for calibration, the two
nonlinear equations in (8) may become algebraically dependent. The
following corollary shows that this is at least true for the case when
the translation is perpendicular to the rotation axis (e.g. a planar or
orbital motion):
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12 Ma, Vidal, Ko�seck�a and Sastry

COROLLARY 1. Consider a camera motion (R;T ) 2 SE(3) where

R = ebu� has the angle � 2 (0; �). If the axis u 2 R3 is perpendicular

to T , then the unnormalized matrix Kruppa's equation: bTRY RT bT T =
2 bTY bT T imposes only one algebraically independent constraints on the
symmetric matrix Y .

Proof: From the proof of Theorem 3, we know that any other linear
constraint on Y imposed by the normalized Kruppa's equations must
be a \linear combination" the two given in (13):

�vTRY u+ �vTRY RTv = �vTY u+ �vTY v; �; � 2 R:

Hence after eliminating , the unnormalized matrix Kruppa's equation
gives:

vTY u

vTRY u
=

vTY v

vTRY RT v
=

�vTY u+ �vTY v

�vTRY u+ �vTRY RT v
:

The �rst equation obviously implies the second regardless of values of
�; �.

Therefore, when the translation is perpendicular to the rotation axis,
one can only get one (unnormalized Kruppa) constraint, as opposed to
the expected two, on the unknown calibration !�1 from each funda-
mental matrix. However, the above arguments do not always apply to
the parallel case. But our study provides a more precise picture about
how many independent (linear or algebraic) constraints that one may
get at most in di�erent situations. This is summarized in Table 3.2.

Table I. Maximum numbers of independent constraints given by Kruppa's
equations and the angle � 2 [0; �) between the rotation and translation.

Cases Type of Constraints # of Constraints on !�1

Unnormalized Kruppa's Equation � 2
(� 6= 0; �

2
)

Normalized Kruppa's Equation � 3

Unnormalized Kruppa's Equation � 2
(� = 0)

Normalized Kruppa's Equation � 2

Unnormalized Kruppa's Equation � 1
(� = �

2
)

Normalized Kruppa's Equation � 2

Although, mathematically, motion involving translation either par-
allel or perpendicular to the rotation is only a zero-measure subset
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Camera Self-Calibration 13

of SE(3), they are very commonly encountered in applications: Many
images sequences are usually taken by moving the camera around an ob-
ject in trajectory composed of planar motion or orbital motion, in which
case the rotation axis and translation direction are likely perpendicular
to each other. Our analysis shows that, for these types of motions, even
if a unique calibration may exist from the given data, a self-calibration
algorithm based on directly solving the Kruppa's equations (8) is likely
to be ill-conditioned (Bougnoux, 1998). To intuitively demonstrate the
practical signi�cance of our results, we give an example in Figure 1.
Our analysis reveals that in these cases, it is crucial to renormalize the
Kruppa's equation using Theorem 3: once the fundamental matrix or
Kruppa's equations are renormalized, not only is one more constraint
recovered, but we also obtain linear constraints (normalized Kruppa's
equations).

3

21

Figure 1. Two consecutive orbital motions with independent rotations: the camera
optical axis always pointing to the center of the globe. Even if all pairwise fun-
damental matrices among the three views are considered, one only gets at most
1 + 1 + 2 = 4 e�ective constraints on the camera intrinsic matrix if one uses the
three unnormalized matrix Kruppa's equations. At least one more view is need if
one wishes to uniquely determine the unknown calibration. However, using renor-
malization instead, we may get back to 2+2+2 � 5 constraints from only the given
three views.

COMMENT 2 (Solutions of the Normalized Kruppa's Equations). The
claims of Theorem 3 run contrary to the claims of Propositions B.5
hence B.9 in (Zeller and Faugeras, 1996): In Proposition B.5 of (Zeller
and Faugeras, 1996), it is claimed that the solution space of the normal-
ized Kruppa's equations when the translation is parallel or perpendicular
to the rotation axis is two or three dimensional. In Theorem 3, we claim
that the solution space is always four dimensional. Theorem 3 does not

ma.tex; 11/04/2001; 21:52; p.13



14 Ma, Vidal, Ko�seck�a and Sastry

cover the case when the rotation angle � is �. However, if one allows
the rotation to be �, the solutions of normalized Kruppa's equations

are even more complicated. For example, we know bTebu� = � bT if u
is of unit length and parallel to T (see (Ma and Ko�seck�a and Sastry,

2000)). Therefore, if R = ebu�, the corresponding normalized Kruppa's
equation is completely degenerate and imposes no constraints at all on
the calibration matrix.

COMMENT 3 (Number of Solutions). Although Theorem 2 claims that
for the perpendicular case � is one of the two non-zero eigenvalues of
F TcT 0, unfortunately, there is no way to tell which one is the correct
one { simulations show that it could be either the larger or smaller
one. Therefore, in a numerical algorithm, for given n � 3 fundamental
matrices, one needs to consider all possible 2n combinations. According
to Theorem 1, in the noise-free case, only one of the solutions can be
positive de�nite, which corresponds to the true calibration.

3.3. Kruppa's Equations and Chirality

It can be shown that if the scene is rich enough, then two general
motions with rotation around di�erent axes already determine a unique
Euclidean solution for camera motion, calibration and scene structure
(which will be explained later on). However, the two Kruppa's equa-
tions obtained from these two motions will only give us at most four
constraints on ! which has �ve degrees of freedom. We hence need to
know what information is missing from the Kruppa's equations. Stated
alternatively, can we get extra independent constraints on ! from the
fundamental matrix other than the Kruppa's equations?

The proof of Theorem 2 suggests another equation can be derived
from the fundamental matrix F = �cT 0ARA�1 with kT 0k = 1. Since

F TcT 0F = �2\ARTT , we can obtain a vector � = �2ARTA�1T 0. Then
it is obvious that the following equation for ! = A�TA�1 holds:

�T!� = �4T 0T!T 0: (14)

Notice that this is a constraint on !, not like the Kruppa's equations
which are constraints on !�1. Combining the Kruppa's equations given
in (8) with (14) we have:

�2 =
�T1 !

�1�1
�T2 !

�1�2
=
�T2 !

�1�2
�T1 !

�1�1
=
�T1 !

�1�2
�T1 !

�1�2
=

s
�T!�

T 0T!T 0
: (15)

Is the last equation algebraically independent of the two Kruppa's
equations? Although it seems to be quite di�erent from the Kruppa's
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Camera Self-Calibration 15

equations, it is in fact dependent on them. This can be shown either
numerically or using simple algebraic tools such as Maple. Thus, it
appears that our e�ort to look for extra independent constraints on
A from the fundamental matrix has failed.6 In the following, we will
give an explanation to this by showing that not all ! which satisfy the
Kruppa's equations may give valid Euclidean reconstructions of both
the camera motion and scene structure. The extra constraints which
are missing in Kruppa's equations are in fact captured by the so called
chirality constraint, which was previously studied in (Hartley, 1998).
We now give a clear and concise description between the relationship
of the Kruppa's equations and chirality.

THEOREM 4 (Kruppa's Equations and Chirality). Consider a cam-
era with calibration matrix I and motion (R;T ). If T 6= 0, among all the

solutions Y = A�1A�T of the Kruppa's equation EY ET = �2 bTY bT T

associated to E = bTR, only those which guarantee ARA�1 2 SO(3)
may provide a valid Euclidean reconstruction of both camera motion
and scene structure in the sense that any other solution pushes some
plane N � R3 to the plane at in�nity, and feature points on di�erent
sides of the plane N have di�erent signs of recovered depth.

Proof: The images x2;x1 of any point p 2 R3 satisfy the coordinate
transformation:

�2x2 = �1Rx1 + T:

If there exists Y = A�1A�T such that EY ET = �2 bTY bT T for some
� 2 R, then the matrix F = A�TEA�1 = cT 0ARA�1 is also an essential
matrix with T 0 = AT , that is, there exists ~R 2 SO(3) such that F =cT 0 ~R (see (Maybank, 1993) for an account of properties of essential
matrices). Under the new calibration A, the coordinate transformation
is in fact:

�2Ax2 = �1ARA
�1(Ax1) + T 0:

Since F = cT 0 ~R = cT 0ARA�1, we have ARA�1 = ~R + T 0vT for some
v 2 R3 . Then the above equation becomes: �2Ax2 = �1 ~R(Ax1) +
�1T

0vT (Ax1)+ T 0: Let � = �1v
T (Ax1) 2 R, we can further rewrite the

equation as:

�2Ax2 = �1 ~RAx1 + (� + 1)T 0: (16)

6 Nevertheless, extra implicit constraints on A may still be obtained from other
algebraic facts. For example, the so called modulus constraints give three implicit
constraints on A by introducing three extra unknowns, for more details see (Pollefeys
and Luc Van Gool, 1999).
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16 Ma, Vidal, Ko�seck�a and Sastry

Nevertheless, with respect to the solution A, the reconstructed images
Ax1; Ax2 and ( ~R;T 0) must also satisfy:

2Ax2 = 1 ~RAx1 + T 0 (17)

for some scale factors 1; 2 2 R. Now we prove by contradiction that
v 6= 0 is impossible for a valid Euclidean reconstruction. Suppose that
v 6= 0 and we de�ne the plane N = fp 2 R3 jvT p = �1g. Then for any
p = �1Ax1 2 N , we have � = �1. Hence, from (16), Ax1; Ax2 satisfy
�2Ax2 = �1 ~RAx1. Since Ax1; Ax2 also satisfy (17) and T 0 6= 0, both
1 and 2 in (17) must be 1. That is, the plane N is \pushed" to the
plane at in�nity by the solution A. For points not on the plane N , we
have � + 1 6= 0. Comparing the two equations (16) and (17), we get
i = �i=(� + 1); i = 1; 2. Then for a point in the far side of the plane
N , i.e., � + 1 < 0, the recovered depth scale  is negative; for a point
in the near side of N , i.e., � + 1 > 0, the recovered depth scale  is
positive. Thus, we must have that v = 0.

COMMENT 4 (Quasi-aÆne Reconstruction). Theorem 4 essentially im-
plies the chirality constraints studied in (Hartley, 1998). According to
the above theorem, if only �nitely many feature points are measured, a
solution of the calibration matrix A which may allow a valid Euclidean
reconstruction should induce a plane N not cutting through the con-
vex hull spanned by all the feature points and camera centers. Such a
reconstruction is referred as quasi-aÆne in (Hartley, 1998).

It is known from Lemma 2 that, in general, all A's which make
ARA�1 a rotation matrix form a one parameter family. Thus, following
Theorem 4, in principle, a camera calibration can be uniquely deter-
mined by two independent rotations regardless of translation if enough
(usually in�nitely many) feature points are available. An intuitive ex-
ample is provided in Figure 2.

The signi�cance of Theorem 4 is that it explains why we get only
two constraints from one fundamental matrix even in the two special
cases when the Kruppa's equations can be renormalized { extra ones
are imposed by the structure, not the motion. The theorem also resolves
the discrepancy between the Kruppa's equations and the necessary and
suÆcient condition for a unique calibration: the Kruppa's equations, al-
though convenient to use, do not provide suÆcient conditions for a valid
calibration which allows a valid Euclidean reconstruction of both the
camera motion and scene structure. However, the fact given in Theorem
4 is somewhat diÆcult to harness in algorithms. For example, in order
to exclude invalid solutions, one needs feature points on or beyond the
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C3
L3

L2

L1

C1
C2

Ν

p

(R1, T1)

(R2, T2)

Figure 2. A camera undergoes two motions (R1; T1) and (R2; T2) observing a rig
consisting of three straight lines L1; L2; L3. Then the camera calibration is uniquely
determined as long as R1 and R2 have independent rotation axes and rotation
angles in (0; �), regardless of T1; T2. This is because, for any invalid solution A,
the associated plane N (see the proof of Theorem 4) must intersect the three lines
at some point, say p. Then the reconstructed depth of point p with respect to
the solution A would be in�nite (points beyond the plane N would have negative
recovered depth). This gives us a criteria to exclude all such invalid solutions.

plane N .7 Alternatively, if such feature points are not available, one
may �rst obtain a projective reconstruction and then use the so called
absolute quadric constraints to calibrate the camera (Triggs, 1997).
However, in such a method, the camera motion needs to satisfy a more
restrictive condition than requiring only two independent rotations,
i.e., it cannot be critical in the sense speci�ed in (Sturm, 1997).

4. Simulation Results

In this section, we test the performance of the proposed algorithms
through di�erent experiments. The error measure between the actual
calibration matrix A and the estimated calibration matrix ~A was chosen
to be error = kA� ~Ak

kAk �100. For all the simulations, �eld of view is chosen

to be 90 degrees for a 500�500 pixel image size; a cloud of 20 points are
randomly chosen with depths vary from 100 to 400 units of focal length;
the number of trials is always 100 and the number of image frames is
3 to 4 (depending on the minimum number of frames needed by each
algorithm). The calibration matrix A is simply the transformation from

7 Some possible ways of harnessing the constraints provided by chirality have
been discussed in (Hartley, 1998). Basically they give inequality constraints on the
possible solutions of the calibration.
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18 Ma, Vidal, Ko�seck�a and Sastry

the original 2� 2 (in unit of focal length) image to the 500� 500 pixel
image. For these parameters, the true A should be:

A =

24 250 0 250
0 250 250
0 0 1

35 : (18)

The ratio of the magnitude of translation and rotation, or simply the
T=R ratio, is compared at the center of the random cloud (scattered in
the truncated pyramid speci�ed by the given �eld of view and depth
variation). For all simulations, the number of trials is 100.
Pure rotation case: For comparison, we here also implement the
linear algorithm proposed by Hartley (Hartley, 1997) for calibrating a
pure rotating camera. Figures 3 and 4 show the experiments performed
in the pure rotation case. The axes of rotation are X and Y for Figures
3 and 4. The amount of rotation is 20o. The perfect data was corrupted
with zero-mean Gaussian noise with standard deviation � varying from
0 to 5 pixels. In Figures 3, it can be observed that the algorithm
performs very well in the presence of noise, reaching errors of less than
6% for a noise level of 5 pixels. Figure 4 shows the e�ect of the amount
of translation. This experiment is aimed to test the robustness of the
pure rotation algorithm with respect to translation. The T=R ratio was
varied from 0 to 0.5 and the noise level was set to 2 pixels. It can be
observed that the algorithm is not robust with respect to the amount
of translation.
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Figure 4. Pure rotation algorithm in presence of translation. Rotation axes X-Y ,
� = 2.

Translation parallel to rotation axis: Figures 5 and 6 show the
experiments performed for our algorithm8 when translation is parallel

8 Although in this paper we do not outline the algorithm, it should be clear from
Section 3.2.
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to the axis of rotation.9 The non-isotropic normalization procedure pro-
posed by Hartley (Hartley, 1997) and statistically justi�ed by M�uhlich
and Mester (Muhlich and Mester, 1998) was used to estimate the fun-
damental matrix. Figure 5 shows the e�ect of noise in the estimation of
the calibration matrix for T=R = 1 and a rotation of � = 20o between
consecutive frames. It can be seen that the normalization procedure
improves the estimation of the calibration matrix, but the improvement
is not signi�cant. This result is consistent with that of (Muhlich and
Mester, 1998), since the e�ect of normalization is more important for
large noise levels. On the other hand, the performance of the algorithm
is not as good as that of the pure rotation case, but still an error of 5%
is reached for a noise level of 2 pixels. Figure 6 shows the e�ect of the
angle of rotation in the estimation of the calibration matrix for a noise
level of 2 pixels. It can be concluded that a minimum angle of rotation
between consecutive frames is required for the algorithm to succeed.
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Figure 6. Rotation parallel to translation case. � = 2. Rotation /Translation axes:
XX-Y Y -ZZ, T=R ratio = 1.

Translation perpendicular to rotation axis: Figures 7 and 8
show the experiments performed for our algorithm when translation
is perpendicular to the axis of rotation. It can be observed that this
algorithm is much more sensitive to noise. The noise has to be less than
0.5 pixels in order to get an error of 5%. Experimentally it was found
that Kruppa's equations are very sensitive to the normalization of the
fundamental matrix F and that the eigenvalues �1 and �2 of F

TcT 0 are
close to each other. Therefore in the presence of noise, the estimation
of those eigenvalues might be ill conditioned (even complex eigenvalues

9 For specifying the Rotation/Translation axes, we simply use symbols such as
\XY -Y Y -ZZ" which means: for the �rst pair of images the relative motion is
rotation along X and translation along Y ; for the second pair both rotation and
translation are along Y ; and for the third pair both rotation and translation are
along Z.
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20 Ma, Vidal, Ko�seck�a and Sastry

are obtained) and so might the solution of Kruppa's equations. Another
experimental problem is that more than one non-degenerate solution
to Kruppa's equations can be found. This is because, when taking all
possible combinations of eigenvalues of F TcT 0 in order to normalize
F , the smallest eigenvalue of the linear map associated to \incorrect"
Kruppa equations can be very small. Besides, the eigenvector associ-
ated to this eigenvalue can eventually give a non-degenerate matrix.
Thus in the presence of noise, you can not distinguish between the
correct and one of these incorrect solutions. The results presented here
correspond to the best match to the ground truth when more than one
solution is found. Finally it is important to note that large motions can
signi�cantly improve the performance of the algorithm. Figure 8 shows
the error in the estimation of the calibration matrix for a rotation of
30o. It can be observed that the results are comparable to that of the
parallel case with a rotation of 20o.
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Figure 8. Rotation orthogonal to translation case. � = 30o. Rotation/Translation
axes: XY -Y Z-ZX, T=R ratio = 1.

Robustness:We denote the angle between the rotation axis and trans-
lation by �. The two linear algorithms we have studied in the above are
only supposed to work for the cases � = 0o and � = 90o. In order to
check how robust these algorithms are, we run them anyway for cases
when � varies from 0o to 90o. The noise level is 2 pixels, amount of
rotation is always 20o and the T=R ratio is 1. Translation and rotation
axes are given by Figure 9. Surprisingly, as we can see from the results
given in Figure 10, for the range 0o � � � 50o, both algorithms give
pretty close estimates. Heuristically, this is because, for this range of
angle, the eigenvalues of the matrix F TcT 0 are complex and numerically
their norm is very close to the norm of the matrix F TcT 0F . Therefore,
the computed renormalization scale � from both algorithms is very
close, as is the calibration estimate. For � > 50o, the eigenvalues of
F TcT 0 become real and the performance of the two algorithms is no
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longer the same. Near the conditions under which these algorithms are
designed to work, the algorithm for the perpendicular case is apparently
more sensitive to the perturbation in the angle � than the one for the
parallel case: As clear from the �gure, a variation of 10o degree of �
results an increase of error almost 50%. We are currently conducting
experiments on real images and trying to �nd ways to overcome this
diÆculty.
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Figure 10. Estimation error in calibration w.r.t. di�erent angle �.

5. Conclusions

In this paper, we have revisited the Kruppa's equations based ap-
proach for camera self-calibration. Through a detailed study of the
cases when the camera rotation axis is parallel or perpendicular to
the translation, we have discovered generic diÆculties in the conven-
tional self-calibration schemes based on directly solving the nonlinear
Kruppa's equations. Our results not only complete existing understand-
ing in the literature regarding the solutions of Kruppa's equations
but also provide brand new linear algorithms for self-calibration other
than the well-known one for a pure rotating camera. Simulation results
show that, under the given conditions, these linear algorithms provide
good estimates of the camera calibration despite the degeneracy of
the Kruppa's equations. The performance is close to that of the pure
rotation case.

In this paper, we have assumed that the calibration matrix A (or
the intrinsic parameters) is always constant. The results obtained here
certainly help to study the case when A is time-varying (such as chang-
ing focal length) and the associated Kruppa equations become time-
varying. Since, in real applications, the camera is usually pre-calibrated
and only some of the camera intrinsic parameters may be unknown or

ma.tex; 11/04/2001; 21:52; p.21



22 Ma, Vidal, Ko�seck�a and Sastry

time-varying, such as the focal length, a detailed study of the geometry
for such a camera system is also of great theoretical and practical impor-
tance. In this paper, only elementary simulations have been presented.
We are testing the performance of the proposed algorithms through
more extensive simulations and experiments on real image sequences.

Appendix

A. Geometry of an Uncalibrated Camera

In order to fully explain why the fundamental matrix F has two equiv-
alent forms as given in (5), we �rst need to know some geometric
properties of an uncalibrated camera: we will see that the study of
an uncalibrated camera in a Euclidean space is equivalent to that of
a calibrated camera in another (Euclidean) space with an unknown
metric. Further, the problem of recovering the calibration matrix A is
mathematically equivalent to that of recovering this unknown metric.
Some elementary Riemannian geometry notation will be used here, for
which we refer the reader to (Boothby, 1986).

Let E3 be the three dimensional Euclidean space (R3 with its stan-
dard inner product metric). Consider a linear map  from E 3 to itself:

 : E 3 ! E3

p 7! p0 = Ap

where p and p0 by an abuse of notation also represent 3 dimensional
coordinates of points p 2 E 3 and p0 =  (p) 2 E 3 respectively, and
A 2 R3�3 is the matrix representing the linear map. Then  is the
transformation from the calibrated space to the uncalibrated space. To
di�erentiate these two spaces, we will use a prime on the entities as-
sociated to the uncalibrated space, unless it is clear from the context.
Let �(�; �) to be the standard Euclidean metric on E 3 . Then the map
 induces a new metric �0(�; �) on E 3 as following:

�0(u; v) = �( �1(u);  �1(v)) = uTA�TA�1v; 8u; v 2 Tp0E
3 ; p0 2 E 3 :(19)

We de�ne a symmetric matrix ! 2 R3�3 associated to the matrix A
as before: ! = A�TA�1. Then the metric �0(�; �) is determined by the
matrix !. Let K � SL(3) be the subgroup of SL(3) which consists of
all upper-triangular matrices. That is, any matrix A 2 K has the form:

A =

24 a11 a12 a13
0 a22 a23
0 0 a33

35 : (20)
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Note that if A is upper-triangular, so is A�1. Clearly, there is a one-
to-one correspondence between K and the set of all upper-triangular
matrices of the form given in (20); also the equation ! = A�TA�1

gives a �nite-to-one correspondence between K and the set of all 3� 3
symmetric matrices with determinant 1 (by the Cholesky factorization).
Usually, only one of the upper-triangular matrices corresponding to the
same symmetric matrix has a physical interpretation as the intrinsic
parameters of a camera. Thus, if the calibration matrix A does have
the form given by (20), the self-calibration problem is equivalent to
the problem of recovering the matrix !, i.e., the metric �0(�; �) of the
uncalibrated space.

Now let us consider the general case that the uncalibrated camera
is characterized by an arbitrary matrix A 2 SL(3). A has a QR-
decomposition:

A = QR; Q 2 K ; R 2 SO(3): (21)

ThenA�1 = RTQ�1 and the associated symmetric matrix ! = A�TA�1

= Q�TQ�1. In general, if A = BR with A;B 2 SL(3); R 2 SO(3), the
A�TA�1 = B�TB�1. That is A and B induces the same metric on
the uncalibrated space. In this case, we say that matrices A and B are
equivalent. The quotient space SL(3)=SO(3) can be called the intrinsic
parameter space. It gives an \intrinsic indeed" interpretation for the
camera intrinsic parameters given in (20). This will be explained below
in more detail.

We contend that, without knowing camera motion and scene struc-
ture, the matrix A 2 SL(3) can only be recovered up to an equivalence
class �A 2 SL(3)=SO(3). To see this, suppose B 2 SL(3) is another
matrix in the same equivalence class as A. Then A = BR0 for some
R0 2 SO(3). The coordinate transformation (2) yields:

Ap(t) = AR(t)p(t0) +AT (t)

, BR0p(t) = BR0R(t)R
T
0 R0p(t0) +BR0T (t):

Notice that the conjugation:

Adr : SE(3) ! SE(3)

h 7! rhr�1

is a group homomorphism where r =

�
R0 0
0 1

�
. Then from the equation

(22), there is no way that one can tell an uncalibrated camera with
calibration matrix A undergoing the motion (R(t); T (t)) and observing
the point p 2 E 3 from another uncalibrated camera with calibration
matrix B undergoing the motion (R0R(t)R

T
0 ; R0T (t)) and observing
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the point R0p 2 E
3 . The e�ect of R0 is nothing but a rotation of the

overall con�guration space. In fact, this property is naturally inherited
by the fundamental matrix F , according to the Hat Operator Lemma
1.

Therefore, without knowing camera motion and scene structure, the
matrix A associated with an uncalibrated camera can only be recovered
up to an equivalence class �A in the space SL(3)=SO(3). The subgroup
K of all upper-triangular matrices in SL(3) is one representation of such
a space, as is the space of 3�3 symmetric positive de�nite matrices with
determinant 1. Thus, SL(3)=SO(3) does provide an intrinsic geometric
interpretation for the unknown camera parameters. In general, the
problem of camera self-calibration is then equivalent to the problem
of recovering the symmetric matrix ! = A�TA�1, i.e., the new metric
�0(�; �), from which the upper-triangular representation of the intrinsic
parameters can be easily obtained from the Cholesky factorization.

The space E 3 with the new metric �0(�; �) is still a Euclidean space.
Nevertheless, without knowing this metric, we do not know how to
transform the chosen coordinate charts of the uncalibrated camera back
to an orthonormal one. That is, the space E 3 is now uncalibrated. From
(2), the coordinate transformation in the uncalibrated space is given
by:

Ap(t) = AR(t)p(t0) +AT (t) , p0(t) = AR(t)A�1p0(t0) + T 0(t)(22)

where p0 = Ap and T 0 = AT . In homogeneous coordinates, the trans-
formation group on the uncalibrated space is given by:

G0 =

��
ARA�1 T 0

0 1

� ��� T 0 2 R3 ; R 2 SO(3)

�
� R4�4 (23)

It is direct to check that the metric �0(�; �) is invariant under the action
of G0. ThusG0 is a subgroup of the isometry group10 of the uncalibrated
space. If the motion of a calibrated camera in the uncalibrated space
is given by g0(t) 2 G0; t 2 R, the homogeneous coordinates of a point
p0 2 E3 satisfy:�

p0(t)
1

�
=

�
AR(t)A�1 T 0(t)

0 1

� �
p0(t0)
1

�
: (24)

From the calibrated camera model, the image of the point p0 with re-
spect to a calibrated camera (i.e., with an identity calibration matrix)
is given by:

�(t)x(t) = p0(t): (25)
10 The isometry group of a manifold M is the set of all transformations which

preserve its Riemannian metric.
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The \essential matrix" associated to two such images is exactly:

E = cT 0ARA�1: (26)

It is direct to check that the image x(t) is the same as the image of
p =  �1(p0) 2 E 3 with respect to the uncalibrated camera, i.e., we
have:

�(t)x(t) = Ap(t): (27)

The \fundamental matrix" associated to two such images is exactly:

F = A�T bTRA�1: (28)

Since both E and F are associated to the same bilinear relationship, we
must have E = F . This gives the two equivalent forms for fundamental
matrix as we see in (5).

ma.tex; 11/04/2001; 21:52; p.25



26 Ma, Vidal, Ko�seck�a and Sastry

References

W. M. Boothby. An Introduction to Di�erential Manifolds and Riemannian
Geometry. Academic Press, second edition, 1986.

S. Bougnoux. From projective to Euclidean space under any practical situation,
a criticism of self-calibration. In Proceedings of IEEE conference on Computer
Vision and Pattern Recognition, pages 790{796, 1998.

F. M. Callier and C. A. Desoer. Linear System Theory. Springer-Verlag, 1991.
R. I. Hartley. In defense of the 8-point algorithm. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 19(6), 1997.
R. I. Hartley. Kruppa's equations derived from the fundamental matrix. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 19(2):133{135,
February 1997.

R. I. Hartley. Self-calibration of stationary cameras. International Journal of
Computer Vision, 22(1):5{23, 1997.

R. I. Hartley. Chirality. International Journal of Computer Vision, 26(1):41{61,
1998.

A. Heyden and K. Astrom. Euclidean reconstruction from image sequences with
varying and unknown focal length and principal point. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, 1997.

Q.-T. Luong and O. Faugeras. Self-calibration of a moving camera from point
correspondences and fundamental matrices. IJCV, 22(3):261{89, 1997.

Y. Ma, J. Ko�seck�a, and S. Sastry. Linear di�erential algorithm for motion recovery:
A geometric approach. IJCV, 36(1):71{89, 2000.

S. J. Maybank. Theory of Reconstruction from Image Motion. Springer Series in
Information Sciences. Springer-Verlag, 1993.

S. J. Maybank and O. D. Faugeras. A theory of self-calibration of a moving camera.
International Journal of Computer Vision, 8(2):123{151, 1992.

M. M�uhlich and R. Mester. The role of total least squares in motion analysis. In
Proceedings of European Conference on Computer Vision, pages 305{321, 1998.

M. Pollefeys and L. Van Gool. Strati�ed self-calibration with the modulus constraint.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(8):707{24,
1999.

M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and metric reconstruction
in spite of varying and unknown internal camera parameters. In Proceedings of
6th International Conference on Computer Vision, pages 90{95, 1998.

P. Sturm. Critical motion sequences for monocular self-calibration and uncalibrated
Euclidean reconstruction. In Proceedings of IEEE conference on Computer
Vision and Pattern Recognition, pages 1100{1105, 1997.

B. Triggs. Autocalibration and the absolute quadric. In Proceedings of IEEE
conference on Computer Vision and Pattern Recognition, 1997.

C. Zeller and O. Faugeras. Camera self-calibration from video sequences: the Kruppa
equations revisited. Research Report 2793, INRIA, France, 1996.

ma.tex; 11/04/2001; 21:52; p.26



Camera Self-Calibration 27

List of Figures

1 Two consecutive orbital motions with independent ro-
tations: the camera optical axis always pointing to the
center of the globe. Even if all pairwise fundamental
matrices among the three views are considered, one only
gets at most 1 + 1 + 2 = 4 e�ective constraints on the
camera intrinsic matrix if one uses the three unnormal-
ized matrix Kruppa's equations. At least one more view
is need if one wishes to uniquely determine the unknown
calibration. However, using renormalization instead, we
may get back to 2 + 2+ 2 � 5 constraints from only the
given three views. 13

2 A camera undergoes two motions (R1; T1) and (R2; T2)
observing a rig consisting of three straight linesL1; L2; L3.
Then the camera calibration is uniquely determined as
long as R1 and R2 have independent rotation axes and
rotation angles in (0; �), regardless of T1; T2. This is be-
cause, for any invalid solution A, the associated plane
N (see the proof of Theorem 4) must intersect the three
lines at some point, say p. Then the reconstructed depth
of point p with respect to the solution A would be in-
�nite (points beyond the plane N would have negative
recovered depth). This gives us a criteria to exclude all
such invalid solutions. 17

3 Pure rotation algorithm. Rotation axes X-Y . 18
4 Pure rotation algorithm in presence of translation. Ro-

tation axes X-Y , � = 2. 18
5 Rotation parallel to translation case. � = 20o. Rotation

/Translation axes: XX-Y Y -ZZ, T=R ratio = 1. 19
6 Rotation parallel to translation case. � = 2. Rotation

/Translation axes: XX-Y Y -ZZ, T=R ratio = 1. 19
7 Rotation orthogonal to translation case. � = 20o. Rota-

tion/Translation axes: XY -Y Z-ZX, T=R ratio = 1. 20
8 Rotation orthogonal to translation case. � = 30o. Rota-

tion/Translation axes: XY -Y Z-ZX, T=R ratio = 1. 20
9 The relation of the three rotation axes u1; u2; u3 and

three translations T1; T2; T3. 21
10 Estimation error in calibration w.r.t. di�erent angle �. 21

ma.tex; 11/04/2001; 21:52; p.27



ma.tex; 11/04/2001; 21:52; p.28


