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Abstract

Man-made environments posses a lot of regularities which
simplify otherwise difficult pose estimation and visual re-
construction tasks. The constraints arising from parallel
and orthogonal lines and planes can be efficiently exploited
at various stages of vision processing pipeline. In this pa-
per we propose an approach for estimation of vanishing
points by exploiting the constraints of structured man-made
environments, where the majority of lines is aligned with
the principal orthogonal directions of the world coordi-
nate frame. We combine efficient image processing tech-
niques used in the line detection and initialization stage
with simultaneous grouping and estimation of vanishing di-
rections using expectation maximization (EM) algorithm.
Since we assume uncalibrated camera the estimated van-
ishing points can be used towards partial camera calibra-
tion and estimation of the relative orientation of the camera
with respect to the scene. The presented approach is com-
putationally efficient and has been verified extensively by
experiments.

Key words: Vanishing point estimation, relative orienta-
tion, calibration using vanishing points, vision guided mo-
bile and aerial robots.

1 Introduction

The problem of recovering relative orientation of the cam-
era with respect to the scene is of importance in a variety
of applications which require some knowledge of the envi-
ronment’s geometry. These range from basic structure and
motion or pose recovery problems from single or multiple
views, autonomous robotic navigation, manipulation and
human computer interaction tasks. Common to these appli-
cations is the need for establishment of the relative pose of
the camera with respect to the scene reference frame. The
desired accuracy varies based on the application. In the
case of man-made environments, which posses a lot of reg-
ularities, such as presence of sets of parallel and orthogonal
lines and planes, the relative orientation can be determined
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from vanishing points and lines in the image plane.

This paper describes an approach for the estimation of van-
ishing points in structured man-made environments. While
partial solutions to this problem have been addressed nu-
merous times in the past, the proposed approaches vary
in the level of automation of the process, computational
complexity, feature detection, assumptions about camera
calibration, initialization and grouping stage as well as
the choice of line representation and geometric estimation
technique. We believe that the robustness and flexibility of
the presented approach is superior to the previously sug-
gested techniques and it is also amenable to implementa-
tion on robotic platforms. The additional appeal of the
technique is in the fact that it does not require calibrated
camera. Consequently the estimated vanishing points can
be used for partial camera calibration yielding more flexi-
ble overall system.

1.1 Paper outline
This paper describes a completely automated process of de-
tecting the vanishing points in the image. We describe the
individual steps of the approach as well as the rationale be-
hind the individual choices. The stages include detection
of the image line segments, line fitting, initialization, fol-
lowed by grouping of the lines into dominant vanishing di-
rections and estimation of vanishing points. We assume
that the camera is not calibrated and discuss some choices
of the objective functions for the vanishing point estimation
problem.

2 Related Work

There are numerous articles related to the subproblems and
techniques used in our approach. We will review more re-
cent representatives and point out the commonalities and
differences between individual stages. The starting point
common to all techniques for detection of vanishing points
is the line detection and line fitting stage. The traditional
textbook approach suggests the edge detection, followed
by edge chaining and line fitting. The observation that in
man-made environments the majority of line segments is
aligned with three principal orthogonal directions can make
this stage more efficient. In cases when the camera is cal-



ibrated, the image line segments are represented as unit
vectors on the Gaussian sphere corresponding to the plane
normals passing through the center of projection. Sev-
eral techniques for both grouping and initialization stage
on the Gaussian sphere have been proposed [1, 2, 4]. The
main advantage of the Gaussian sphere representation is the
equal treatment of all possible vanishing directions, includ-
ing those at infinity, which are represented by vectors par-
allel to the image plane. The clear appeal of the Gaussian
sphere representation is hindered by the fact that is assumes
calibrated camera. An alternative image based representa-
tions of the line segments have been used in [10, 12, 6].

The techniques proposed for the initialization and group-
ing stage employ different types of the accumulator space,
where the peaks correspond to the dominant clusters of line
segments. Both in [1, 4] the Gaussian sphere was sug-
gested as an accumulator space, where the lines correspond
to great circles and vanishing directions to the intersections
of great circles on the sphere. Hough space has been also
used in the accumulation stage [11, 13]. An alternative ini-
tialization schemes using the image based representations
which considered all pairwise intersections of the detected
line segments have been proposed by [12, 2]. While the
techniques which consider all pairwise intersections, has
been previously shown to lead to more accurate detection
they have quadratic running time in the number of line seg-
ments. When the number of line segments is large the com-
plexity issues matter, specially in the case when one would
like to employ such techniques possibly in an online man-
ner. This point was argued in [1] who suggested linear
initialization and grouping technique for the detection of
vanishing directions.

At last the previously proposed techniques differ in the
type of error measure used to quantify the distance between
a line segment and vanishing direction, which determines
the objective function to be minimized. For the Gaussian
sphere line representations, the objective functions are typ-
ically linear and can be minimized in the closed form using
weighted linear least squares [4, 1]. In the case of image
based representations either the angle between the vanish-
ing line and vanishing direction is minimized or the dis-
tance of the line end points from the vanishing direction.
In both cases the error measure leads to nonlinear functions
of the unknowns [10, 6] and involves iterative optimization
techniques.

3 Approach

Our approach is most closely related to the works of [1] and
[10]. In the grouping stage we adopt similar strategy to the
one suggested by [1] without the need of calibrated cameras
and more efficient initialization scheme. We explore differ-
ent choices of objective functions and demonstrate the fea-

sibility of the Gaussian sphere representation for grouping
and estimation in the case of uncalibrated camera. The ba-
sic premise of our approach is the observation that the dis-
tribution of the gradient orientation reflects the actual ori-
entation of the line segment in the image and that in man-
made environments the majority of the line segments is
aligned with the three principal orthogonal directions i, j,k
associated with the world frame. These observations are
used both in the line detection stage and initialization stage
and favorably affect the speed of the algorithm.

3.1 Line Detection Stage
The first step of the line detection stage is the computation
of image derivatives using, for the efficiency reasons, So-
bel edge detector. The line fitting stage follows an approach
suggested by [8]. The gradient direction is quantized into
a set of k ranges, where all the edge pixels having an ori-
entation within the certain range fall into the correspond-
ing bin and are assigned a particular label. In our case
k = 16. The edge pixels having the same label are then
grouped together using connected components algorithm.
For the purpose of calculation of vanishing points we only
consider dominant connected components, whose length is
beyond certain threshold, which depends on the size of the
image (e.g. in our case tl = 15 for 400× 300 image size).
The line segment candidates are obtained by fitting a line
parameterized by an angle θ and distance from the origin
ρ:

ρ = x cos(θ) + y sin(θ) (1)

Each obtained connected component is a list of edge pixels
(xi, yi) with the similar gradient orientation, which form
the line support regions. The line parameters are directly
determined from the eigenvalues λ1 and λ2 and eigenvec-
tors v1 and v2 of the matrix D associated with the line
support region:

D =

[ ∑
i x̃2

i

∑
i x̃iỹi∑

i x̃iỹi

∑
i ỹ2

i

]
(2)

where x̃i = xi − x̄ and ỹi = yi − ȳ are the mean corrected
pixels coordinates belonging to a particular connected com-
ponent and x̄ = 1

n

∑
i xi and ȳ = 1

n

∑
i yi. In case of an

ideal line one of the eigenvalues should be zero. The qual-
ity of the line fit is characterized by the ratio of the two
eigenvalues of matrix D, ν = λ1

λ2

. The line parameters
(ρ, θ) are determined from the eigenvectors v1,v2, where
v1 is the eigenvector associated with the largest eigenvalue.
The line parameters are computed as:

θ = atan2(v1(2),v1(1))

ρ = x̄ cos θ + ȳ sin θ (3)

where (x̄, ȳ) is the mid-point of the line segment. In prac-
tice many detected line segments do not belong to the envi-
ronment structure and are due to either shadow or shading
effects. These spurious line segments are inevitable and de-
pend on the choice of the threshold, which in this stage was



selected globally for the entire image. The threshold choice
is later used in computation of the weighting factors for the
grouping process.

3.2 Vanishing point estimation
Prior to vanishing point estimation the line segments ob-
tained in the previous stage need to be grouped into the
dominant vanishing directions. In general such grouping
can be a difficult problem, since any two parallel lines in-
tersect in a vanishing point, possibly yielding a large set
of vanishing points. However in the case of man-made en-
vironments the dominant vanishing directions are the ones
aligned with the principal axes i, j,k of the world coordi-
nate frame and the majority of the parallel lines will be
aligned with these directions. We suggest to address the
grouping stage and vanishing point estimation stage as a
problem of probabilistic inference with an unknown model.
In such instances the algorithm of choice is the Expecta-
tion Maximization algorithm (EM), which simultaneously
estimates the coordinates of vanishing points as well as the
probabilities of individual line segments belonging to a par-
ticular vanishing directions. The main differences between
the previous EM approach [1] and this one, is our assump-
tion of an uncalibrated camera, different likelihood func-
tion and more efficient initialization stage.

Our goal is to estimate most likely orthogonal vanishing
directions, given a set of line segments, so as to maximize
the posterior probability of the vanishing directions. Using
Bayes rule, we can express the posterior distribution of the
vanishing points given line segments, in terms of the con-
ditional distribution and prior probability of the vanishing
points:

p(vk | li) =
p(li | vk)p(vk)

p(li)
(4)

Considering the detected set of line segments, majority of
them can be classified as arising from one of the principal
vanishing directions. Hence for a particular line segment,
p(li) can be expressed using the conditional mixture model
representation:

p(li) =

m∑

k=1

p(vk)p(li | vk) (5)

where m is the number of possible vanishing directions.
This number will vary depending on the image, but in gen-
eral we will assume that there are at most four significant
models, three corresponding to the dominant vanishing di-
rections and an additional one modeling the outliers pro-
cess. The lines which do not belong to the vanishing direc-
tion aligned with the principal directions are considered to
be outliers. The choice of the likelihood term p(li | vk)
depends on the line representation, as well as the form of
the objective function to be minimized.

3.2.1 Line representation: In the perspective cam-
era projection model, the 3D coordinates of points X =
[X, Y, Z, 1]T are related to their image projections x =
[x, y, 1]T in a following way:

λx = PgX

where P = [I3×3, 0] ∈ R3×4 is the projection matrix,
g = (R, T ) ∈ SE(3) is a rigid body transformation repre-
sented by 4×4 matrix using homogeneous coordinates and
λ is the unknown scale corresponding to the depth Z of the
point X. Given two image points x1 and x2, the line seg-
ment passing through the two endpoints is represented by a
plane normal of a plane passing through the center of pro-
jection and intersecting the image in a line l, such that l =
x1 × x2 = x̂1x2

1. The unit vectors corresponding to the
plane normals li can viewed as points on a unit sphere. The
vectors li corresponding to the parallel lines in 3D world
all lie in the common plane and their vanishing direction
corresponds to the normal of that plane. Given two lines
the common normal is determined by v = l1 × l2 = l̂1l2.
Hence given a set of line segments corresponding to paral-
lel lines in 3D, the common vanishing direction v can be
obtained by solving the following linear least squares esti-
mation problem: minv

∑n

i=1(l
T
i v)2. This particular least

squares estimation problem has be studied previously in [4]
and [7]. Given a set of line segments belonging to the same
vanishing direction, the orthogonal least squares solution is
applicable regardless of the camera being calibrated. The
absence of calibration however affects the grouping stage.
In the following section we will demonstrate that the ab-
sence of calibration can be remedied by a proper normal-
ization scheme, which does not affect the final estimates.

In the case of uncalibrated camera the image coordinates
undergo an additional transformation K which depends on
the internal camera parameters:

x′ = Kx with K =




f αθ ox

0 kf oy

0 0 1




where f is the focal length of the camera in pixel units, k
is the aspect ratio and [ox, oy, 1]T is the principal point of
the camera. Consider now a line in the uncalibrated case
specified by the end points x′1 and x′2, then:

l′1 = x̂′1x
′

2 = K̂x1Kx2 = K−T (x̂1x2) = K−T l1

where we have exploited the fact that AT v̂A = Â−1v for
any v ∈ R3 and A ∈ SL(3). Hence in the uncalibrated
case the vanishing point v′ computed as a normal to the
plane spanned by vectors l′1 and l′2; v′ = l′1 × l′2 is related
to the actual vanishing direction in the calibrated space by
the unknown transformation K, namely v′ = Kv. In the
absence of calibration the distance between two vanishing

1
x̂ is a skew symmetric matrix associated with x = [x1, x2, x3]T .



directions characterized by the inner product between two
vectors v1,v2 becomes vT

1 v2 = v
′T
1 K−T K−1v′2 where

vi = K−1v′i. Note that the inner product is now depen-
dent on an unknown matrix S = K−T K−1, which causes
a distortion of the overall space. This observation affects
the grouping stage, where we seek so assign the individual
line segments to the dominant vanishing directions, which
in the calibrated case are well separated on the Gaussian
sphere. In order to reduce the effects of the distortion and
make the grouping well conditioned we propose to normal-
ize the measurements.

3.2.2 Normalization: Prior starting the estimation
process and determining the line segment representation,
we first transform all the endpoint measurements by trans-
formation A, in order to make the line segments and van-
ishing directions well separated on the unit sphere and con-
sequently similar to the calibrated setting:

x̃ = Ax′ =




1
f∗

0 −
o∗x
f∗

0 1
f∗

−
o∗y
f∗

0 0 1


x′

Given an image of size s = [nrows, ncols] the choice of
the transformation A is determined by the size of the im-
age and captures the assumption that the optical center is
in the center of the image and the aspect ratio k = 1 and
effectively serves as an approximation of the inverse of the
calibration matrix K−1. The focal length in the pixel units
is f∗ = nrows, o∗x = nrows

2 and oy = ncols
2 . Given the

assumptions about optical center and aspect ratio, the cho-
sen focal length f∗ is related to the actual focal length by
a scale factor. From now on we will drop the ′ superscript
image coordinates and assume all the subsequent computa-
tions in this normalized space. Once the final estimates
of vanishing points have been computed, the results are
transformed back in order to obtain the vanishing point es-
timates in the actual image coordinates. For each vanishing
point ṽk estimated in the normalized space we transform it
back in order to obtain the vanishing points in true image
coordinates; vk = A−1ṽk. These can be used further for
camera calibration and estimation of relative rotation.

3.3 Expectation Maximization (EM)
Given a set of line segments we would like to find the most
likely estimates of vanishing points as well as probabilities
of each line belonging to a particular vanishing direction.
Our ultimate goal is to estimate the coordinates of all van-
ishing points so as to maximize the likelihood of the van-
ishing point estimates given a set of line segments. Given
initial estimates of the vanishing points vk, the member-
ship probabilities of a line segment li belonging to the kth

vanishing direction are computed in the following way:

p(vk | li) =
p(li | vk)p(vk)∑m

k=1 p(li | vk)p(vk)
(6)

The posterior probability terms p(vk | li) represent so
called membership probabilities, denoted by wik and cap-
ture the probability of a line segment li belonging to kth

vanishing direction. Currently we assume that the prior
probabilities of all vanishing directions are equally likely,
hence the prior probabilities do not affect the posterior con-
ditional probability. Incorporating the information about
prior probabilities of the vanishing directions can pro-
vide additional information and make the estimation pro-
cess better conditioned. The E-step of the EM algorithm
amounts to computation of these posterior probabilities,
which give us the best guess of the membership proba-
bilities given the currently available vanishing points esti-
mates. The M-step of the algorithm involves maximization
of the expected complete log likelihood with respect to the
unknown parameters vk [9], which yields a maximization
of the following objective function:

J(vk) =
∑

i

wik log p(li | vk) (7)

In the noise free case lTi vk = 0. In the case of noisy es-
timates we assume that the error represented by lTi v is a
normally distributed random variable with N(0, σ2

1). Then
the likelihood term is given as:

p(li | vk) ∝ exp

(
−(lTi vk)2

2σ2
1

)
(8)

The above objective function (equation 7) in case of linear
models yields a solution to a weighted least squares prob-
lem (one for each model), where each line has an associated
weight wik determined by posterior probabilities computed
in the E-step (equation 6). The above objective function in
case of linear log-likelihood model yields a solution to a
weighted least squares problem; one for each model. In
such case the vanishing points are estimated by solving the
following linear least-squares problem:

J(vk) = min
vk

∑

i

wik(lTi vk)2 = min
vk

‖WAvk)‖2 (9)

Where W ∈ Rn×n is a diagonal matrix associated with the
weights and rows of A ∈ R3×n are the detected line seg-
ments. Closed form solution corresponds to the eigenvec-
tor associated with the smallest eigenvalue of AT W T WA
and yields the new estimate of vk. The EM algorithm is
an iterative technique guaranteed to increase the likelihood
of the available measurements. We terminate the iteration
procedure once the vanishing point estimates reach an equi-
librium, i.e. vjT v(j−1) < εa. The iterations of the EM
algorithm are depicted for different examples in Figure 2
(right). The initially large number of vanishing point esti-
mates is reduced through the merging process to three dom-
inant directions. Once the algorithm converges, we apply
the nonlinear refinement step, to achieve a more accurate
vanishing point estimate. The nonlinear refinement step
computes the Maximum Likelihood Estimate (MLE) of the
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Figure 1: The error measure for the nonlinear refinement step is
d2

+ d’2.

vanishing point given the line segments, by minimizing the
sum of squared distances d, d′ of the line end points from
the vanishing line (see Figure 1). The nonlinear optimiza-
tion has been suggested previously by [6] and is especially
important for refining the estimates of the vanishing points
close to infinity.

In order to account for the line segments which do not be-
long to any of the vanishing directions we add an additional
outlier process. The initial probability of a line segment be-
longing to the mixture is determined by the highest possible
residual angle which a line segment can have with respect
to one of the dominant orientations ei = π/4. The proba-
bility of the outliers is then determined by a Gaussian dis-
tribution with a large variance, approximating the uniform
distribution.

3.4 EM Initialization
While the EM algorithm is known in each step to increase
the likelihood of the measurements given the model, it is
often very sensitive to initialization and can converge to
a local minimum. Hence it is very important that the al-
gorithm is correctly initialized. The initialization scheme
adopted in our approach is based on the observation that the
lines that belong to a particular vanishing directions have
similar orientation in the image. This is not the case for the
line segments whose vanishing point is close to the center
of the image plane. In such situation the lines will be ini-
tially assigned to a separate groups and merged later in the
EM stage. Given a set of detected line segments we form a
histogram hθ of their orientations and search for the peaks
in the histogram. The peaks are detected by first computing
the curvature C(k) of the histogram, followed by a search
for zero crossings, which separate the dominant peaks. The
curvature is computed by subtracting the local histogram
mean:

C(k) = hθ(k)−
1

m

k+ m
2

+1∑

i=k−m
2

hθ(i) (10)

The total number of line orientation bins in our case is
K = 60 and the size of the integration window m = 5.
Histogram hθ is smoothed prior to the curvature compu-
tation. The typical number of detected peaks ranges be-
tween 2− 6 and determines the initial number of models in

50 100 150 200 250 300 350 400

50

100

150

200

250

300
−200 −100 0 100 200 300 400 500 600 700 800

−100

0

100

200

300

400

500

600

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

220

240
−600 −500 −400 −300 −200 −100 0 100 200 300 400

−300

−200

−100

0

100

200

300

400

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

220

240
−100 0 100 200 300 400 500 600

−100

0

100

200

300

400

50 100 150 200 250 300 350 400

50

100

150

200

250

300
0 100 200 300 400 500 600 700 800

−200

−100

0

100

200

300

400

50 100 150 200 250 300 350 400

50

100

150

200

250

300
−500 −400 −300 −200 −100 0 100 200 300 400

−200

−100

0

100

200

300

400

500

Figure 2: The vertical (horizontal) lines parallel to the image
plane yield the vanishing point close to infinity and
hence outside of the selected view. The lines are color-
coded according to the maximum membership proba-
bility and are numbered from top to bottom. The final
estimates of vanishing points are reported in Table 1.
In case more then three vanishing directions are de-
tected (image 2), the three with the largest number of
line segments are retained. In some cases only two
vanishing directions are present (image 4).



the mixture formulation. Since the initialization determines
more peaks that the number of vanishing directions sought
for, this has to be reconciled in the expectation maximiza-
tion process. The decision to adjust the number of models
is made based of the distance between currently available
estimates. If the distance between two vanishing points is
below some threshold the two mixtures are merged and the
number of models is adjusted. During the course of itera-
tion of the EM algorithm, we also adjust the standard de-
viation of the individual mixtures, to reflect the increasing
confidence in the model parameters and memberships of
the individual segments.

The performance of the algorithm is reported in Table 1 and
demonstrated in Figure 2. More detailed evaluation of the
algorithm can be found in [14]. The presented results also
depict the iterations of the EM algorithm.

Image No. Vanishing point estimates
v̂i v̂j v̂k

1 206.66 -8635.12 188.48
142.16 491.89 10298.56

2 393.07 -527.08 153.96
148.94 133.98 -3641.49

3 613.31 -86.13 150.61
178.13 163.88 -3136.68

4 × 645.19 169.41
× 157.86 -16339.53

5 293.49 -521.80 362.46
213.87 161.30 -16575.81

4 Summary and Conclusions

We presented an efficient, completely automated approach
for detection of vanishing points from a single view assum-
ing an uncalibrated camera. Along the way the assumptions
about the structure of man-made environments, were used
towards efficient initialization and grouping stage. In par-
ticular it was the fact that the majority of the line segments
belongs to one of the dominant vanishing directions aligned
with the axes of the world coordinate frame. The estimation
and grouping problems were addressed simultaneously us-
ing the probabilistic Expectation Maximization algorithm.
We are currently refining the algorithm and exploring the
use of the prior information for the vanishing point esti-
mation task as well as performance of the technique on a
large variety of indoors and outdoors scene with different
resolutions. The capability of robustly detecting vanishing
points in an automated manner will enable us to employ
these types of systems in the context of mobile and aerial
robots and facilitate partial calibration of the vision system
as well as estimation of relative orientation with respect to
the scene. This information has great utility in the context

of basic navigation and exploration tasks in indoor and out-
door environments, where the alternative sensing strategies
such as GPS or compass are known to under perform.
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