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Abstract. In this paper we describe a flexible approach for determin-
ing the relative orientation of the camera with respect to the scene. The
main premise of the approach is the fact that in man-made environments,
the majority of lines is aligned with the principal orthogonal directions
of the world coordinate frame. We exploit this observation towards effi-
cient detection and estimation of vanishing points, which provide strong
constraints on camera parameters and relative orientation of the camera
with respect to the scene.
By combining efficient image processing techniques in the line detection
and initialization stage we demonstrate that simultaneous grouping and
estimation of vanishing directions can be achieved in the absence of inter-
nal parameters of the camera. Constraints between vanishing points are
then used for partial calibration and relative rotation estimation. The
algorithm has been tested in a variety of indoors and outdoors scenes
and its efficiency and automation makes it amenable for implementation
on robotic platforms.

Key words: Vanishing point estimation, relative orientation, calibration using
vanishing points, vision guided mobile and aerial robots.

1 Introduction

The problem of recovering relative orientation of the camera with respect to the
scene is of importance in a variety of applications which require some knowl-
edge of the environment’s geometry or relative pose of the camera with respect
to the scene. These range from basic structure and motion or pose recovery
problems from single or multiple views, autonomous robotic navigation, ma-
nipulation and human computer interaction tasks. Recent efforts in building
large city models as well as basic surveillance and monitoring applications often
encounter the alignment problem of registering current view to the model or pre-
viously stored view. The structural regularities of man-made environments, such
as presence of sets of parallel and orthogonal lines and planes can be exploited
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towards determining the relative orientation of the camera using the informa-
tion about vanishing points and vanishing lines. The problem of vanishing point
detection and estimation have been addressed numerous times in the past. The
proposed approaches vary in the level of automation, computational complex-
ity, assumptions about camera calibration and initialization and grouping stage.
The geometric constraints imposed by vanishing directions on camera intrinsic
parameters and rotation estimation as well as associated estimation techniques
are well understood and have been used previously in the context of structure
and motion recovery problems in the uncalibrated case. However the grouping of
the line segments into vanishing directions has been often considered separately
from the geometric estimation problems, or it has been studied in the case of
calibrated camera.

In this paper we will advocate an integrated approach, where the constraints
of man-made environments are exploited in different stages of the algorithm
pipeline. This and the assumption of uncalibrated camera yields an efficient and
flexible approach for estimation of relative orientation of the camera with respect
to the scene. We believe that the presented approach is superior to the previously
suggested techniques and due to its efficiency it is amenable to implementation
on robotic platforms.

1.1 Related Work

The subproblems and techniques used in our approach fall into two broad cat-
egories: vanishing point estimation and geometric constraints of uncalibrated
single view. We will review more recent representatives of these works and point
out the commonalities and differences between our approach. The starting point
common to all techniques is the line detection and line fitting stage. The tradi-
tional textbook approach suggests the edge detection, followed by edge chaining
and line fitting. The constraints of man-made environments, where the majority
of line segments is aligned with three principal orthogonal directions, can make
this stage more efficient. In cases when the camera is calibrated, the image line
segments are represented as unit vectors on the Gaussian sphere and several
techniques for both grouping and initialization stage on the Gaussian sphere
exist [1, 2, 4]. The main advantage of the Gaussian sphere representation is the
equal treatment of all possible vanishing directions, including those at infinity.
In [1] the authors demonstrated efficient technique for automated grouping and
vanishing point estimation using expectation maximization (EM) algorithm, us-
ing a wide field of view camera, which was calibrated ahead of time. While
the insensitivity of the Gaussian sphere representation with respect to the focal
length has been demonstrated by [2], we show that with proper normalization,
identical grouping and estimation problem can be formulated in the absence of
camera intrinsic parameters. Similarly as in [1] we formulate the simultaneous
grouping and estimation stage using Expectation Maximization (EM) algorithm
on the unit sphere, assuming uncalibrated cameras and proposing more efficient
initialization scheme.
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The initialization and grouping are the determining factors of the efficiency.
Previous techniques vary in the choice of the accumulator space, where the peaks
correspond to the dominant clusters of line segments; most common alternatives
are the Gaussian sphere and Hough space [1, 4, 12, 14]. In some cases all pairwise
intersections of the detected line segments are considered for initialization, yield-
ing dominant peak detection [13, 2]. While this strategy has been shown to lead
to more accurate detection, the running time is quadratic in terms of the number
of line segments. By exploiting the constraints of man-made environments, we
suggest the initialization stage which is linear in the number of detected line
segments. The errors in the initialization stage are reconciled in the grouping
and estimation stage using EM.

Given the detected line segments, the MAP estimates of vanishing points can
be obtained by minimizing the distance of the line end points from the ideal lines
passing through the vanishing point and leads to a nonlinear optimization prob-
lem [6]. An alternative to the nonlinear minimization is a covariance weighted
linear least squares formulation suggested first in [9], which tries to minimize
the algebraic errors. The EM iterations are in spirit similar to this approach.

In man-made environments the dominant vanishing directions are usually
those belonging to three orthogonal directions associated with the reference
world coordinate frame. These orthogonality constraints and partial assumptions
about camera parameters can be used towards estimation of remaining internal
camera parameters and relative orientation of the camera with respect to the
scene. In the case of zero skew and known aspect ratio Caprile and Torre [3]
have shown that the principal point can be recovered by a geometric construc-
tion of the orthocenter. Thorough study of the structure constraints, such as
parallelism, orthogonality, known distances and angles and their role in recov-
ering metric properties of the scene can be found in [10]. The use of partially
calibrated camera for recovery of pose and structure from single view has been
also explored by [7].

We present an integrated approach to the problem of estimation of relative
orientation, where the constraints of man-made environments are exploited at
different stages of the algorithm pipeline. The approach demonstrates that si-
multaneous grouping and estimation of vanishing directions can be effectively
addressed using Expectation Maximization algorithm in the presence of uncali-
brated camera.

2 Approach

Line Detection Stage The first step of the line detection stage is the com-
putation of image derivatives followed by the non-maximum suppression using
Canny edge detector. The line fitting stage follows an approach suggested by [8].
The gradient direction is quantized into a set of k ranges, where all the edge
pixels having an orientation within the certain range fall into the corresponding
bin and are assigned a particular label. In our case k = 16. The edge pixels hav-
ing the same label are then grouped together using the connected components
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algorithm. The artifacts caused by the fact that the pixels belonging to the same
line segment fall into different bins, due to the differences in the orientation are
reconciled in the connected components computation stage, where the grouping
considers also pixels whose gradient orientation extends beyond bin boundaries.
For the purpose of calculation of vanishing points we only consider dominant con-
nected components, whose length is beyond certain threshold, which depends on
the size of the image, Each obtained connected component with the length above
certain threshold, in our case 5% of the image size, is represented as a list of
edge pixels (xi, yi) which form the line support region. The line parameters are
directly determined from the eigenvalues λ1 and λ2 and eigenvectors e1 and e2

of matrix D associated with the line support region:

D =
[ ∑

i x̃2
i

∑
i x̃iỹi∑

i x̃iỹi

∑
i ỹ2

i

]
(1)

where x̃ = xi− x̄ and ỹ = yi− ȳ are the mean corrected pixel coordinates belong-
ing to a particular connected component where x̄ = 1

n

∑
i xi and ȳ = 1

n

∑
i yi.

The quality of the line fit is characterized by the ratio of the two eigenvalues λ1
λ2

and the line parameters (ρ, θ) are determined from the eigenvector associated
with the largest eigenvalue e1, as follows:

θ = atan2(e1(2), e1(1))
ρ = x̄ cos θ + ȳ sin θ (2)

where x̄(x̄, ȳ) is the mid-point of the line segment. The end points x1 and x2 of
line l are determined from the line equation (2) and the line extent. In practice
many detected line segments do not come from the actual environment edge
segments lines and are due to either shadow or shading effects. These spurious
line segments are inevitable and effectively depend on the choice of the threshold,
which in this stage is selected globally for the entire image. One possible way
how to avoid the commitment to the particular threshold in this early stage is
to pursue probabilistic techniques as suggested in [5], which directly relate the
line slope to gradient orientation in terms of likelihood function. This strategy is
applicable only in the case of calibrated camera. In our approach we will revise
our commitment in the later grouping stage, where the spurious line segments
will be classified as outliers.

2.1 Vanishing points

Due to the effects of perspective projection, the line segments parallel in the 3D
world intersect in the image. Depending on the orientation of the lines the in-
tersection point can be finite or infinite and is referred to as vanishing point.
Consider the perspective camera projection model, where 3D coordinates of
points X = [X, Y, Z, 1]T are related to their image projections x = [x, y, 1]T

in a following way:

λx = PgX
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where P = [I3×3, 0] ∈ R3×4 is the projection matrix, g = (R, T ) ∈ SE(3)
is a rigid body transformation represented by 4 × 4 matrix using homogeneous
coordinates and λ is the unknown scale corresponding to the depth Z of the point
X. Given two image points x1 and x2, the line segment passing through the two
endpoints is represented by a plane normal of a plane passing through the center
of projection and intersecting the image in a line l, such that l = x1×x2 = x̂1x2

1.
The unit vectors corresponding to the plane normals li can be viewed as points
on a unit sphere. The vectors li corresponding to the parallel lines in 3D world all
lie in the plane, whose intersection with the Gaussian sphere forms a great circle.
The vanishing direction then corresponds to the plane normal where all these
lines lie. Given two lines the common normal is determined by v = l1× l2 = l̂1l2.
Hence given a set of line segments belonging to the lines parallel in 3D, the
common vanishing direction v can be obtained by solving the following linear
least squares estimation problem:

min
v

n∑
i=1

(lTi v)2

This corresponds to minv ‖Av‖2, where the rows of matrix A ∈ Rn×3 are the
lines segments li belonging to the same vanishing direction. This particular least
squares estimation problem has be studied in [4] assuming the unit vectors on the
sphere are distributed according to Binghman distribution. The optimal solution
to this type of orthogonal least squares problems is also described in [9].

Uncalibrated camera Given a set of line segments sharing the same vanish-
ing direction, the orthogonal least squares solution is applicable regardless of the
camera being calibrated. We would like to address the problem of estimation of
vanishing points and grouping the lines into vanishing directions simultaneously.
In order to be able to determine and adjust along the way the number of groups
present in the image some notion of a distance between the line and vanishing
direction or two vanishing directions is necessary. Such distance is in the cali-
brated setting captured by the notion of an inner product between two vectors
uT v with u, v ∈ R3. In the case of uncalibrated camera the image coordinates
undergo an additional transformation K which depends on the internal camera
parameters:

x′ = Kx with K =


αx αθ ox

0 αy oy

0 0 1


 =


f αθ ox

0 kf oy

0 0 1


 .

where f is the focal length of the camera in pixel units, k is the aspect ratio and
[ox, oy, 1]T is the principal point of the camera. The inner product uT v in the
uncalibrated setting becomes:

uT v = u
′T K−T K−1v′

1 x̂ is a skew symmetric matrix associated with x = [x1, x2, x3]
T .
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where u′ = Ku and v′ = Kv. The inner product now depends on an unknown
matrix S = K−T K−1, which can be interpreted as a metric of the uncalibrated
space and hence causes a distortion of the original space.

In following we will seek a normalizing transformation which preserves the
vanishing directions and makes the process of simultaneous grouping and van-
ishing point estimation well conditioned. First we will demonstrate that by
transforming the measurements (image coordinates) by an arbitrary nonsingular
transformation A has no effect on the computation of the vanishing points.

Lemma 1. If v ∈ R3 and A ∈ SL(3), then AT v̂A = Â−1v.

Proof. Note that both AT (̂·)A and Â−1(·) are linear maps from R3 to R3×3,
using the fact that det(A) = 1, one may directly verify that these two linear
maps are equal on the bases: (1, 0, 0)T , (0, 1, 0)T or (0, 0, 1)T .

Suppose that the lines end points are x′
1,x

′
2 and x′

3,x
′
4, such that l′1 = x′

1×x′
2

and l′2 = x′
3×x′

4, where the measurements x′
i = Axi are related to the calibrated

image coordinates by some unknown nonsingular transformation A. We wish
to show that vanishing point v′ computed as normal to the plane spanned by
vectors l′1 and l′2; v′ = l′1 × l′2 is related to the actual vanishing direction in the
calibrated space by the unknown transformation A, namely v = A−1v′ is the
same vanishing direction as the one recovered in the calibrated case. Hence using
the above lemma in the context of our problem we have:

v′ = l′1 × l′2 = (Âx1Ax2) × (Âx3Ax4) = (A−T x̂1x2) × (A−T x̂3x4) = (3)

(A−T l1) × (A−T l2) = Âl1l2 = Av

From now on we will drop the ′ superscript while considering image measure-
ments and assume the uncalibrated case. The above fact demonstrates that in
the context of vanishing point estimation, transforming the image measurements
by an arbitrary nonsingular transformation A and then transforming the result
back, does not affect the final estimate. The particular choice of A is described in
the paragraph of the following section. We will use this fact in the normalization
step of the least squares estimation in the context of EM algorithm.

2.2 Initialization and grouping

Prior to the vanishing point estimation the line segments obtained in the previous
stage need to be grouped into the dominant vanishing directions. In general
such grouping is a difficult problem, since any two parallel lines intersect in a
vanishing point, possibly yielding a large set of vanishing points. In the case of
man-made environments we will exploit the fact that the dominant vanishing
directions are aligned with the principal orthogonal axes ei, ej , ek of the world
reference frame. Hence there will be only few principal directions, where the
majority of the lines belong. We address the grouping stage and vanishing point
estimation stage simultaneously as a problem of probabilistic inference with an
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unknown model. In such instances the algorithm of choice is the Expectation
Maximization algorithm (EM), which estimates the coordinates of vanishing
points as well as the probabilities of individual line segments belonging to a
particular vanishing directions. This approach has been suggested previously
by [1], assuming calibrated camera and Gaussian Sphere representation. We
will demonstrate that with proper normalization, the identical technique can be
applied in case of an uncalibrated camera and present more efficient initialization
stage.

The posterior distribution of the vanishing points given line segments can
be expressed using Bayes rule in terms of the conditional distribution and prior
probability of the vanishing points:

p(vk | li) =
p(li | vk)p(vk)

p(li)
(4)

where p(li | vk) is the likelihood of the line segment belonging to a particular
vanishing direction vk. Hence for a particular line segment, p(li) can be expressed
using the conditional mixture model representation:

p(li) =
m∑

k=1

p(vk)p(li | vk) (5)

The number of possible vanishing directions m, will vary depending on the image,
but in general we will assume that there are at most four significant models,
three corresponding to the dominant vanishing directions and an additional one
modeling the outlier process. Line segments which do not belong to the vanishing
direction aligned with the principal axes ei, ej, ek are considered to be outliers.
The choice of the likelihood term p(li | v) depends on the form of the objective
being minimized as well as the error model. In the noise free case lTi vk = 0. In
the case of noisy estimates we assume that the error represented by lTi vk is a
normally distributed random variable with N(0, σ2

1). Then the likelihood term
is given as:

p(li | vk) ∝ exp

(−(lTi vk)2

2σ2
1

)
(6)

Given a set of line segments we would like to find the most likely estimates of
vanishing points as well as probabilities of each line belonging to a particular van-
ishing direction. Given initial estimates of the vanishing points vk, k = 1, . . .m,
the membership probabilities of a line segment li belonging to the k-th vanishing
direction are computed in the following way:

p(vk | li) =
p(li | vk)p(vk)∑m

k=1 p(li | vk)p(vk)
, k = 1, . . . , m (7)

The posterior probability terms p(vk | li) represent so called membership proba-
bilities, denoted by wik and capture the probability of a line segment li belonging
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to k-th vanishing direction vk. Initially we assume that the prior probabilities
of all vanishing directions are equally likely and hence do not affect the poste-
rior conditional probability. The prior probabilities of the vanishing directions
can be estimated from the likelihoods and can affect favorably the convergence
process as demonstrated in [1]. In the following paragraph we describe the main
ingredients of the EM algorithm for simultaneous grouping and estimation of
vanishing directions.

Normalization Prior starting the estimation process and determining the line
segment representation, we first transform all the endpoint measurements by
A−1, in order to make the line segments and vanishing directions well separated
on the unit sphere and consequently similar to the calibrated setting:

x = A−1x′ =




1
f∗ 0 − o∗

x

f∗

0 1
f∗ − o∗

y

f∗

0 0 1


x′

Given an image of size s = [nrows, ncols] the choice of the transformation A
is determined by the size of the image and captures the assumption that the
optical center is in the center of the image and the aspect ratio k = 1. The focal
length in the pixel units is f∗ = nrows, o∗x = nrows

2 and oy = ncols
2 . Given the

assumptions about optical center and aspect ratio, the chosen focal length f∗ is
related to the actual focal length by a scale factor.

The first phase of the EM algorithm, the E-step, amounts to computation of
posterior probabilities p(vk | li) given the currently available vanishing points
estimates. The goal is to estimate the coordinates of all vanishing points so as
to maximize the likelihood of the vanishing point estimates given a set of line
segments. The M-step of the algorithm involves maximization of the expected
complete log likelihood with respect to the unknown parameters vk [11]. This
step yields a maximization of the following objective function:

max
vk

n∏
i=1

p(li) =
n∑

i=1

log p(li) (8)

where p(li | vk) is the likelihood term defined in (6). The above objective function
in case of linear log-likelihood model yields a solution to a weighted least squares
problem; one for each model. Each line has an associated weight wik determined
by posterior probabilities computed in the E step. In such case the vanishing
points are estimated by solving the following linear least-squares problem:

J(vk) = min
vk

∑
i

wik(lTi vk)2 = min
vk

‖WAvk)‖2 (9)

Where W ∈ Rn×n is a diagonal matrix associated with the weights and rows
of A ∈ R3×n are the detected line segments. Closed form solution corresponds
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Fig. 1. Detected line segments and associated orientation histograms of the lines. The
color coding corresponds to the initial membership assignment of the individual line
segments. The initial number of groups exceeds 4.

to the eigenvector associated with the smallest eigenvalue of AT WT WA and
yields the new estimate of vk. The EM algorithm is an iterative technique guar-
anteed to increase the likelihood of the available measurements. We terminate
the iteration procedure once the vanishing point estimates reach an equilibrium,
i.e. vjT v(j−1) < εa. The iterations of the EM algorithm are depicted in Figures
2 and 3. The initially large number of vanishing point estimates, got reduced
through the merging process to three dominant directions.

In order to account for the line segments which do not belong to any of the van-
ishing directions we add an additional outlier process. The initial probability of a
line segment belonging to the mixture is then determined by the highest possible
residual angle θi = π/4, which a line segment can have with respect to one of
the dominant orientations. The outlier probability is then modeled by a Gaus-
sian distribution with a large variance, approximating the uniform distribution.
During the course of iteration of the EM algorithm, we also adjust the standard
deviation of the individual mixtures, to reflect the increasing confidence in the
model parameters and memberships of the individual segments.

9



−400 −300 −200 −100 0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200 1400 1600

0

100

200

Fig. 2. The final assignment of the lines to three vanishing directions (left). The in-
termediate estimates of the vanishing points during EM iterations (right). The line
segments are color coded based on their membership to the estimated vanishing direc-
tions. The vanishing points far from the image center (at infinity) are not plotted. The
final vanishing point estimate is marked by ’o’. In the case of the corridor v̂k is in the
image plane.

Initialization While the EM algorithm is known in each step to increase the
likelihood of the measurements given the model, it is often very sensitive to
initialization and can converge to a local minimum. Hence it is very important
that the algorithm is correctly initialized. The initialization scheme adopted here
is based on the observation that the lines that belong to a particular vanishing
directions have similar orientation in the image. This is not the case for the line
segments whose vanishing point is close to the center of the image plane. In such
situation the lines will be initially assigned to a separate groups and merged later
in the EM stage. Given a set of detected line segments we form a histogram hθ

of their orientations and search for the peaks in the histogram (see Figure 1).
The peaks are detected by first computing the curvature C(k) of the histogram,
followed by a search for zero crossings, which separate the dominant peaks. The
curvature is computed by subtracting the local histogram mean:

C(k) = hθ(k) − 1
s

k+ s
2+1∑

i=k− s
2

hθ(i) (10)

The total number of line orientation bins in our case is 60 and the size of the
integration window s = 9. Histogram hθ is smoothed prior to the curvature
computation. The typical number of detected peaks ranges between 2 − 6 and
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Fig. 3. The final assignment of the lines to three vanishing directions (left). The inter-
mediate estimates of the vanishing points during EM iterations (right) are marked by
’+’ and the final vanishing point estimate is marked by ’o’. The line segments are color
coded based on their membership to the estimated vanishing directions. The white line
segments in the left figures correspond to the outliers.

determines the initial number of models in the mixture formulation. The number
of models is reconciled in the expectation maximization process. The decision
to adjust the number of models is made based of the distance between currently
available estimates. If the distance between two vanishing directions vT

k vl > εb

has decreased, i.e. their inner product is close to 1, the two mixtures are merged
and the number of vanishing directions is adjusted. This is usually very easy to
detect because thanks to the normalization, the dominant vanishing directions
ei, ej , ek are well separated in the image. In Figure 1 of a building there are 6
peaks detected after initialization, three of which were merged during the EM
iteration process yielding the assignment of line into three dominant directions
depicted in Figure 2.

The performance of the algorithm for the images in Figures 2 and 3 is sum-
marized in Table 1. The vanishing points are reported in the image coordinates
with the origin in the upper left corner of the image. The figures also depict the
iterations of the EM algorithm. The accuracy of the vanishing point estimation
depends on the position of the true vanishing point estimate. We have observed
that in case the vanishing point lies in the image plane the standard deviation
of the errors was around 5 pixels from the true location, which was determined
by hand.
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vanishing point estimate vanishing point estimate
v̂i v̂j v̂k v̂i v̂j v̂k

Fig. 3 -380.17 456.54 307.36 Fig. 2 1404.23 524.73 78.76
table -109.62 -122.71 1052.13 corridor 100.97 1.3179×105 120.73
Fig. 3. -220.95 308.36 435.75 Fig. 2 -333.95 306.7 581.31
room 119.65 1069.14 113.65 building 300.14 -591.15 455.79

The above EM algorithm has been tested on a variety of outdoors and indoors
scenes and successfully converged in 2-5 iterations, depending on the number of
initial vanishing point estimates.

3 Calibration

The following section will demonstrate how to exploit the vanishing point con-
straints in order to partially determine camera calibration and relative orienta-
tion of the camera with respect to the scene. In the calibrated and uncalibrated
case the relationship between image coordinates of a point and its 3D counter-
part is as follows:

λx = RX + T and λx′ = KRX + KT (11)

where x′ denotes a pixel coordinate of X and K is the matrix of internal pa-
rameters of the camera. Let’s denote the unit vectors associated with the world
coordinate frame to be: ei = [1, 0, 0]T , ej = [0, 1, 0]T , ek = [0, 1, 0]T . The van-
ishing points corresponding to 3D lines parallel to either of these directions are
vi = KRei,vj = KRej,vk = KRek. Hence the coordinates of vanishing points
depend on rotation and internal parameters of the camera. The orthogonality
relations between ei, ej, ek readily provide constraints on the calibration matrix
K. In particular we have:

eT
i ej = 0 ⇒ vT

i K−T RRT K−1vj = vT
i K−T K−1vj = vT

i Svj = 0 (12)

where S is the metric associated with the uncalibrated camera:

S = K−T K−1 =


s1 s2 s3

s2 s4 s5

s3 s5 s6




When three finite vanishing points are detected, they provide three independent
constraints on matrix S:

vT
i Svj = 0

vT
i Svk = 0

vT
j Svk = 0 (13)

In general matrix symmetric matrix S3×3 has six degrees of freedom and can be
recovered up to a scale, so without additional constraints we can recover the S
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only up to a two parameter family. Other commonly assumed assumption of zero
skew and known aspect ratio can provide additional constraints and can also be
expressed in terms of constraints on the metric S [10]. The zero skew constraint
expresses the fact that the image axes are orthogonal can be written as:

[1, 0, 0]T S[0, 1, 0] = 0

In the presence of zero skew assumption, the known aspect ratio constraint can
be expressed as s1 = s4. By imposing these two additional constraints we obtain
a sufficient number of constraints. The solution for s = [s1, s2, s3, s4, s5, s6]T can
be obtained by minimizing ‖Bs‖2 and corresponds to the eigenvector associated
with the smallest eigenvalue of BT B. The calibration matrix K−1 can be ob-
tained from S by Cholesky decomposition. In the case the vanishing directions
arise from a set of lines parallel to the image plane, the associated vanishing
point lies at infinity. In practical situations, when one of the vanishing directions
is close to infinity one of the constraints becomes degenerate and recovered S
fails to be positive definite. This situation can be also noticed by checking the
condition number of B. In such case we assume that the principal point lies in the
center of the image and hence S is parameterized by the focal length only. The
focal length can be then recovered in closed form, from the remaining constraint.
The recovered calibration matrices for the examples outlined in Figures 2 and 3
are below:

Kbuilding =


409.33 −0.0000 177.46

0 409.33 165.75
0 0 1


 Ktable =


322.16 −0.0000 289.4949

0 322.16 −23.5644
0 0 1




Kroom =


361.133 −0.0000 263.99

0 361.133 129.038
0 0 1


 Ktrue =


408.79 −0.0000 199.50

0 408.79 149.5
0 0 1




At this stage we carried out only qualitative evaluation of the obtained estimates.
The focal length error in all cases was below 5%. Note that in the above examples
the difference in the focal length is due to the difference in the image size.
While the sub-sampling affects also the position of the principal point, the above
statement assumes that the focal length of the sub-sampled images is related to
the original focal length by the sub-sampling factor. The quality of the estimates
depends on the accuracy of the estimated vanishing points. As the vanishing
points approach infinity their estimates become less accurate. This affects in
particular the estimate of principal point, which in case one of the vanishing
points is at infinity cannot be uniquely determined unless additional constraints
are introduced [10]. In such case we assume that the principal point of the
camera lies in the center of the image and estimate the focal length in the closed
form, using a single orthogonality constraint between vanishing directions. The
estimate of the focal length obtained in this manner has larger error compared
to the case when all the constraints are used simultaneously (if available) and
the principal point is estimated as well.
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3.1 Relative orientation

Once the vanishing points have been detected and the unknown camera param-
eters determined by the above procedure, the relative orientation of the camera
with respect to the scene can be computed. Note first that since the vanish-
ing directions are projections of the vectors associated with three orthogonal
directions i, j, k, they depend on rotation only. In particular we can write that:

K−1vi = Rei K−1vj = Rej K−1vk = Rek

with each vanishing direction being proportional to the column of the rotation
matrix R = [r1, r2, r3]. Choosing the two best vanishing directions, properly
normalizing them, the third row can be obtained as r3 = r̂1r2 by enforcing the
orthogonality constraints. There is a four way ambiguity in R due to the sign
ambiguity in r1 and r2. Additional solutions can be eliminated by considering
relative orientation or structure constraints.

4 Summary and Conclusions

We presented an efficient, completely automated approach for detection of van-
ishing points from a single view assuming an uncalibrated camera. Along the
way the assumptions about the structure of man-made environments, were used
in the initialization and grouping stage. In particular it was the fact that the
majority of the line segments belongs to one of the dominant vanishing direc-
tions aligned with the axes of the world coordinate frame. The estimation and
grouping problems were addressed simultaneously using the Expectation Maxi-
mization algorithm. We are currently exploring the use of the prior information
in the vanishing point estimation task and developing more quantitative assess-
ment of the sensitivity of the estimation process. While this problem has been
studied frequently in the past in the context of different computer vision applica-
tions, in most of those instances the speed and robustness were not the primary
concerns. The capability of robustly detecting vanishing points in an automated
manner will enable us to employ these types of systems in the context of mobile
and aerial robots and facilitate partial calibration of the vision system as well as
estimation of relative orientation with respect to the scene. This information has
great utility in the context of basic navigation and exploration tasks in indoor
and outdoor environments, where the alternative sensing strategies such as GPS
or compass are known to under perform.
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