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ABSTRACT

Understanding the representations of 3D scenes as en-
coded in multiple views taken by a camera from differ-
ent vantage points is central to many tasks in image and
video analysis. These tasks range from recovering the
camera motion, 3D structure of the scene and detection
and characterization of multiple motions in video. We
will demonstrate that the natural representations of a
3D scene in 2D images is in terms of the incidence re-
lations among different geometric primitives, which can
be concisely characterized by rank conditions of multi-
view matrices. The proposed rank conditions capture
all existing independent multilinear constraints and en-
able truly global geometric analysis of the multiple views
comprised of different geometric features. In addition to
the analysis, we present natural factorization based lin-
ear algorithms for structure and motion recovery, image
transfer and matching across multiple views applicable in
both calibrated and uncalibrated setting. We will demon-
strate the approach experimentally on a problem of multi-
frame structure and motion recovery using point and line
features and their incidence relations.

1 INTRODUCTION

Analysis, alignment and characterization of the con-
tent of multiple images of a scene captured by a camera
from different vantage points is central to many tasks in
video and image analysis. Most of the past research on
video coding, compression and multimedia applications
involving video originated in image processing commu-
nity and focused predominantly on 2D image processing
techniques to encode the information in the image stream.
On the other hand large amount of work in computer vi-
sion community has been devoted to the problems of re-
covery of 3D models of the environments from multiple
views. The applications range from building 3D models
from photographs (generally referred to as image render-
ing techniques) with applications to architectural preser-
vation, computer graphics or special effects in movie in-
dustry, augmented reality systems, human computer in-
teraction or object level modeling to retail purposes.
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It is inevitable that it is the 3D structure of the envi-
ronment which gives rise to the video and photography
content and hence should be exploited in the analysis. It
is therefore central to understand and study how is the
3D structure encoded in multiple views of the scene and
what is the relationship between the projections of the 3D
world and camera displacements. Considering scenarios
where the observed motion of the objects in the scene
and/or camera is rigid, the relationships are to a large ex-
tent characterized by various geometric constraints be-
tween observable geometric primitives and rigid body
motion.

Characterization of the existing geometric constraints
has a long history both in computer vision and pho-
togrammetry. The basic formulations of the intrinsic ge-
ometric constraints governingperspectiveprojections of
point features in two views originated in photogramme-
try and were later revived the computer vision community
in early eighties [1]. Natural extensions of relationships
between two views is to consider multiple views and dif-
ferent feature primitives. In the computer vision litera-
ture, fundamental and structure independent relationships
between image features and camera displacements were
characterized by the so-called multilinear matching con-
straints [2, 3, 4, 5]. These geometric relationships were
used extensively for feature matching, point-line transfer
to a new view and motion and structure recovery from
three views [6, 7]. This line of work culminated recently
in publication of two monographs on this topic [8, 9].

In this paper we present new characterization of the
existing multiview constraints in terms of rank condi-
tions of appropriate multiple view matrices introduced
in [10, 11]. We start first by introducing the rank con-
ditions among multiple views of point and line features
separately. We will demonstrate in an intuitive way that
the rank conditions of these multiview matrices captures
the relationships among all previously known multilin-
ear constraints and generalizes previously studied trilin-
ear constraints involving mixed point and line features to
a multiview setting. As we will see the linear formula-
tion of the problem will give rise to natural algorithms
for geometric feature matching, feature transfer across



multiple views and motion and structure recovery. In or-
der to demonstrate the wide applicability of the frame-
work in the limited space, we will focus more on the ge-
ometric intuition behind the formulation and algorithmic
aspects, while omitting the detailed proofs of the state-
ments. These can be found in [10, 11]. In the last section
we present the applicability of the multiple view matrix
of mixed features for a consistent motion and structure re-
covery which properly incorporate all the incidence con-
ditions in a scene and outline conceptual algorithms for
image matching and feature transfer to a novel view.

2 MULTIPLE VIEWS OF POINTS AND LINES

First we will introduce basic notation and concepts
used through out the paper. An imagex(t) =
[x(t), y(t), 1]T ∈ R

3 of a pointp ∈ E
3, with coordi-

natesX = [X, Y, Z, 1]T ∈ R
4 relative to a fixed world

coordinate frame, taken by a moving camera satisfies the
following relationship

λ(t)x(t) = A(t)Pg(t)X (1)

whereλ(t) ∈ R+ is the (unknown) depth of the pointp
relative to the camera frame,A(t) ∈ SL(3) is the cam-
era calibration matrix (at timet), P = [I, 0] ∈ R

3×4 is
the constant projection matrix andg(t) ∈ SE(3) is the
coordinate transformation from the world frame to the
camera frame at timet. In the above equation, allx, X
andg are inhomogeneous representation. A straight line
L ⊂ E

3, defined byL = {X | X = X0 + αv}, where
v = [v1, v2, v3, 0]T ∈ R

4 is a non-zero vector indicat-
ing the direction of the line, andα ∈ R. An image
l(t) = [a(t), b(t), c(t)]T ∈ R

3 of L taken by the mov-
ing camera then satisfies the following equation

l(t)T x(t) = l(t)T A(t)Pg(t)X = 0 (2)

for the imagex(t) of any point on the lineL.1 In a prac-
tice we usually have available images ofx(t) or l(t) at
some time instances:t1, t2, . . . , tm, which we denote

λi = λ(ti), xi = x(ti), li = l(ti), Πi = A(ti)Pg(ti).

Observing set of points and/or lines in multiple views
gives rise to the following system of equations

λixi = ΠiX = [Ri, Ti]X, (3)

lTi xi = lTi ΠiX0 = lTi Πiv = 0 (4)

for i = 1, . . . , m. The suggestive notationΠi = [Ri, Ti]
here, does not necessarily correspond to the actual rota-
tion and translation.Ri could be an arbitrary3 × 3 ma-
trix. Only in the case when the camera is perfectly cali-
brated doesRi correspond to the actual camera rotation

1So definedl is in fact the vector orthogonal to the plane spanned
by the images of points on the line. Strictly speaking,l should be called
the “coimage” of the line.

andTi to the translation. Observe that the unknowns,λ,
X andv, which encode the information about location of
the pointp or the lineL in R

3 are not intrinsically avail-
able from the images. By algebraically eliminating some
of the unknowns from the above equations, the remaining
relationships would be betweenx, l andΠ only, i.e. be-
tween the images and the camera configuration. These
relationships are referred to as intrinsic and provide a
starting point for recovering the remaining information
from images. The elimination step is rather straightfor-
ward in the two view case, where the unknown scales can
be eliminated by multiplying both sides of the equation
by the vectorT2 × x2 = T̂2x2

2

λ2x2 = R2λ1x1 + T2 ⇒ xT
2 T̂2R2x1 = 0 (5)

Note that this yields an implicit constraint, so-called
epipolar constraint, on the camera displacement(R2, T2)
between two views, which can be consequently used for
displacement recovery [1]. Geometric interpretation of
the two view constraint is in Figure 1.
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Figure 1: Two projectionsx1, x2 ∈ R
3 of a 3-D pointp

from two vantage points. The relative Euclidean trans-
formation between the two vantage points is given by
(R, T ) ∈ SE(3). The intersection of the line(o1, o2)
with each image plane is the so-calledepipole, that ise1

ande2 respectively.

However in the multiview case, there are many differ-
ent, but algebraically equivalent, ways of eliminating the
unknowns and hence characterizing these constraints. We
here present a unified and concise way of characteriz-
ing the existing constraints in terms incidence relations
among different geometric primitives and the rank condi-
tions of their associated multiview matrices.

3 RANK CONDITIONS AND INCIDENCE RELATIONS

Our previous work [12] has shown that, multiple im-
ages of points, lines or planes are universally governed
by certain rank conditions. Such conditions not only con-
cisely capture geometric constraints among multiple im-
ages, but also are the key to reconstruction of the camera
motion and scene structure. This line of work has allowed
us to realize a very important principle about multiple
view geometry

2As usual, for a vectoru ∈ R
3, we usêu to denote the skew sym-

metric matrix such that̂uv = u × v for all v ∈ R
3.



To a large extent, multiple view geometry is
about studying how can the incidence relations
(among points, lines, and planes etc.) in 3-D
space be expressed and exploited computation-
ally in multiple 2-D image measurements.

As we will demonstrate therank conditionsof the appro-
priate multiview matrices turn out to be the correct tool
for this purpose. Since the incidence relationships are in-
variant to change of viewpoint or camera calibration, and
they can be effectively verified in images or be given as
modeling conditions in practice, such knowledge can be
and should be exploited if a consistent reconstruction is
sought.

In this section, we briefly review a few classic rank
conditions in multiple view geometry and their corre-
sponding geometric intuition. We will not provide any
proof for these results since they can be found in our pre-
vious paper [12]. Instead, we try to make the results com-
pact here so that the reader can grasp the essence of this
new formulation in the shortest time.

Without loss of generality, we may assume that the first
camera frame is chosen to be the reference frame. That
gives the projection matricesΠi, i = 1, . . . , m the gen-
eral form:

Π1 = [I, 0], Π2 = [R2, T2], . . . , Πm = [Rm, Tm],

whereRi ∈ R
3×3, i = 2, . . . , m is the first three columns

of Πi andTi ∈ R
3, i = 2, . . . , m is the fourth column of

Πi.

3.1 Multiple images of a point
For the multiple imagesx1, x2, . . . , xm of a pointp,

as shown in Figure 2, it is necessary and sufficient for the
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Figure 2: Lines extended from the multiple images
x1, x2, . . . , xm intersect at one pointp in 3-D.

following so-calledmultiple view matrixMp

Mp
.=




x̂2R2x1 x̂2T2

x̂3R3x1 x̂3T3

...
...

x̂mRmx1 x̂mTm


 ∈ R

3(m−1)×2 (7)

to satisfy the rank condition

rank(Mp) = 1. (8)

The rank value drops to 0 if and only if all the camera
centerso1, o2, . . . , om and the pointp lie on the same
straight line (the so-called rectilinear motion). Notice
that for Mp to be rank-deficient, it is necessary for any
pair of vectorsx̂iTi, x̂iRix1 to be linearly dependent.
This gives us the well-known bilinear epipolar constraints
xT

i T̂iRix1 = 0 between theith and1st view. Hence,
the constraint rank(Mp) = 1 consistently generalizes the
epipolar constraint for 2 views to arbitrarym views. The
constraints among more then two views come from ad-
ditional linear dependencies between ’rows’ ofMp. In
order to characterize them we exploit the following lin-
ear algebraic fact: Givennon-zerovectorsa1, . . ., an, b1,
. . ., bn ∈ R

3, the following matrix is rank deficient:


a1 b1

...
...

an bn


 ∈ R

3n×2 (9)

if and only if aib
T
j − bia

T
j = 0 for all i, j = 1, . . . , n.

Applying the fact directly to the matrixMp we obtain we
obtain the well known trilinear constraint

x̂i(Tix
T
1 RT

j − Rix1T
T
j )x̂j = 0. (10)

Hence, the rank condition on matrixMp captures all tri-
linear relationships between theith, jth and1st views.
Notice that the multiple view matrixMp being rank-
deficient is equivalent to all its2 × 2 minors having zero
determinant. Since the2 × 2 minors ofMp involve three
images only, we may safely conclude that there are in
fact no additionalindependent relationships among four
views.
3.2 Multiple images of a line

For multiple imagesl1, l2, . . . , lm of a line L, as
shown in Figure 3, it is necessary and sufficient for the
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Figure 3: Planes extended from the imagesl1, l2, . . . , lm
intersect at one lineL in 3-D.

following multiple view matrixMl

Ml
.=




lT2 R2l̂1 lT2 T2

lT3 R3l̂1 lT3 T3

...
...

lTmRml̂1 lTmTm


 ∈ R

(m−1)×4 (11)



to satisfy the rank condition

rank(Ml) = 1. (12)

The rank value drops to 0 if and only if all the planes
P 1, P 2, . . . , P m coincide, or equivalently, all the cam-
era centers and the line are coplanar. The rank condition
directly implies all trilinear constraints amongm images
of the line. To see this more explicitly, notice that for
rank(Ml) = 1, it is necessary for any pair of row vectors
of Ml to be linearly dependent. This gives us the well-
known trilinear constraints

lTj Tjl
T
i Ri l̂1 − lTi Til

T
j Rj l̂1 = 0 (13)

among the1st, ith andjth images. Hence the constraint
rank(Ml) = 1 is a generalization of the trilinear con-
straint (for 3 views) to arbitrarym views. Note that when
m = 3 it is equivalent to the trilinear constraint for lines,
except for some rare degenerate cases, where for example
lTi Ti = 0 for somei.
3.3 Multiple images of intersecting lines

For a set of linesL1, L2, . . . , Lm which intersect at
point p and their images in multiple views, as shown in
Figure 4, it is necessary and sufficient for the following
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Figure 4: Planes extended from the image lines
l1, l2, . . . , lm intersect at one pointp in 3-D.

multiple view matrixMl

Ml
.=




lT2 R2l̂1 lT2 T2

lT3 R3l̂1 lT3 T3

...
...

lTmRml̂1 lTmTm


 ∈ R

(m−1)×4 (14)

to satisfy the rank condition

rank(Ml) = 2. (15)

It is interesting to notice that the rank ofMl will drop
back to 1 if the family of linesL1, L2, . . . , Lm happen
to be the same lineL in 3-D; and the rank will further
drop to 0 if the family of planesP 1, P 2, . . . , P m happen
to collapse into one. Hence a change in the rank value
indeed corresponds to a qualitative change in the types

of 3-D incidence relations among the involved multiple
images.

The interplay between points and lines also gives rise
to some interesting rank conditions on mixed versions of
the multiple view matrix. For instance, suppose that in
the reference view you observe a pointx1 and in the re-
maining views the linesl2, . . . , lm incident to that point,
such that in each viewlTi xi = 0 for i = 2, . . .m. The as-
sociated rank condition for this case can be derived from
the rank condition onMl and the following matrix

Mpl
.=




lT2 R2x1 lT2 T2

lT3 R3x1 lT3 T3

...
...

lTmRmx1 lTmTm


 ∈ R

(m−1)×2 (16)

then satisfies the rank condition

rank(Mpl) = 1. (17)

For the rank condition to be satisfied, it is again necessary
as in the point case, that all2 × 2 minors ofMpl be zero.
This yields the following constraints among arbitrary ith,
jth view with the first view as a reference

(lTi Rix1)(lTj Tj) − (lTj Rjx1)(lTi Ti) = 0 ∈ R.

This gives the trilinearpoint-line-lineconstraint. Note
that the incidence relationship is relaxed in this case since
the lines in the subsequent views do not have to corre-
spond to each other as long as they intersect at the same
point. We will demonstrate the use of these types of con-
straints for structure and motion recovery in the following
section. In principle, one can arbitrarily decide to choose
a point feature or a line feature in each image and the
resulting multiple view matrix always obeys certain rank
condition. A general law for this is given in [12].
3.4 Multiple images of a planar scene

Another case commonly encountered in practical sit-
uations is when the set of points is restricted to lie on a
plane inR

3. The plane can be described asπT X = 0 for
a vectorπ = [π1, π2] ∈ R

4 with π1 ∈ R
3, π2 ∈ R. Then

for multiple images of a pointp or a lineL on the plane,
as shown in Figure 5, it is necessary and sufficient for the
following multiple view matricesMp andMl

Mp =




x̂2R2x1 x̂2T2

x̂3R3x1 x̂3T3

...
...

x̂mRmx1 x̂mTm

π1x1 π2


 , Ml =




lT
2 R2l̂1 lT

2 T2

lT
3 R3l̂1 lT

3 T3

...
...

lT
mRml̂1 lT

mTm

π1 l̂1 π2




to satisfy the rank condition

rank(Mp) = 1, rank(Ml) = 1. (18)

That is, with the extra rows
[
π1x1 π2

]
or

[
π1 l̂1 π2

]
appended to regularMp andMl, respectively, the rank
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Figure 5: Planes extended from the image lines
l1, l2, . . . , lm and the planeπ intersect at one lineL;
Lines extended from the imagesx1, x2, . . . , xm and the
planeπ intersect at one pointp.

conditions onMp(Ml) remain the same. Again, the
rank value drops to 0 if and only if all the planes
π, P 1, . . . , P m collapse into one.

The rank conditions on the augmentedMp andMl im-
ply some extra equations (by considering minors of the
sub-matrix consisting of theith group of three rows of
Mp or Ml and its last three rows){

x̂i

(
Ri − 1

π2 Tiπ
1
)
x1 = 0,

lTi
(
Ri − 1

π2 Tiπ
1
)
l̂1 = 0,

(19)

for i = 2, . . . , m. These are nothing but thehomography
between theith and the1st images of the planeπ. By
now, we can summarize a few characteristics about this
matrix rank approach:

1. The multiple view matrix rank captures geometric
(and algebraic) constraints among multiple images
in a global fashion, and with it, we no longer need
to break an image set or sequence into pair-wise or
triple-wise ones;

2. Different rank values of a multiple view matrix di-
rectly correspond to qualitatively different types of
3-D incidence relations among multiple images, and
hence, a drop of rank value always implies occur-
rence of degenerate configuration.

3. The universality of the rank conditions suggests the
possibility of utilizing all incidence relations among
all images of all features in a unified fashion for 3-D
reconstruction, and as we will see in the next section,
they directly imply a linear factorization algorithm
for multiple view reconstruction.

4 MOTION AND STRUCTURE RECOVERY

The unified formulation of the rank condition enable
us to solve the problem of motion and structure recovery
from multiple views using both point and line features.
Incidence constraints among points and lines can now be
explicitly taken into account when a global estimation of
motion and structure takes place.

To demonstrate conceptually how this works consider
a sequence of8 widely separated views of a desk scene
as shown in Figure 7.

For some of the corner pointsp, we can specify the
incidence relationship of certain line segments. For ex-
ample the front corner of the box in the foreground has
three lines incident to it and the one on the back box only
two lines. We depict them in the image in terms of line
segments. Suppose that each pointj hask incident edge
L1j . . . Lkj , for j = 1, . . . , n. From m images of the
scene the multiple view matrixM j for each pointp has
the following form

M j =




x̂j
2R2x

j
1 x̂j

2T2

l1jT
2 R2x

j
1 l1jT

2 T2

...
...

lkjT
2 R2x

j
1 lkjT

2 T2

...
...

x̂j
mRmxj

1 x̂j
mTm

l1jT
m Rmxj

1 l1jT
m Tm

...
...

lkjT
m Rmxj

1 lkjT
m Tm




∈ R
(m−1)(k+3)×2

(20)
wherexj

i means the image of thejth corner in theith

view andlkj
i means the image of thekth edge associated

to thejth corner in theith view. Note that one can easily
verify thatαj = [λj

1, 1]T ∈ R
2 is in the kernel ofM j . In

addition to the multiple imagesxj
1, . . . x

j
m of thejth cor-

nerp itself, the extra rows associated to the line features
lkj
i , i = 2, . . .m; k = 1, . . . , k also help to determine

the depth scaleλj
1. We can already see one advantage of

Figure 6: 1st and 7th frame of the test sequence.

the rank condition: It can simultaneously handle multi-
ple incidence conditions associated to the same feature;3

In principle, using the coplanar rank conditions (18), one
can further take into account that the some of the ver-
tices and edges on each side are coplanar. Since such
incidence conditions between points and lines occur fre-
quently in practice, especially for man-made objects such
as buildings and houses, the use of multiple view matrix

3In fact, any algorithm extracting point feature essentially relies on
exploiting local incidence condition on multiple edge features. The
structure of theM matrix simply reveals a similar fact within a larger
scale.



for mixed features is going to improve the quality of over-
all reconstruction by explicitly taking into account all the
geometric relationships among features of various types
and with multiple measurements. In order to estimateαj

for each point we need to know the matrixM j , i.e. we
need to know the motions(Ri, Ti) for i = 2, . . . , m.
From the geometric meaning ofαj = [λj

1, 1]T we can ini-
tializeαj ’s if we know only the motion(R2, T2) between
the first two views. The two view displacement can be es-
timated using the standard 8 point algorithm [1]. Know-
ing αj ’s note that each row now becomes linear inRi, Ti.

For example fori = 2 we haveλj
1x̂

j
2R2x

j
1 + x̂j

2T2 = 0.
Since all the equations

M jαj = 0, j = 1, 2, . . . , n (21)

become linear in(Ri, Ti), we can select the appropriate
ones to solve for the motions (again). Define the vectors
~Ri = [r11, r12, r13, r21, r22, r23, r31, r32, r33]T ∈ R

9

and ~Ti = Ti ∈ R
3, i = 2, . . . , m. It is then equivalent to

solve the following equations fori = 2, . . . , m:

Pi

[
~Ri

~Ti

]
=




λ1
1x̂

1
i ∗ x1

1
T

x̂1
i

λ1
1l

11T
i ∗ x1

1
T

l11T
i

...

λ1
1l

k1T
i ∗ x1

1
T

lk1T
i

...
...

λn
1 x̂n

i ∗ xn
1

T x̂n
i

λn
1 l1nT

i ∗ xn
1

T l1nT
i

...
λn

1 lknT
i ∗ xn

1
T lknT

i




[
~Ri

~Ti

]
= 0 ∈ R

n(3+k), (22)

whereA ∗ B is theKronecker productof A andB. In
general, if we have rich enough set of features such that
the rank of the matrixPi is at least11, there is a unique
solution to(~Ri, ~Ti).

Let T̃i ∈ R
3 andR̃i ∈ R

3×3 be the (unique) solution of
(22) in matrix form. Such a solution can be obtained nu-
merically as the eigenvector ofPi associated to the small-
est singular value. Let̃Ri = UiSiV

T
i be the SVD ofR̃i.

Then the solution of (22) inR3 × SO(3) is given by:

Ti =
sign(det(UiV

T
i ))

3
√

det(Si)
T̃i ∈ R

3, (23)

Ri = sign(det(UiV
T
i )) UiV

T
i ∈ SO(3). (24)

We then have the following linear algorithm:
Algorithm 1 (Multiple view factorization) Given
m(≥ 3) imagesxj

1, . . ., xj
m of n(≥ 8) points pj,

j = 1, . . . , n (as the corners of a cube), and the images
lkj
i , k = 1, 2, 3 of the three edges intersecting atpj,

estimate the motions(Ri, Ti), i = 2, . . . , m as follows:

1. Initialization:s = 0

(a) Compute(R2, T2) using the 8 point algorithm
for the first two views [1].

(b) Computeαj
s = [λj

1/λ1
1, 1]T whereλj

1 is the
depth of thejth point relative to the first cam-
era frame.

2. Compute(R̃i, T̃i) as the eigenvector associated to
the smallest singular value ofPi, i = 2, . . . , m.

3. Compute(Ri, Ti) from (23) and (24) fori =
2, . . . , m.

4. Compute the newαj
s+1 = αj from (21). Normalize

so thatλ1
1,s+1 = 1.

5. If ||αs − αs+1|| > ε, for a pre-specifiedε > 0, then
s = s + 1 and goto 2. Else stop.

The camera motion is then(Ri, Ti), i = 2, . . . , m and the
structure of the points (with respect to the first camera
frame) is given by the converged depth scalarλj

1, j =
1, . . . , n.
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Figure 7: Recovered structure of the scene as seen from
a novel viewpoint. Only the features visible in the first
frame are visualized.

We have a few comments on the proposed algorithm:

1. The reason to setλ1
1,s+1 = 1 is to fix the universal

scale. It is equivalent to putting the first point at a
relative distance of 1 to the first camera center.

2. Although the algorithm utilizes only one type of in-
cidence relationships between points and lines cap-
tured by the multiple view matrix, it can be easily
generalized to include additional incidence relation-
ships or planar restrictions.

3. Although the algorithm is given for the calibrated
case, the first two steps the factorization algorithm
work also for the uncalibrated case: in the initializa-
tion (R2, T2) can simply be the canonical decom-
position of the fundamental matrix; the remaining
(Ri, Ti)’s computed in step 2 will differ from the
true ones by the same projective transformation.



4.1 Correspondence
In the following section we will demonstrate how the

rank condition can be used for feature matching. We out-
line the test for the point case only, however the same
technique can be applied in an analogous way to other
multiview matrices. Notice that in the point caseMp ∈
R

3(m−1)×2 being rank-deficient is equivalent to the de-
terminant ofMT

p Mp ∈ R
2×2 being zero

det(MT
p Mp) = 0. (25)

whereMT
p Mp is a function of the projection matrixΠ

and imagesx1, . . . , xm. If Π is known and we would
like to test if givenm vectorsx1, . . . , xm ∈ R

3 indeed
satisfy all the constraints thatm images of a single 3-D
pre-image should, we only need to test if the above deter-
minant is zero. A more numerically robust algorithm is
outlined below.
Algorithm 2 (Multiple view matching test: point)
Suppose the projection matrixΠ associated tom
camera frames are given. Then for given vectors
x1, . . . , xm ∈ R

3,

1. Compute the matrixMp ∈ R
3(m−1)×2 as in (7);

2. Compute second eigenvalueλ2 of MT
p Mp;

3. If λ2 ≤ ε for some pre-fixed threshold, them image
vectors match.

Similar matching test can be developed for the line case.
In general, in order to test correspondence using the
above algorithm, we need to know the projection matrix
Π, which represents the multiview camera configuration.
Fortunately, in order to recoverΠ, we only need few cor-
responding points and other techniques allow us to do so.
Once the initial motion estimate is obtained, the recov-
eredΠ can be used to establish more correspondences.
Hence the algorithm can be viewed as a natural multi-
view extension of the commonly used RANSAC based
matching algorithm for two view geometry.

4.2 Image transfer
When the two views are widely separated it is quite

common that certain features become occluded in some
views, while still remain visible in the others. Alterna-
tively we would like to have some means how to predict
the location of a feature without explicitly computing the
scene structure and back-projecting the 3D entity into an
image. This task is often referred as image transfer and
can be also naturally accomplished by exploiting the rank
condition. Without loss of generality, suppose we know
m− 1 imagesx2, . . . , xm ∈ R

3, of a point in space, and
we want to determine its1st imagex1, based on known
transformationsRi, Ti, i = 2, . . . , m. Observe the struc-
ture of the point multiview matrixMp and let us define

the following matrix

N ′
p

.=




x̂2R2 x̂2T2

x̂2Rm x̂2T2

...
x̂mRm x̂mT2


 ∈ R

3(m−1)×4. (26)

Note that due to the rank deficiency of matrixMp associ-
ated with the point matrix we have

N ′
p

[
x1

λ

]
= 0. (27)

Hence the vector[xT
1 , λ]T is in the null space ofN ′

p,
which can be robustly computed using singular value de-
composition. The algorithm is summarized below:

Algorithm 3 (Image transfer: point) Suppose the pro-
jection matrix Π associated tom camera frames are
given. Then for given vectorsx2, . . . , xm ∈ R

3,

1. Compute the matrixN ′
p ∈ R

3(m−1)×4 as in (26);

2. Perform SVD such thatN ′
p = USV T and denotev4

to be the 4th column of V;

3. Letx1 be the vector formed by the last 3 elements
of v4 and then normalizex1 to have that last coor-
dinate 1.

In a parallel way we can develop the relationship for im-
age transfer of a line to a new view, based on the rank
condition of the matrix associated with the line. Define
matrix

N ′
l

.=




lT2 R2 lT2 T2

lT3 R3 lT3 T3

...
lTmRm lTmTm


 ∈ R

(m−1)×4. (28)

It is easy to see that in general we have rank(N ′
l ) = 2

sinceN ′
lX = 0 if and only if X ∈ span(Xo, v) where

Xo andv were defined in Section 2. HencelT1 ṽ = 0
where (̃·) is taking the vector formed by first three ele-
ments. So we can perform SVD onN ′

l to obtainUSV T .
Since the last two columns ofV , denotedv3 and v4,
are linearly independent andN ′

lv3 = N ′
lv4 = 0. Thus

l1 = kṽ2 × ṽ4 for somek 6= 0. This yields following
practical line transfer algorithm
Algorithm 4 (Image transfer: line) Suppose the pro-
jection matrix Π associated tom camera frames are
given. Then for given vectorsl2, . . . , lm ∈ R

3,

1. Compute the matrixN ′
l ∈ R

(m−1)∗4 as in (28);

2. Perform SVD such thatN ′
l = USV T , such that

N ′
l = USV T , whereU ∈ R

(m−1)×(m−1), S ∈
R

(m−1)×4 andV ∈ R
4×4;



3. Denotev3 and v4 to be the3rd and 4th column of
V respectively; set̃v3 to be the vector formed by the
first three elements ofv3 andṽ4 be the vector formed
by the first 3 elements ofv4;

4. Letl1 = ṽ3 × ṽ4 and normalize it.

Figure 8: In the figure (8th frame) on the right we overlay
two vertical lines and two points which were transfered
from the4th frame (left) where they were clearly visible.

5 DISCUSSIONS AND CONCLUSIONS

This paper reviewed a unified paradigm recently pro-
posed by the authors which synthesizes results and expe-
riences in the study of multiple views of point, lines and
planes. It is shown that all geometric relationships among
multiple images are captured through a single rank con-
dition on certain multiple view matrix. To a large extent,
this matrix rank approach simplifies and unifies multiple
view geometry. In addition, we can now carry out mean-
ingful global geometric analysis for many images with-
out going through a pairwise, triple-wise, or quadruple-
wise relationships. Compared to conventional multiple
view analysis based on trifocal tensors, the multiple view
matrix based approach clearly separates meaningful ge-
ometric degeneracies from degeneracies which may be
artificially introduced by the use of algebraic equations
describing the constraints. In particular, as shown in this
paper, any configuration which causes a further drop of
rank in the multiple view matrix exactly corresponds to
certain geometric degeneracy.

The proposed approach will certainly have impact on
both theoretical analysis and algorithm development. The
linear algorithms given in this paper and others [10] only
show a straight-forward way of using the rank condition.
But our simulation and experimental results have already
shown much better performance then the extant “projec-
tive factorization” algorithm [13], and in fact, the perfor-
mance has in many cases emulated nonlinear algorithms
based on “bundle adjustment”. Recent work has also
shown that it is possible to generalize this matrix rank
approach to study trajectory triangulation, curve features,
and even dynamical scenes [14]. The full potential of this
approach is yet to be investigated.
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