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Rank De�ciency Condition of the Multiple View

Matrix for Mixed Point and Line Features
Yi Ma, Jana Ko�seck�a and Kun Huang

Abstract|Geometric relationships governing multiple im-
ages of points and lines and associated algorithms have been
studied to a large extent separately in multiple view geom-
etry. In this paper we present a universal rank condition on
the so-called multiple view matrix M comprised of arbitrar-
ily combined point and line features across multiple views.
The proposed formulation is shown to be equivalent (but su-
perior) to the multilinear (or multifocal) constraints based
approach. For the �rst time, it allows us to carry out global
geometric analysis for multiple images, as well as system-
atically characterize all degenerate con�gurations, without
breaking image sequence into pairwise or triple-wise sets of
views. The additional advantage behind this formulation is
that it allows to utilize all incidence conditions that gov-
ern all features in all images simultaneously for a consistent
recovery of motion and structure from multiple views. Sim-
ulation results are presented to validate the multiple view
matrix based approach.

Keywords| multiple view matrix, rank condition, mixed
features

I. Introduction

C
HARACTERIZATION of the existing geometric con-
straints has a long history both in computer vision and

photogrammetry and has important implications for a vari-
ety of applications. The geometric relationships governing
observable feature primitives in multiple views provide a
starting point from which one can determine the choice
of primitives to represent a 3-D scene and consequently
formulate and solve the problem of motion and structure
recovery from multiple views.

The basic formulation of the geometric constraints gov-
erning perspective projections of point features in two views
originated in photogrammetry which can be traced back
to the beginning of last century [8] and then was revived
later in the computer vision community in early eight-
ies [10]. Natural extensions (of theoretical importance and
with profound practical implications) had been those con-
sidering multiple views and di�erent feature primitives. In
the computer vision literature, fundamental and structure
independent relationships between image features and cam-
era displacements were �rst described by the so-called mul-
tilinear matching constraints [4], [14], [7]. Most of the pre-
vious work focused on the algebraic aspects of these multi-
linear constraints, along with the algorithms which followed
from the same formulation. This line of work culminated
recently in publication of two monographs on this topic [6],
[2].

The constraints among multiple views and associated al-
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gorithms were mostly developed separately for point and
line features and for di�erent number of views. A distin-
guished role in that development was the use of the so-
called trilinear constraints and their associated trilinear
tensors. The initial formulation of the constraints between
three views of point and line features is due to [13]. Fur-
ther developments and extensions to multiple views relied
on the use of tensorial notation, where the multilinear con-
straints were obtained by algebraic elimination of some of
the unknowns to render otherwise intrinsically nonlinear
relationships as linear ones. Trilinear constraints revealed
certain geometric relationships between point and line fea-
tures among three views [12], [5] and were used extensively
for feature matching, point-line transfer to a new view and
motion and structure recovery from three views. In order
to apply the trilinear constraints to more than three views,
one had to typically resort to a cascading scheme as in [1].
Given that the choice of cascading is by no means unique
and many degenerate con�gurations may occur among the
chosen triplets, it was diÆcult to draw consistent conclu-
sions on the global geometry for the multiple views alto-
gether.
The main contribution of our work is the derivation of

a new general rank de�ciency condition on a formal mul-
tiple view matrix M , which combines measurements from
multiple views of point and line features. This condition
generalizes recently proposed rank de�ciency conditions de-
veloped separately for points, lines and planar features [11].
Our treatment completes previous e�orts to use both line
and point features for structure from motion recovery from
multiple views [9], [5], [13]. Furthermore the rank condi-
tion of the new multiple view matrix M clearly reveals the
relationship among all previously known or even some un-
known multilinear constraints. Furthermore, the matrixM
generalizes previously studied trilinear constraints involv-
ing mixed point and line features to a multiple view setting,
and it allows a geometrically meaningful global analysis of
arbitrarily many images with arbitrarily mixed features,
with no need to cascade pairwise, triple-wise or quadruple-
wise images. Its linear structure directly facilitates feature
matching, feature transfer across multiple views and mo-
tion and structure recovery. An additional appeal of this
approach is the sole use of linear algebraic techniques, with
no need to introduce tensorial notation, or projective ge-
ometry.
Overview of the paper: Section II introduces nota-

tion used in this paper as well as basic concepts and equa-
tions for the formulation of multiple view geometry. In Sec-
tion III, we give (without proof) a rank condition on some
formal multiple view matrix M , from which all multiple
view constraints among points and lines can be instanti-
ated. The geometric interpretation of the rank condition
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of the matrix M is given in Section IV. In Section V, we
outline ideas how to use the multiple view matrix of mixed
features to incorporate all incidence conditions in a scene
for a consistent motion and structure recovery. Simulation
results in Section VI will demonstrate the bene�ts of the
proposed approach.

II. Multiple views of a point on a line

An image x(t) = [x(t); y(t); 1]T 2 R
3 of a point p 2 E

3 ,
with coordinates X = [X;Y; Z; 1]T 2 R

4 relative to a �xed
world coordinate frame, taken by a moving camera satis�es
the following relationship:

�(t)x(t) = A(t)Pg(t)X (1)

where �(t) 2 R+ is the (unknown) depth of the point p
relative to the camera frame, A(t) 2 SL(3) is the camera
calibration matrix (at time t), P = [I; 0] 2 R

3�4 is the con-
stant projection matrix and g(t) 2 SE(3) is the coordinate
transformation from the world frame to the camera frame
at time t. In the above equation, all x;X and g are in ho-
mogeneous representation. Now suppose that p is lying on
a straight line L � E

3 , de�ned by L = fY j Y = X+ �vg,

where v = [v1; v2; v3; 0]
T
2 R

4 is a non-zero vector indi-
cating the direction of the line, and � 2 R. An image
l(t) = [a(t); b(t); c(t)]T 2 R

3 of L taken by the moving
camera then satis�es the following equation:

l(t)Ty(t) = l(t)TA(t)Pg(t)Y = 0 (2)

for the image y(t) of any point on the line L.1 In a realistic
situation, we usually only obtain \sampled" images of x(t)
or l(t) at some time instances: t1; t2; : : : ; tm. For simplicity
we denote

�i = �(ti); xi = x(ti); li = l(ti); �i = A(ti)Pg(ti): (3)

We then have the following system of equations:

�ixi = �iX (4)

lTi xi = lTi �iY = lTi �iv = 0 (5)

for i = 1; : : : ;m:We �rst observe that the unknowns, �, X,
Y and v, which encode the information about location of
the point p or the line L in R3 are not intrinsically available
from the images. Hence it is natural to eliminate them from
these equations �rst. The remaining relationships would
be between x; l and � only, i.e. between the images and
the camera con�guration. Of course there are many di�er-
ent, but algebraically equivalent, ways that one can elimi-
nate these unknowns. This has in fact resulted in di�erent
kinds (or forms) of multilinear (or multifocal) constraints
that exist in the computer vision literature. We here in-
troduce a more systematic way of eliminating all the above
unknowns that results in a complete set of conditions and
a clear characterization of all constraints. Consequently,
as we will soon see, all previously known and even some
unknown relationships can be trivially deduced from our
results.

1So de�ned l is in fact the vector orthogonal to the plane spanned
by the images of points on the line. Strictly speaking, l should be
called the \coimage" of the line.

III. Multiple view rank conditions

Without loss of generality, we may assume that the �rst
camera frame is chosen to be the reference frame.2 That
gives the projection matrices �i; i = 1; : : : ;m the general
form:

�1 = [I; 0]; : : : ; �m = [Rm; Tm] 2 R
3�4 ; (6)

where Ri 2 R
3�3 ; i = 2; : : : ;m is the �rst three columns

of �i and Ti 2 R
3 ; i = 2; : : : ;m is the fourth column of

�i. Although we have used the suggestive notation (Ri; Ti)
here, they are not necessarily the actual rotation and trans-
lation. Ri could be an arbitrary 3 � 3 matrix. Only in
the case when the camera is perfectly calibrated does Ri

correspond to the actual camera rotation and Ti to the
translation.
For the m images x1; : : : ;xm of a point p on a line L

with its m images l1; : : : ; lm, we de�ne the following set of
matrices formally:3

Di
:
= [xi]� 2 R

3�3 or lTi 2 R
3 ;

D?i
:
= xi 2 R

3 or [li]
T
�
2 R

3�3 ;

where the transpose on [li]
T
�
is purely stylistic. Then, de-

pending on whether the available (or chosen) measurement
from the ith image is the point feature xi or the line fea-
ture li, the Di matrix chooses a corresponding value. That
choice is completely independent of the otherDj 's for j 6= i.
The \dual" matrix D?i can be viewed as the orthogonal
supplement to Di since for all u 2 R

3 , the row vectors of
[u]� are orthogonal to u.4 Using the above de�nition of Di

and D?i , we now also formally de�ne a universal multiple
view matrix:

M
:
=

2
6664
D2R2D

?
1 D2T2

D3R3D
?
1 D3T3

...
...

DmRmD
?
1 DmTm

3
7775 : (7)

Depending on the particular choice for each Di or D
?
1 , the

dimension of the matrix M may vary. But no matter what
the choice for each individualDi orD

?
1 is,M will always be

a valid matrix of certain dimension. Then after elimination
of the unknowns �, X, Y and v in the system of equations
in (4) and (5), we obtain:
Theorem 1 (Multiple view rank conditions) Consider a

point p lying on a line L and their images x1; : : : ;xm 2 R
3

and l1; : : : ; lm 2 R
3 relative to m camera frames whose

relative con�guration is given by (Ri; Ti) for i = 2; : : : ;m.
Then for any choice of Di and D?1 in the de�nition of the

2Depending on the context, the reference frame could be either a
Euclidean, aÆne or projective reference frame. Without loss of gen-
erality the projection matrix for the �rst image becomes the standard
projection matrix [I; 0] 2 R

3�4.
3For a three dimensional vector u 2 R

3, we use [u]� 2 R
3�3 to

denote the skew symmetric matrix associated to u such that for any
vector v 2 R

3, we have: [u]�v = u � v. Notice that [u]� is skew-
symmetric, i.e. [u]T

�
= �[u]�.

4In fact, there are many equivalent matrix representations for Di

andD?i . We choose [xi]� and [li]
T
�
here because they are the simplest

forms representing the orthogonal subspaces of xi and li and also
linear in xi and li respectively.
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multiple view matrixM , the rank of the resultingM belongs
to and only belongs to the following two cases:
1. If D?1 = [l1]

T
�

and Di = [xi]� for some i � 2, then

1 � rank(M) � 2: (8)

2. Otherwise,

0 � rank(M) � 1: (9)

A complete proof of this theorem can be found in [11].
Essentially, the above theorem gives a universal description
of the incidence condition between a point and line in terms
of their m images seen from m vantage points.
As a result of Theorem 1, any previously known or un-

known constraints among multiple images of point or line
features are simply certain instantiations of the Theorem
1. It is worth noting that the rank condition is far more
general and universal than these special constraints, since
restricting the constraints to triple-wise views may intro-
duce certain arti�cial degeneracies.5 Theorem 1 also im-
plies that there would be no further relationship among
quadruple-wise views, even in the mixed feature scenario.6

Therefore, quadrilinear constraints and quadrilinear ten-
sors do not really exist. To make a connection with exist-
ing work, we demonstrate by the following examples how
to obtain di�erent types of constraints by instantiatingM .
Example 1 (Epipolar constraints) Let us choose D?1 =

x1 and D2 = [x2]�, then M = [[x2]�R2x1 [x2]�T2] 2
R
3�2 . rank(M) = 1 is exactly equivalent to the epipolar

constraint xT2 [T2]�R2x1 = 0 between two views.
Example 2 (Trilinear constraints) Let us choose D?1 =

x1; D2 = [x2]�; D3 = [x3]�. Then we get a multiple view
matrix:

M =

�
[x2]�R2x1 [x2]�T2
[x3]�R3x1 [x3]�T3

�
2 R

6�2 : (10)

Then rank condition rank(M) � 1 gives:

[[x2]�R2x1][[x3]�T3]
T � [[x3]�R3x1][[x2]�T2]

T = 0 2 R
3�3 :

This is the well known trilinear constraint among point
features. Similarly, if we choose D?1 and Di to be line
features only, we get an M matrix of size 2 � 4, its rank
condition is exactly the trilinear constraint for lines.
Example 3 (Point-line-line constraints) Let us choose

D?1 = x1; D2 = lT2 ; D3 = lT3 . Then we get a multiple
view matrix:

M =

�
lT2 R2x1 lT2 T2
lT3 R3x1 lT3 T3

�
2 R

2�2 : (11)

Then rank(M) � 1 condition :

[lT2 R2x1][l
T
3 T3]� [lT3 R3x1][l

T
2 T2] = 0 2 R:

5For example, some three views may form a degenerate con�gura-
tion but no longer so after putting them together with many other
views.
6In fact, this is quite expected: While the rank condition geomet-

rically corresponds to the incidence condition that lines intersect at
a point and that planes intersect at a line, incidence condition that
three-dimensional subspaces intersect at a plane is a void condition
in E3 .

gives the trilinear constraint in a mixed feature case.
Example 4 (Line-point-point constraints) Let us choose

D?1 = [l1]
T
�
; D2 = [x2]�; D3 = [x3]�. Then we get a multi-

ple view matrix:

M =

�
[x2]�R2[l1]

T
�

[x2]�T2
[x3]�R3[l1]

T
� [x3]�T3

�
2 R

6�4 : (12)

Then rank(M) � 2 implies that all 3�3 sub-matrices ofM
have determinant zero. They are the line-point-point type
of constraints on three images.
Similarly, other choices of Di and D?1 will give rise to all
possible types of constraints among any number of views
with point and line features arbitrarily mixed. In fact,
other incidence conditions such as all features belonging to
a plane in R

3 can also be expressed in terms of the same
rank condition:
Corollary 1 (Planar features and homography) Suppose

that all features are in a plane and coordinates X of any
point on it satisfy the equation �TX = 0 for some vector
� 2 R

4 . Denote � = [�1; �2] with �1 2 R
3 ; �2 2 R. Then

simply append the matrix

�
�1D?1 �2

�
(13)

to the matrix M in its formal de�nition (7). The rank con-
dition on the new M remains exactly the same as Theorem
1.
The rank condition on the new M matrix then implies all
constraints among multiple images of these planar features,
including a special constraint previously studied as homog-
raphy [3] (see [11] for details).
Remark 1 (Features at in�nity) In Theorem 1, if the

point p and line L are in the plane at in�nity P
3 n E3 ,

the rank condition on the multiple view matrix M is just
the same. Hence the rank condition extends to multiple
view geometry of the entire projective space P

3, and it
does not discriminate against Euclidean, aÆne or projec-
tive assumption on the underlying space.
Remark 2 (Occlusion) If any feature is occluded in a

particular image, the corresponding row (or a group of
rows) is simply omitted from M ; or if only the point is
occluded but not the entire line(s) on which the point lies,
then simply replace the missing image of the point by the
corresponding image(s) of the line(s). In either case, the
overall rank condition on M remains una�ected. In fact,
the rank condition on M gives a very e�ective criterion to
tell whether or not a set of (mixed) features indeed corre-
spond to one or another. If the features are miss-matched,
either due to occlusion or errors during establishing corre-
spondence, the rank condition will be violated.

IV. Geometric interpretation

For the �rst time, the multiple view matrix provides a
tool which allows us to carry out global geometrical analysis
for multiple images simultaneously, without breaking them
into pairwise or triple-wise ones. Since there are practi-
cally in�nitely many possible instantiations of the multiple
view matrix for arbitrarily many views, it is impossible to
provide a geometric description to each of them. Instead,
we are going to discuss one class of them which will give
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the reader a clear idea how the rank condition works geo-
metrically. Understanding these cases would be suÆcient
for the reader to carry out a similar analysis to any other
case.
Let us consider multiple view matrices arising from the

case 2 in Theorem 1. In this case, we have 0 � rank(M) �
1. So there are only two interesting sub-cases depending
on the value of the rank of M :

1: rank(M) = 1; and 2: rank(M) = 0: (14)

The case of rank(M) = 1 corresponds to the generic sit-
uations, when regardless of the particular choice of features
inM , all these features satisfy the incidence condition. For
example all the point features (if projections in more then
2 views are present in M) are form a unique 3-D point p,
lines features (if in more than 3 views present in M) are
from a unique 3-D line L. If both point and line features
are present, the point p then must lie on the line L in 3-D.
This is illustrated in Figure 1. But what happens in the

L

p

P1

P2

P3

l1

l1

l2

l2
l3

l3

x1
x2

x3

o1

o2

o3

Fig. 1. Generic con�guration for the case rank(M) = 1. Planes
extended from the images l1; l2; l3 intersect at one line L in 3-D.
Lines extended from the images x1;x2;x3 intersect at one point p. p
must lie on L.

mixed case, where there is not enough point or line features
present in M , but we have some mixture of them? Con-
sider for example matrix M with only one point feature
x1 present and the remaining are the line features. Still
rank(M) = 1 means that a line L is uniquely determined
by l2; : : : ; lm and the point p is consequently determined
by the L and its �rst image x1. On the other hand, if
there is only one line features present in some M but more
than two point features in M , L can then be a family of
lines (on a plane in fact) passing through the point p. In
any case, if a point or line is under-determined in the case
rank(M) = 1, it is only because there is not enough data
in the give images, not because the con�guration is degen-
erate.
The case when the rank(M) = 0 means all the entries

of M are zeros. It is easy to verify that this corresponds
to a set of degenerate cases when the 3-D location of the
point or the line cannot be uniquely determined from their
multiple images (no matter how many), or the incidence
condition between the point p and the line L no longer
holds. In these cases, the best we can do is: 1. When

there are more than two point features present in M , the
3-D location of the point p can be determined up to a line
which connects all camera centers (related to these point
features); 2. When there are more than three line features
are present in M , the 3-D location of the line L can be
determined up to the plane on which all related camera
centers must lie; 3. When both point and line features are
present in M , we can usually determine the point p up to
a line (connecting all camera centers related to the point
features) which is lying on the same plane on which the
rest of the camera centers (related to the line features) and
the line L must lie. Let us demonstrate this on a concrete
example. Suppose the number of views is m = 6 and we
choose the matrix M to be:

M =

2
66664

lT2 R2x1 lT2 T2
lT3 R3x1 lT3 T3
lT4 R4x1 lT4 T4

[x5]�R5x1 [x5]�T5
[x6]�R6x1 [x6]�T6

3
77775 2 R

9�2 : (15)

Geometric con�guration of the point and line features cor-
responding to the condition rank(M) = 0 is illustrated in
Figure 2.

P

L

p

l2

l3

l4

x1
x5

x6

o1

o2

o3

o4

o5
o6

Fig. 2. A degenerate geometric con�guration for the case rank(M) =
0: a point-line-line-line-point-point scenario. From the given rank
condition, the line L could be any where on the plane spanned by
all the camera centers; the point p could be any where on the line
through o1; o5; o6.

Similar geometric analysis can be performed in the case
1 of Theorem 1. One should notice that there are only two
sub-cases there since the rank of M can only be either 2
or 1. Similarly, the upper bound 2 corresponds to generic
con�gurations but the lower bound 1 corresponds to all
degenerate ones. For details, the reader can refer to [11].
As a summary of the above discussion, we see that the

rank condition without doubt extends previous methods
which use multifocal tensors but can only analyze up to
three views at a time.7 Since there is yet no systematic
way to extend triple-wise analysis to multiple views, the
multiple view matrix seems to be a more natural tool for
multiple-view analysis. Notice that, from examples in the
preceding section, the rank condition simply implies all pre-
viously known multilinear constraints, but not vice versa.
Hence the use of algebraic equations may introduce cer-
tain arti�cial degeneracy that makes a global analysis much
more complicated and sometimes even intractable. On the
other hand, the rank condition has no such problem: All
the degenerate cases simply correspond to a further drop
of rank for the multiple view matrix.

7Analysis using quadrifocal tensors would simply be void.
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V. Motion and structure recovery

The uni�ed formulation of contraints in terms of the rank
condition allows us to solve the problem of motion and
structure recovery from multiple views using both point
and line features. There are certain advantages for us-
ing point and line features together. Incidence constraints
among points and lines can now be explicitly taken into
account when a global estimation of motion and structure
takes place. To demonstrate how this works better than
existing methods, let us consider an image of a cube as
shown in Figure 3. For the jth corner pj , it is the inter-

pL1

L2

L3

o1 o2

o3

Fig. 3. A standard cube. The three edges L1; L2; L3 intersect at the
corner p. The three coordinates indicate that three images are taken
at these vantage points.

section of the three edges L1j , L2j and L3j , j = 1; : : : ; 8.
From three images of the cube, we have the multiple view
matrix M j associated to pj :

Mj =

2
666666666664

[xj
2
]�R2x

j
1

[xj
2
]�T2

l1jT
2

R2x
j
1

l1jT
2

T2

l2jT
2

R2x
j
1

l2jT
2

T2

l3jT
2

R2x
j
1

l3jT
2

T2

[xj
3
]�R3x

j
1

[xj
3
]�T3

l1jT
3

R3x
j
1

l1jT
3

T3

l2jT
3

R3x
j
1

l2jT
3

T3

l3jT
3

R3x
j
1

l3jT
3

T3

3
777777777775

2 R
12�2 (16)

where xji 2 R
3 means the image of the jth corner in the

ith view and l
kj
i 2 R

3 means the image of the kth edge
associated to the jth corner in the ith view. Theorem 1 says
(M) = 1. One can verify that �j = [�j1; 1]

T 2 R
2 is in the

kernel of M j . In addition to the multiple images xj1;x
j
2;x

j
3

of the jth corner pj itself, the extra rows associated to the
line features lkji ; i; k = 1; 2; 3 also help to determine the

depth scale �j1.
We can already see one advantage of the rank condi-

tion: It can simultaneously handle multiple incidence con-
ditions associated to the same feature.8 In principle, using
Corollary 1, one can further take into account that the
four vertices and edges on each face are coplanar. Since
such incidence conditions among points and lines occur fre-
quently in practice, especially for man-made objects such
as buildings and houses, the use of multiple view matrix for
mixed features is going to improve the quality of overall re-
construction by explicitly taking into account all incidence
relationships among features of various types.
In order to estimate �j we need to know the matrix M j ,

i.e. we need to know the motion (R2; T2) and (R3; T3).

From the geometric meaning of �j = [�j1; 1]
T , �j can be

solved already if we know only the motion (R2; T2) between

8In fact, any algorithm extracting point feature essentially relies on
exploiting local incidence condition on multiple edge features. The
structure of theM matrix simply reveals a similar fact within a larger
scale.

the �rst two views, which can be estimated using the stan-
dard 8 point algorithm. Knowing �j 's, the equations

M j�j = 0; j = 1; : : : ; 8 (17)

become linear in (R2; T2) and (R3; T3). We can use them

to solve for the motions (again). De�ne the vectors ~Ri =

[r11; r12; r13; r21; r22; r23; r31; r32; r33]
T 2 R

9 and ~Ti = Ti 2
R
3 , i = 2; 3. It is then equivalent to solve the following

equations for i = 2; 3:

Pi

�
~Ri

~Ti

�
=

2
66666666666666664

�1
1
[x1i ]� � x

1

1

T
[x1i ]�

�1
1
l11Ti � x1

1

T
l11Ti

�1
1
l21Ti � x1

1

T
l21Ti

�1
1
l31Ti � x1

1

T
l31Ti

...
...

�8
1
[x8i ]� � x

8

1

T
[x8i ]�

�8
1
l18T
i

� x8
1

T
l18T
i

�8
1
l28Ti � x8

1

T
l28Ti

�8
1
l38Ti � x8

1

T
l38Ti

3
77777777777777775

�
~Ri

~Ti

�
= 0 2 R

48; (18)

where A � B is the Kronecker product of A and B. In
general, if we have more than 6 feature points (here we
have 8) or equivalently 12 feature lines, the rank of the

matrix Pi is 11 and there is a unique solution to (~Ri; ~Ti).
Let ~Ti 2 R

3 and ~Ri 2 R
3�3 be the (unique) solution of

(18) in matrix form. Such a solution can be obtained nu-
merically as the eigenvector of Pi associated to the smallest
singular value. Let ~Ri = UiSiV

T
i be the SVD of ~Ri. Then

the solution of (18) in R
3 � SO(3) is given by:

Ti =
sign(det(UiV

T
i ))

3

p
det(Si)

~Ti 2 R
3 ; (19)

Ri = sign(det(UiV
T
i )) UiV

T
i 2 SO(3): (20)

We then have the following linear algorithm for motion and
structure estimation from three views of a cube:
Algorithm 1 (Motion and structure from mixed features)

Given m(= 3) images x
j
1, : : : , x

j
m of n(= 8) points pj ,

j = 1; : : : ; n (as the corners of a cube), and the images

l
kj
i ; k = 1; 2; 3 of the three edges intersecting at pj , esti-
mate the motions (Ri; Ti), i = 2; : : : ;m as follows:
1. Initialization: s = 0
(a) Compute (R2; T2) using the 8 point algorithm for the
�rst two views [10].

(b) Compute �js = [�j1=�
1
1; 1]

T where �j1 is the depth of
the jth point relative to the �rst camera frame.
2. Compute ( ~Ri; ~Ti) as the eigenvector associated to the
smallest singular value of Pi, i = 2; : : : ;m.
3. Compute (Ri; Ti) from (19) and (20) for i = 2; : : : ;m.

4. Compute the new �js+1 = �j from (17). Normalize so
that �11;s+1 = 1.
5. If jj�s � �s+1jj > �, for a pre-speci�ed � > 0, then s =
s+ 1 and goto 2. Else stop.
The camera motion is then the converged (Ri; Ti); i =
2; : : : ;m and the structure of the points (with respect
to the �rst camera frame) is the converged depth scalar

�j1; j = 1; : : : ; n.
We have a few comments on the proposed algorithm:

1. The reason to set �11;s+1 = 1 is to �x the universal scale.
It is equivalent to putting the �rst point at a relative dis-
tance of 1 to the �rst camera center.
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θT/R ratio = ||T||/r

Camera Center

Variation
Depth

XY

r

Field of View

Z

Features

Fig. 4. Simulation setup

2. Although the algorithm is based on the cube, considers
only three views, and utilizes only one type of multiple view
matrix, it can be easily generalized to any other objects
and arbitrarily many views whenever incidence conditions
among a set of point features and line features are present.
One may also use the rank conditions on di�erent types of
multiple view matrix provided by Theorem 1. The reader
may refer to [11] for the case when D?1 is chosen to be [l1]

T
�
.

3. The above algorithm is a straightforward modi�cation
of the algorithm proposed for the pure point case [11]. All
the measurements of line features directly contribute to
the estimation of the camera motion and the structure of
the points. Throughout the algorithm, there is no need to
initialize or estimate the 3-D structure of lines.

VI. Simulations and experiments

We carried out extensive simulations to determine the
performance of the proposed algorithms as the noise in the
measurements and the number of features and views vary.
The simulation parameters are as follows: the camera's
�eld of view is 90o, image size is 500 � 500, everything is
measured in units of focal length of the camera, and fea-
tures typically are suited with a depth variation is from 100
to 400 units of focal length away from the camera center,
i.e. they locate in the truncated pyramid speci�ed by the
given �eld of view and depth variation (see Figure 4).
Camera motions are speci�ed by their translation and

rotation axes. For example, between a pair of frames, the
symbol XY means that the translation is along the X-axis
and rotation is along the Y -axis. If n such symbols are
connected by hyphens, it speci�es a sequence of consecu-
tive motions. We always choose the amount of total motion
such that all feature points will stay in the �eld of view for
all frames. In all simulations, independent Gaussian noise
with a standard deviation (std) given in pixels is added
to each image point, and each image line is perturbed in
a random direction of a random angle with a correspond-
ing std given in degrees. 9 Error measure for rotation is

arccos
�
tr(R ~RT )�1

2

�
in degrees where ~R is an estimate of the

true R. Error measure for translation is the angle between
T and ~T in degrees where ~T is an estimate of the true T .
Error measure for the scene structure is the percentage of
k�� ~�k=k�k where ~� is an estimate of the true �.

A. Simulations on a structured scene

In this simulation, we apply the algorithm to a scene
which consists of (four) cubes only. Cubes are good objects

9Since line features can be measured more reliably than point fea-
tures, lower noise level is added to them in simulations.

to test the algorithm since the relationships between their
corners and edges are easily de�ned and they represent a
fundamental structure of many objects in real-life. The
length of the four cube edges are 30, 40, 60 and 80 units of
focal length, respectively. The cubes are arranged such that
the depth of their corners ranges from 75 to 350 units of
focal length. The three motions (relative to the �rst view)
are an XX-motion with -10 degrees rotation and 20 units
translation, a Y Y -motion with 10 degrees rotation and 20
units translation and another Y Y -motion with -10 degrees
rotation and 20 units translation, as shown in Figure 5.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

View 1 View 2 

View 3 View 4 

Fig. 5. Four views of four 3-D cubes in (normalized) image coor-
dinates. The circle and the dotted lines are the original images, the
dots and the solid lines are the noisy observations under 5 pixels noise
on point features and 0.5 degrees noise on line features.

We run the algorithm for 1000 trials with the noise level
on the point features from 0 pixel to 5 pixels and a corre-
sponding noise level on the line features from 0 to 1 degree.
Relative to the given amount of translation, 5 pixels noise
is rather high because we do want to compare how all the
algorithms perform over a large range of noise levels. The
results of the motion estimate errors are given in Figure 6.
The \Point feature only" algorithm is the one for pure point
features proposed in [11] which essentially use the multiple
view matrix M in (17) without all the rows associated to
the line features; and the \Mixed features" algorithm uses
essentially the same M as in (17). Both algorithms are
initialized by the standard 8 point algorithm. The \Mixed
features" algorithm gives a signi�cant improvement in all
the estimates as a result of the use of both point and line
features in the recovery. Also notice that, at a high noise
levels, even though the 8 point algorithm gives rather o�
initialization values, the two iterative algorithms manage
to converge back to reasonable estimates. The structure
estimate errors show a similar pattern as the errors for mo-
tion estimates.

B. Simulations on a random scene

Here we run the algorithm for 500 trials on a randomly
chosen scene for each trial. The scene comprises of 24 ran-
domly generated points in the truncated pyramid as shown
in Figure 4. They are then connected by 40 randomly cho-
sen lines. The two consecutiveXX-motion and Y Y -motion
with an incremental 10 degrees rotation and the translation
is given by the so-called T=R ratio, which is the ratio be-
tween the magnitude of translation kTk and rotation angle



ASIAN CONFERENCE ON COMPUTER VISION, JAN.23-25, 2002 7

0 1 2 3 4 5
0

1

2

3

4

5

6

7

Point feature noises (pixels)

R
ot

at
io

n 
E

rr
or

 in
 d

eg
re

es

Motion 1−2

8−point algorithm 
Point feature only
Mixed features    

0 1 2 3 4 5
0

1

2

3

4

5

6

7

Motion 1−4

R
ot

at
io

n 
E

rr
or

 in
 d

eg
re

es

Point feature noises (pixels)

0 1 2 3 4 5
0

10

20

30

40

50

60

70

Point feature noises (pixels)

T
ra

ns
la

tio
n 

E
rr

or
 in

 d
eg

re
es

0 1 2 3 4 5
0

20

40

60

80

Point feature noises (pixels)

T
ra

ns
la

tio
n 

E
rr

or
 in

 d
eg

re
es

Motion 1−2 Motion 1−4

Fig. 6. Motion estimates error versus level of noises. \Motion x-y"
means the estimate for the motion between image frames x and y.
Since the results are very much similar, we only plotted \Motion 1-2"
and \Motion 1-4".

� compared at the center of truncated pyramid (see Figure
4). In following simulations, the ratio is 2. Comparing to
the motion with previous simulations on the cubes, here
the amount of translation is much bigger. This results in
improved estimates for translation as shown by Figure 7.
And the structure estimates are similarly improved (data
not shown) as expected. See [11] for details.
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Fig. 7. Motion estimates error versus level of noises for random
scenes. \motion x-y" means the estimate for the motion between
image frames x and y.

VII. Discussions and conclusions

This paper has proposed a uni�ed paradigm which syn-
thesizes results and experiences in the study of multiple
views of point and line features. It is shown that all rela-
tionships among multiple images of a point on a line are
captured through a single rank condition on a so-called
multiple view matrix. All previously known constraints
on multiple images simply become its instantiations. To
a large extent, this condition simpli�es and uni�es mul-
tiple view geometry. In addition, we can now carry out
meaningful geometric analysis for arbitrarily many images
altogether without going through a pairwise, triple-wise or
quadruple-wise analysis. Compared to conventional mul-
tiple view analysis based on trifocal tensors, the multiple

view matrix based approach clearly separates meaningful
geometric degeneracies from degeneracies which may be ar-
ti�cially introduced by the use of algebraic equations or
tensors. In particular, as shown in this paper, any con�gu-
ration which causes a further drop of rank in the multiple
view matrix exactly corresponds to certain global geomet-
ric degeneracy. Combined with previous results on point,
line and planar features [11], results in this paper give rise
to a coherent but simple geometric theory that is genuine
for multiple images.
The proposed approach aims to provide a new perspec-

tive to multiple view geometry. It will certainly have im-
pact on both theoretical analysis and algorithm develop-
ment. The linear algorithms given in this paper and others
[11] only show a straight-forward (hence naive) way of us-
ing the rank condition. There are many other ways to
improve them: 1. One can use better error measures in
the 2-D image to recover the motion and structure opti-
mally subject to the rank condition; 2. Slight change of
the algorithm may handle occlusions; 3. Better numerical
methods should be investigated on how to impose the rank
condition; and so on. While we are still in the process of
investigating the full potential of this new approach, there
are plenty of reasons for us to believe that we are still at a
very early stage of understanding the full extent of multiple
view geometry: either its theory or its practice.
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