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Abstract. Common problem encountered in the analysis of dynamic
scene is the problem of simultaneous estimation of the number of models
and their parameters. This problem becomes difficult as the measure-
ment noise in the data increases and the data are further corrupted
by outliers. This is especially the case in a variety of motion estima-
tion problems, where the displacement between the views is large and
the process of establishing correspondences is difficult. In this paper we
propose a novel nonparametric sampling based method for estimation
the number of models and their parameters. The main novelty of the
proposed method lies in the analysis of the distribution of residuals of
individual data points with respect to the set of hypotheses, generated
by a RANSAC-like sampling process. We will show that the modes of
the residual distributions directly reveal the presence of multiple models
and facilitate the recovery of the individual models, without making any
assumptions about the distribution of the outliers or the noise process.
The proposed approach is capable of handling data with large fraction
of outliers. Experiments with both synthetic data and image pairs re-
lated by different motion models are are presented to demonstrate the
effectiveness of the proposed approach.
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1 Introduction and Related Work

In many computer vision estimation problems the measurements are frequently
contaminated with outliers. Thus a robust estimation procedure is necessary
to estimate the true model parameters. In practice, data can contain multiple
structures (models), which makes the estimation even more difficult because for
each structure, data which belong to other structures are also outliers (pseudo
outliers) to it in addition to the true outliers (gross outliers).

The problem of robust estimation received lot of attention in computer vi-
sion literature. Most works on robust estimation focus on the estimation of a
single model and typically differ in their assumptions, efficiency and capability
of handling different fractions of outliers. With the exceptions of few, the prob-
lem of robust estimation of multiple models received notably smaller attention
and several previously proposed methods were either natural extensions of the
’single model’ techniques (estimate individual model iteratively) or focused more
on the model selection issues.

In computer vision community the two most commonly used techniques for
dealing with noisy data and outliers are Hough transform and RANdom SAm-
ple Consensus (RANSAC) [1] algorithm. In Hough transform multiple models
are revealed as multiple peaks in the parameter space. The localization of these
peaks in multi-dimensional space becomes more difficult as the noise and the
number of outliers grows. The RANSAC algorithm, initially introduced for ro-
bust estimation problems with a single model, has been extended to multiple
model scenario. The existing RANSAC approaches differ in the choice of the
objective function used to evaluate each individual hypothesis. The two most
commonly used criteria, which the objective function typically captures are: 1)
the residuals of the inliers should be as small as possible and 2) the number
of inliers should be as many as possible. In the standard RANSAC, the second
criterion is applied and hypotheses are ranked by the number of data points
within some error bound, i.e., inliers. The hypothesis with most inliers is then
chosen as the model and the model parameters are re-estimated with its inliers .
The need for predefined inlier threshold is disadvantageous. Recently in [2] tra-
ditional RANSAC has been augmented by automatic scale (threshold) selection
used to disambiguate the inliers and outliers and the authors have shown that
a significant percentage of outliers can be tolerated. In [3], the author pointed
out that using RANSAC for simultaneously estimation of multiple motions re-
quires dramatically more samples than that of single motion case. As a result,
motions are usually estimated sequentially to save the computation. However,
evaluation of the motions individually violates the assumption that the outliers
to the first motion form a uniform distribution. In the presence of multiple mod-
els, the remaining models serve as pseudo outliers, which are clustered rather
than uniformly distributed. In [4] authors pointed out that clustered outliers are
more difficult to handle than scattered outliers. In the context of structure and
motion estimation, in [5] the author proposed a strategy to deal with multiple
models. The method for determining the number of models was an iterative one
and all the models were considered independently. Recently a novel algebraic
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technique was proposed in [6], which enables simultaneous recovery of number
of models, their dimensions and parameters, assuming that the models can be
characterized as linear subspaces of possibly different dimensions. The applica-
bility of the approach has not been explored in the presence of larger number of
outliers.

Outline. In this paper we present a novel robust nonparametric sampling based
method for simultaneous estimation of number of models and model parameters.
This goal is achieved by studying the distribution of residuals for each data point.
The residuals are computed with respect to a number of hypotheses generated in
the sampling stage. We demonstrate that the number of modes in the distribution
reflects the number of models generating the data and show how to effectively
estimate these modes. The presented approach is demonstrated and justified on
synthetic data. Several experiments with estimating multiple motion models on
real data are presented to validate the approach.

2 The proposed approach

The approach described here shares some features of the method proposed in [7],
but differs in significant ways, which enable significant extensions to estimation
of multiple models. In [7] the authors propose a novel MDPE estimator (Maxi-
mal Density Power Estimator), which selects a hypothesis, whose corresponding
density of residuals is maximal, with the mean close to zero. This entails the use
of nonparametric techniques for studying the distribution of residuals of all data
points with respect to individual hypotheses. The number of models can not
be determined in one complete run of RANSAC, since only the best hypothesis
is selected by RANSAC. Schindler and Sutter [8] recently proposed a scheme
that can estimate multiple models simultaneously. The work focuses more on
the model selection issues and criteria, which best explain the data. The asso-
ciated optimization problem which they formulate is an NP-hard combinatorial
problem. Taboo-search is used to find an approximate solution.

Instead of considers the residuals of all the data points per hypothesis, we
propose to analyze the distribution with respect to all the hypotheses for each
data point. Subsequent analysis of this distribution enables us to estimate the
number of models as well as the parameters of the correct hypothesis consistent
with the data points. First, for the simplicity and clarity of the notation, we
will demonstrate the technique on a simple line fitting problem. Later on we will
present the applicability of the method to the problem of estimation of multiple
motions and multiple 3D planar structures from correspondences between two
views.

Let N be the number of data points xi ∈ <n corrupted by noise. The available
measurements then are

xi = x̃i + δx i = 1, . . . N.
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Suppose that these data points are generated by multiple linear (or possibly
non-linear) models, with parameters v, such that each xi belongs to at least one
model. In linear case this constraint can be expressed algebraically as

(vT
1 xi) . . . (vT

j xi) = 0 j = 1, . . . D

where D is the number of models. Our goal is to estimate the number of models
D as well as their parameters in case the the data points are noise and further
corrupted by significant portion of outliers.

In the manner similar to the RANSAC algorithm, in the first stage the initial
set of hypotheses (values of parameters vj) is generated by selecting minimal
subsets of data points from the original data set needed to estimate the model
parameters. Let M be the number of hypotheses obtained in the sampling stage
hj ; j = 1 . . . M . Instead of studying the distribution of N residuals per hypothesis
as in [7] when trying to determine the threshold for inlier classification, we
propose to study the distribution of M residuals for each data point xi. We will
show that this distribution reveals the presence of multiple models and further
demonstrate how to estimate their number and their parameters.

The rationale behind this choice is the following: when many samples are
drawn from data containing multiple models, for each model, there will be a sub-
set of samples which consist of only points belonging to it (inliers). For instance
suppose that we are given data generated by three models, with the percentage
of inliers for each model is 33%. If one (minimal) sample needed to estimate a
hypothesis comprised of 4 points, then the probability that the sample is outlier
free for one model is 0.334 = 0.012. Given 3000 samples, the expected number1

of outlier free samples is 0.012 × 3000 = 36. Since the points used to calculate
the hypotheses come from the same model, hypotheses parameters vj estimated
based on them will be close and will form a cluster in the hypothesis space. The
clusters of hypotheses will have similar behavior with respect to a particular
data point xi, in the sense that the residuals of xi with respect to the cluster
of hj ’s will be similar. The samples which contain outliers would also generate
hypotheses, whose residuals will be randomly distributed in the residual space.
As a result, the distribution of residuals for each data point will have peaks
(modes) corresponding to the clusters of hypotheses. For instance, Figure 1(c)
shows that a residual distribution for a bi-modal data has two strong peaks. The
similar idea of search for clusters of hypotheses is also the basis of Randomized
Hough Transform [9]. In that case however the search for clusters proceeds in
often multidimensional parameter space as opposed to residual space and hence
is known to suffer from typical shortcomings of Hough Transform methods (e.g.
localization accuracy, resolution and efficiency).

The observations outlined above give rise to the following four-step sampling
based method for estimation of multiple models in the presence of large number
of outliers. In the following section we will demonstrate the individual steps of
the proposed method on two simple examples. The first set of data points is
1 The number of outlier free samples obeys a binomial distribution, the probability of

success is the probability that a sample is outlier free.
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Algorithm 1 Multiple Model Estimation
1. In the first stage M hypotheses are generated. The parameters of the hypotheses

models are estimated from minimal number of data points randomly drawn from
the data.

2. For each data point xi, compute its residuals rj
i for j = 1 . . . M with respect to all

the hypotheses.
3. The number of models D is estimated by determining the number of modes in

residuals histograms of each data point. Final number is the median of all the
estimates.

4. For each hypothesis, the correct cluster of model hypotheses is then identified.

generated by two parallel lines, each with 50 points corrupted by Gaussian noise
N(0, 0.5), 10 random points are added as outliers. The second set of data points
contains three parallel lines, each with 50 points corrupted by Gaussian noise
N(0, 0.5). Figures 1(a) and 1(b) show the two configurations.
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Fig. 1. (a) and (b): the first and second data. (c) and (d): residual distribution of point
from the first and second data.

2.1 Model hypothesis generation

Same as the standard RANSAC scheme, model hypotheses are computed us-
ing minimal set of data points required to estimate the model2. The number
of samples to be drawn is related to the percentage of outliers and the desired
confidence of outlier free sample. The higher the outlier percentage, the more
samples are needed to ensure that a cluster of hypotheses will be generated. In
RANSAC framework the number of required samples can be estimated theoret-
ically assuming a known percentage of outliers ε and the desired probability ρs

that the samples include at least one outlier free sample, because of the following
relation:

ρs = 1− (1− (1− ε)p)m (1)

2 For instance, the minimal number is 2 for line fitting, and 4 for estimating inter-image
homography.
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where m is the number of samples and p is the number of points per sample
(typically minimal number of points needed to estimate the hypothesis). For
the proposed approach, a set of outlier free samples is needed to form a mode
(cluster) in the residual space. Therefore, we are interested in the probability ρ
that at least K outlier free samples are included among m samples:

ρ = 1−
K−1∑

i=0

pm
i = 1−

K−1∑

i=0

(
m
i

)
(1− ε)ip(1− (1− ε)p)m−i (2)

where the term in the summation pm
i is the probability that exactly i samples are

outlier free in m samples. Equation 1 is a special case of Equation 2 for K = 1.
In the standard RANSAC, Equation 1 is typically used to obtain a closed form
solution for the required number of samples M :

M =
⌈

ln(1− ρ)
ln(1− (1− ε)p)

⌉
(3)

needed for a desired confidence ρ. Using Equation 2 we can obtain the required
number of samples, by computing how ρ changes while varying m for a desired
K. Let’s consider an example of estimating two homographies with the same
number of supporting features with 20% gross outliers (i.e. 40% are valid for
each motion), p = 4 in this case and ε = 0.6 for each individual homography. If
the desired number of outlier free samples K = 50 (an evident peak will build
up for sure), with 2500 hypotheses samples, the probability would be:

ρ = 1−
50∑

i=0

(
2500

i

)
(1− 0.6)4i(1− (1− 0.6)4)2500−i = 0.96

By varying m, the confidence ρ is computed in Table 1. Thus the required number
of samples M can be obtained based on the table.

m 2000 2100 2200 2300 2400 2500 2600 2700
ρ 0.53 0.67 0.78 0.87 0.92 0.96 0.98 0.99

Table 1. The probability ρ for a given number of samples m.

Now given 2700 samples, the probability that both homographies have at
least 50 outlier free samples would be 0.99 × 0.99 = 0.9801. In [3], Tordoff and
Murray have shown that if RANSAC is used to estimate two motions simultane-
ously, the required number of samples to find a good pair of motion hypotheses
increases dramatically over the single motion case. According to [3], to estimate
two homographies in this example, the probability ρm that a desired sample is
obtained in m samples is:

ρm = 1− (1− 0.540.540.88)m
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which can be simplified to be:

ρm = 1− (1− 0.440.44)m

The above expression captures the fact that a desired sample should contains
4 inliers of one homography and 4 inliers of the other homography simultane-
ously. In this case, 6000 samples are needed for 98% probability that a desired
sample is included. On the other hand, the proposed algorithm can achieve the
same probability with much less (2700) samples. The reduction of the number
of samples is even more when the outlier percentage is higher.

2.2 Residuals analysis

With M hypotheses generated, M residuals can be computed for each data
point. For general linear model the residual of a data point xi with respect to
the model vj is (rj

i )
2 = (vjT

i xi)2. For line fitting examples the residuals are
geometric distances between the points and the lines hypotheses. The residual
of ith point with respect to the jth hypothesis is:

rj
i =

|ajxi + bjyi + cj |√
a2

j + b2
j

(4)

where vj = [aj , bj , cj ]T are the hypothesis parameters and xi = [xi, yi]T is the
data point. Then the residual histogram of each data point denoted as fi can
be obtained for any point xi, i = 1, . . . , N . As mentioned before, hypotheses
estimated based on inliers to one model contribute to a peak (mode) in the
histogram. This is demonstrated by the examples in Figure 1(c) and 1(d): two
strong peaks present in the residual histogram of one point in the first data set
which contains two models; For a point in the second data set containing three
models, three strong peaks stand out in its histogram of residuals.

One thing worth mentioning is that the number of residual distributions to
be studied in our approach is N , whereas M residual distributions need to be
studied in RANSAC framework [2]. When percentage of outliers is high (which
is often the case in multi-modal data), M À N to guarantee outlier free sample.
Thus our approach is computationally more efficient in the residual histogram
analysis stage. Furthermore the number of data points is usually limited, which
might causes a poor estimate of the residual distribution per hypotheses as done
in [2]. In our case the large number of hypotheses makes the approximation of
residual distribution for each point feasible and more accurate.

2.3 Estimating the number of models

Since one mode corresponds to one model, the number of models can be esti-
mated by identifying the number of modes in the residual histograms. While this
is straightforward for the data in Figure 1(a) and 1(b), it’s not easy for more
noisy data containing many outliers. Figure 2 shows the residual histogram of a
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data point shown in Figure 6(a), where there are 3 models and 50% gross outliers.
Identifying the modes which correspond to models requires careful treatment.

One possibility would be to employ one of the standard techniques for non-
parametric probability density estimation methods, such as the Mean shift algo-
rithm introduced to vision community in [10]. The basic premise of the method
is the estimation of the mean shift vector, which locally points in the direction
of the maximum increase in the density and has been shown to converge to the
modes. Both [2] and [11] pointed out some difficulties with the method in case of
multi-modal data, as well as sensitivity of the mean shift algorithm with respect
to the choice of bandwidth (size of the window) parameter. A tight bandwidth
makes it very sensitive to local peaks, whereas correct modes would be missed
with large bandwidth. This in particular is the case in our scenario, where the
histograms contain many spurious peaks due to the presence of large percentage
of outliers. Since in our case we are limited to the analysis of 1D distributions
of residuals, we have developed an alternative iterative procedure for detecting
the models and disambiguating the correct modes from spurious ones. The mode
detection method is summarized below:

Algorithm 2 Mode detection
1. In the first stage, the histogram is smoothed with a narrow window and local

maxima (modes) and minima (valleys) are located.
2. Remove he spurious weak modes and valleys, so that only single local minimum

valley is present between two modes and only one local maximum mode is presents
between two valleys.

3. Choose the weakest unlabelled mode and measure its distinctness. If the mode is
distinct, then it is labelled and added to the list of modes; otherwise it is marked as
spurious and removed. If there are no more unlabelled modes, stop the procedure.
Otherwise, go to step 2.

The distinctness measure is defined as τ = f(mode)/f(shallow valley), where
f(i) is the histogram value of the ith bin. Let’s look at the two left local modes of
Figure 3, which is the smoothed result of Figure 2. Note that the true mode is not
distinct enough from its valley, which is a spurious valley. Checking its distinct-
ness directly would result in removing this correct mode. However, our approach
guarantees that the spurious mode will be processed before the true peak. Since
the spurious mode is not sufficiently distinct (τ less than some threshold Tτ )
from its left (shallow) valley, it is removed in Step 3 of the procedure. Then
the correct mode will obtain deeper valley after Step 2, enabling it to pass Tτ .
Note it’s important that shallow valley is used for the comparison. For spurious
modes closed to the correct mode which is strong, usually their deeper valleys
have much smaller value, only their shallow valleys reflect the fact that they are
spurious modes.

From each residual histogram fi, we obtain an estimate di of the number of
peaks and hence the number of models. Note that the residual histograms are
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different for different points and it’s likely that di will be different for different i.
Figure 4 plots the estimated di, i = 1, . . . , 300 for each of the 300 data points in
Figure 6(a). Most of the estimated numbers are equal to 3. The median of those
numbers dm = median(di) provides a reliable estimate of the number of models.

2.4 Finding the correct hypothesis and models parameters

Once the number of models has been obtained, we select a subset S of the data
points, S = {xi|di = dm}, which returned the correct number of models. Among
them we select a point xs whose histogram fs has the strongest peaks

s = arg max
j

dm∏

i=1

fj(peak(i)) (5)

where fj(peak(i)) is the ith peak’s magnitude of the residual histogram of jth

point in S, xs and fs are then used to identify the correct models hypotheses.
For each identified mode, the corresponding hypothesis and consequently the

model is determined as following: we first locate a subset of hypotheses whose
residuals rj

s correspond to the mode. We know that a cluster of hypotheses cor-
responding to a true model will be included in it, but it may happen that some
additional random hypotheses also have the same residuals. Then, the problem
is how to identify the good hypothesis from the chosen hypotheses subset. One
possibility would be to apply a clustering methods in the parameter space in the
spirit of Hough Transform. Doing in this way already results in more efficient
approach than Hough Transformation applied to the original problem, since only
a subset of hypotheses need to be checked. Yet we find a more efficient way, by
searching for the clusters in the 1D residual space and by exploiting the distri-
bution of residuals of another data point. Figure 5(a) illustrates the idea. The
residuals (distances) of xs and a set of line hypotheses are approximately the
same, including correct hypotheses (solid lines colored blue) and spurious hy-
potheses (dotted lines colored red). To disambiguate them, we choose another
random point xi, i 6= s and study its residual distribution. Clearly, residuals of
xi will be different for the chosen hypotheses, but the clustered hypotheses will
still have roughly the same residuals, thus forming a peak in the new residual
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distribution. The hypothesis which corresponds to the center of the peak will be
selected as the model. The results of the synthetic examples are shown in Fig-
ure 5(b) and 5(c), respectively. Note we don’t need to identify inliers throughout
the procedure, thus avoiding the need of inlier threshold.
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Fig. 5. Identifying the model parameters.

3 Experiments

In order to assess the proposed method, we carried out various experiments. Line
fitting was tested first, followed by motion estimation problem from two view
correspondences, both with synthetic and real data.

3.1 Multiple Line Fitting

We carried out experiments on the line fitting problem with a number of data
configurations, by varying number of lines, percentage of outliers and noise level.
Four experiments are shown in Figure 6. The images size is 100×100. The ith line
has ni data points, perturbed by Gaussian noise N(0, σ2). κ points are randomly
generated within the image as outliers. Then we can compute the percentage of
outlier for ith line (including gross and pseudo outliers), denoted as εi.

(a) Three parallel lines, ni = 50, σ = 1, κ = 150; εi = 83.3%.
(b) Outlier form a cluster, ni = 50, σ = 5, κ = 50; εi = 50%.
(c) 6-lines, ni = 25, σ = 1, κ = 50; εi = 87.5%.
(d) 6-lines, ni = 25, σ = 0.3, κ = 50; εi = 87.5%.

Our experiments showed that the method can tolerate rather high level of out-
liers. For instance, εi = 87.5% for one line in Figure 6(c). Also it can tolerate
significant level of noise. The noise standard deviation is rather large, 1% of im-
age size for most tests. Only when data are rather complex (6 lines in the image),
our approach didn’t succeed to fitting all the lines, still 3 of them got detected.
When data points are less noisy, more lines can be detected. As Figure 6(d)
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shows, 5 lines can be detected when σ = 0.3. This is roughly equivalent to 2
pixel gaussian noise in a typical image of size 640. Another interesting observa-
tion is that our approach is fairly robust to cluster of outliers, as Figure 6(b)
shown. As people have already noticed [4], concentrated outliers are more dif-
ficult to handle than scattered outliers. According to the result of [7], existing
robust estimators are likely to fail in this case. Figure 6(b) shows that the correct
line can still be identified. Our approach predicted that there are two models in
data, and detected one spurious line. This is actually not very surprising, since
the cluster of outliers can be considered as a degenerate line.
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Fig. 6. The line fitting experiments, inliers are denoted as red ’.’, outliers are denoted
as blue ’x’.

3.2 Two view correspondences

Synthetic data was tried first. The original data lie in 3D space, containing two
planes, each with 40 points randomly distributed on that plane. Then they are
projected into two views, the image sizes are around 500. The points coordinates
are corrupted by Gaussian noise of 0.5 pixels, and 20 outliers are randomly
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distributed in the image plane. As shown in Figure 7(b), both the number of
homographies and their parameter are estimated correctly.
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(a) One view of original data. Data
points from two planes are represented
as ’+’, and colored blue and green re-
spectively. The outlier points are repre-
sented as ’x’ and colored red.
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(b) Identified inliers to each model are
denoted by ’♦’. Only one data point is
labelled wrong, which is closed to the
border of the two planes.

Fig. 7. The experiment with homography model.

The approach was also applied to real images. In one experiment, we tried to
identify planar surfaces in the image by estimating homographies. 60 correspon-
dences belonging to two plane were manually selected. 40 random outliers were
added. As Figure 9 shows, two planes are identified and their inliers are marked.
In another experiment, we tried motion segmentation for three sequences down-
load from http://www.suri.it.okayama-u.ac.jp/e-program-separate.html. Figure 9
shows the segmentation result using 2D translation or affine model. Both the
number of models and model parameters were correctly estimated for each se-
quence.

4 Conclusion

In this paper, we proposed a robust estimation scheme for multi-modal data with
outliers. Base on the analysis of the residuals distribution per individual data
points with respect to a set of hypotheses (generated by RANSAC-like sampling
process), we can simultaneously estimate number of models and parameters of
each model. An iterative technique is developed to robustly identify the correct
modes in the residual histogram, which is then used to determine the number of
models. Model parameters are recovered from cluster in residual space instead
of parameter space as did by Hough Transform, so the proposed approach won’t
suffer from common difficulty of Hough Transform. Our approach was justified
by extensive experiments on both synthetic and real data. Currently, we are
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(a) One view of the image pair. Data
points colored green. The outlier points
are colored red.

(b) Identified inliers to each model are
denoted by ’♦’, and colored blue and
green, respectively.

Fig. 8. The experiment with homography model. Two homographies are correctly es-
timated.

(a) (b) (c)

Fig. 9. Motion segmentation result. Identified inliers to each model are denoted by ’♦’
and ’2’, and colored blue and red, respectively. Identified outliers are denoted by red
‘x’. (a) Affine segmentation of a car moving sequence. Note one of the correspondences
is labeled as outlier because its position is not correct. (b) 2D translational segmen-
tation a car leaving a parking lot. (c) 2D translational segmentation of head moving
sequence. 20% random correspondences are added as outliers. The segmentation result
is unaffected by the outliers.

investigating the structure and motion estimation problem with the proposed
framework.
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