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Abstract

The prevailing efforts to study the standard formulation of motion and structure recovery have been
recently focused on issues of sensitivity and and robustness of existing techniques. While many cogent
observations have been made and verified experimentally, many statements do not hold in general settings
and make a comparison of existing techniques difficult. With an ultimate goal of clarifying these issues
we study the main aspects of the problem: the choice of objective functions, optimization techniques and
the sensitivity and robustness issues in the presence of noise.

We clearly reveal the relationship among different objective functions, such as “(normalized) epipolar
constraints”, “reprojection error” or “triangulation”, which can all be be unified in a new “ optimal
triangulation” procedure formulated as a constrained optimization problem. Regardless of various choices
of the objective function, the optimization problems all inherit the same unknown parameter space, the
so called “essential manifold”, making the new optimization techniques on Riemanian manifolds directly
applicable.

Using these analytical results we provide a clear account of sensitivity and robustness of the pro-
posed linear and nonlinear optimization techniques and study the analytical and practical equivalence
of different objective functions. The geometric characterization of critical points of a function defined
on essential manifold and the simulation results clarify the difference between the effect of bas relief
ambiguity and other types of local minima leading to a consistent interpretations of simulation results
over large range of signal-to-noise ratio and variety of configurations. Further more we justify the choice
of the linear techniques for (re)initialization and for detection of incorrect local minima.

Key words: motion and structure recovery, optimal triangulation, essential manifold, sensitivity and ro-
bustness issues.

1 Introduction

While the geometric relationships governing the motion and structure recovery problem have been long
understood, the robust solutions in the presence of noise are still sought. New studies of sensitivity of
different algorithms, search for intrinsic local minima and new algorithms are still subject of great interest.
This is due to the rather difficult nature of the multi-dimensional constrained optimization problem, with
large number of factors influencing its performance and possibly large number of parameters to estimate.

Algebraic manipulation of intrinsic geometric relationships typically gives rise to different objective func-
tions, making the comparison of the performance of different techniques inappropriate and often obstructing
the key issues of the problem. The goal of this paper is to evaluate intrinsic difficulties of the structure
and motion recovery problem in the presence of large levels of noise, in terms of intrinsic local minima,
bias, sensitivity and robustness. This evaluation is done with respect to the choice of objective function and
optimization technique, in the simplified two-view, point-feature scenario. The main contributions presented
in this paper are summarized briefly below:
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• We present a new optimal triangulation procedure and show that it can be formulated as an iterative
two step constrained optimization: Motion estimation is formulated as optimization on the essential
manifold and is followed by additional well conditioned minimization of two Raleigh quotients for
estimating the structure. The procedure clearly reveals the relationship between existing objective
functions used previously and exhibits superior (provable) convergence properties. This is possible
thanks to the intrinsic nonlinear search schemes on the essential manifold, utilizing Riemanian struc-
tucture of the unknown parameter space.

• We demonstrate analytically and by extensive simulations how the choice of the objective functions
and configurations affects the sensitivity and robustness of the estimates, making a clear distinction
between the two. We both observe and geometrically characterize how the patterns of critical points
of the objective function change with increasing levels of noise for general configurations revealing
an appearance of intrinsic local minima. We show the role on linear techniques for initialization and
detection of these incorrect local minima. Further more we utilize the second order information to
characterize the nature of the bas relief ambiguity and rotation and translation confounding for special
class of “sensitive” motions/configurations.

The seminal work of Longuet-Higgins [9] on the characterization of the so called epipolar constraint,
enabled the decoupling of the structure and motion problems and led to the development of numerous linear
and nonlinear algorithms for motion estimation (see [15, 8, 22] for overviews). The appeal of linear algorithms
which use the epipolar constraint (in the discrete case [22, 8, 9, 15] and in the differential case [7, 14]) is the
closed form solution to the problem which, in the absence of noise, provides true estimate of the motion.
However, a further analysis of linear techniques revealed an inherent bias in the translation estimates [7].
Attempts made to compensate for the bias slightly improve the performance of the linear techniques [8].
The sensitivity studies of the motion estimation problem have been done both in an analytical [2, 19] and
experimental setting [20] and revealed the superiority of the nonlinear optimization schemes over the linear
ones. Numerous nonlinear optimization schemes differed in the choice of objective functions [25], different
parameterizations of the unknown parameter space [23, 25, 6] and means of initialization of the iterative
schemes (e.g. monte-carlo simulations [22, 18], [7] or linear techniques). In most cases, the underlying search
space has been parameterized for computational convenience instead of being loyal to its intrinsic geometric
structure.

In the first part of the paper we will show that “minimizing epipolar constraint”, “minimizing (geometri-
cally or statistically1) normalized epipolar constraint” [23, 10, 25], “minimizing reprojection error” [23], and
“triangulation” [5] can all be unified in a single geometric optimization procedure, the so called “optimal
triangulation”. A new and much simpler triangulation method than [5] is given along with the proposed
algorithm. A highlight of our method is an iterative scheme between motion and structure without intro-
ducing any 3D scale (or depth). We will show that optimizing existing objective functions can all be reduced
to optimization problems on the essential manifold. Due to recent developments of optimization techniques
on Riemannian manifolds (especially on Lie groups and homogeneous spaces) [4], we are able to explicitly
compute all the necessary ingredients, such as gradient, Hessian and geodesics, for carrying out intrinsic
nonlinear search schemes.

In spite of the thorough understanding of the geometry of the problem practical difficulties of obtaining
robust solutions led to numerous studies of local minima and sensitivity in general and or more specific
configurations [18, 24]. For example, [1, 23, 18] explored rotation and translation confounding from the
point of view of noise and the source and presence of local extrema which are intrinsic to the structure
from motion problem (i.e., these local extrema are independent of the choice of objective functions). In
our study on intrinsic difficulties of the structure and motion estimation in the presence of large levels of
noise we characterize, besides the bas relief ambiguity, which is evident only when the field of view and
the depth variation of the scene are small, other intrinsic extrema which may show up at a high noise
level even for a general configuration, i.e., with large base line, field of view and depth variation. We will
show both analytically and experimentally that some ambiguities are introduced at a high noise level by
certain bifurcation of the objective function and usually result in a sudden 90o flip in the translation estimate.
Understanding such ambiguities is crucial for properly evaluating the performance (especially the robustness)

1In the literature, they are respectively referred to as distance between points and epipolar lines, and gradient-weighted
epipolar errors [25] or epipolar improvement.
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of the algorithms when applied to general configurations. Based on analytical and experimental results, we
will give a clear profile of the performance of different algorithms over a large range of signal-to-noise ratio,
and under various motion and structure configurations.

2 Epipolar Geometry and Optimization on the Essential Manifold

Suppose the camera motion is given by (R, S) ∈ SE(3) (the special Euclidean group) where R is a rotation
matrix in SO(3) (the special orthogonal group) and S ∈ R

3 is the translation vector. The intrinsic geo-
metric relationship between two corresponding projections of a single 3D point in two images p and q (in
homogeneous coordinates) then gives the so called epipolar constraint [9]:

pT RŜq = 0 (1)

where Ŝ ∈ R
3×3 is defined such that Ŝv = S × v for all v ∈ R

3. Epipolar constraint decouples the problem
of motion recovery from that of structure recovery. The first part of this paper will be devoted to recovering
motion from directly using this constraint or its variations. In Section 3, we will see how this constraint has
to be adjusted when we consider recovering motion and structure simultaneously.

The entity of our interest is the matrix RŜ in the epipolar constraint; the so called essential matrix. The
essential manifold is defined to be the space of all such matrices, denoted by E = {RŜ | R ∈ SO(3), Ŝ ∈
so(3)}, where SO(3) is a Lie group of 3 × 3 rotation matrices, and so(3) is the Lie algebra of SO(3), i.e.,
the tangent plane of SO(3) at the identity. so(3) then consists of all 3 × 3 skew-symmetric matrices. The
problem of motion recovery is equivalent to optimizing functions defined on the so called normalized essential
manifold:

E1 = {RŜ | R ∈ SO(3), Ŝ ∈ so(3),
1
2
tr(ŜT Ŝ) = 1}.

Note that 1
2 tr(ŜT Ŝ) = ST S. In order to formulate properly the optimization problem, it is crucial to

understand the Riemannian structure of the normalized essential manifold. In our previous work we showed
[12] that the space of essential matrices can be identified with the unit tangent bundle of the Lie group SO(3),
i.e., T1(SO(3))2. Further more its Riemannian metric g induced from the bi-invariant metric on SO(3) is the
same as that induced from the Euclidean metric with T1(SO(3)) naturally embedded in R

3×4. (T1(SO(3)),g)
is the product Riemannian manifold of (SO(3), g1) and (S2, g2) with g1 and g2 canonical metrics for SO(3)
and S

2 as Stiefel manifolds. Given this Riemannian structure of our unknown parameter space, we showed
[14] that one can generalize Edelman et al’s methods [4] to the product Riemannian manifolds and obtain
intrinsic geometric Newton’s or conjugate gradient algorithms for solving such an optimization problem.

Given the epipolar constraint, the problem of motion recovery R, S from a given set of image correspon-
dences pi, qi ∈ R

3, i = 1, . . . , N , in the presence of noise can be naturally formulated as a minimization of
the following objective function:

F (R, S) =
N∑

i=1

(pT
i RŜqi)2 (2)

for pi, qi ∈ R
3, (R, S) ∈ SO(3) × S

2 and where F (R, S) is a function defined on T1(SO(3)) ∼= SO(3) × S
2

with R ∈ SO(3) represented by a 3 × 3 rotation matrix and S ∈ S
2 a vector of unit length in R

3. Due to
the lack of space below we present only a summary of the Newton’s algorithm for optimization of the above
objective function on the essential manifold. Please refer for more details to [14] for this particular objective
function and [4] for the details of the Newton’s or other conjugate gradient algorithms for general Stiefel or
Grassmann manifolds.

Riemannian Newton’s algorithm for minimizing F (R, S) on the essential manifold:

• At the point (R, S),
2However, the unit tangent bundle T1(SO(3)) is not exactly the normalized essential manifold E1. It is a double covering of

the normalized essential space E1, i.e., E1 = T1(SO(3))/Z2 (for details see [12]).
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– Compute the gradient G = (FR − RFT
R R, FS − SFT

S S),

– Compute ∆ = − Hess−1G.

• Move (R, S) in the direction ∆ along the geodesic to (exp(R, ∆1), exp(S, ∆2)).

• Repeat if ‖G‖ ≥ ε for pre-determined ε > 0.

FR(FS) is a derivative of the objective function F (R, S) with respect to its parameters.

The basic ingredients of the algorithm is the computation of the gradient and Hessian whose explicit
formulas can be found in [14]. These formulas can be alternatively obtained by directly using the explicit
expression of geodesics on this manifold. On SO(3), the formula for the geodesic at R in the direction
∆1 ∈ TR(SO(3)) = R∗(so(3)) is:

R(t) = exp(R, ∆1t) = R exp ω̂t = R(I + ω̂ sin t + ω̂2(1 − cos t)) (3)

where t ∈ R, ω̂ = RT ∆1 ∈ so(3). The last equation is called the Rodrigues’ formula (see [17]). S
2 (as a Stiefel

manifold) also has very simple expression of geodesics. At the point S along the direction ∆2 ∈ TS(S2) the
geodesic is given by:

S(t) = exp(S, ∆2t) = S cosσt + U sin σt (4)

where σ = ‖∆2‖ and U = ∆2/σ, then ST U = 0 since ST ∆2 = 0. Using the formulae (3) and (4) for
geodesics , we can calculate the first and second derivatives of F (R, S) in the direction ∆ = (∆1, ∆2) ∈
TR(SO(3)) × TS(S2). The explicit formula for the Hessian obtained in this manner plays an important role
for sensitivity analysis of the motion estimation [2] as we will point out in the second part of the paper.
Furthermore, using this formula, we have shown [14] that the conditions when the Hessian is guaranteed
non-degenerate are the same as the conditions for the linear 8-point algorithm having a unique solution;
whence the Newton’s algorithm has quadratic rate of convergence.

2.1 Minimizing Normalized Epipolar Constraints

Although the epipolar constraint (1) gives the only necessary (depth independent) condition that image pairs
have to satisfy, motion estimates obtained from minimizing the objective function (2) are not necessarily
statistically or geometrically optimal for the commonly used noise model of image correspondences. In
general, in order to get less biased estimates, we need to normalize (or weight) the epipolar constraints
properly, which has been initially observed in [23]. In this section, we will give a brief account of these
normalized versions of epipolar constraints. These normalized versions in general are still functions defined on
the essential manifold. The reason will become clear in the next section when we see that these normalizations
in fact can be unified by a single procedure of getting optimal estimates of motion and structure. We here
discuss this issue for the perspective projection case.3 In the perspective projection case, coordinates of
image points p and q are of the form p = (p1, p2, 1)T ∈ R

3 and q = (q1, q2, 1)T ∈ R
3. Suppose that the actual

measured image coordinates of N pairs of image points are:

pi = p̃i + xi, qi = q̃i + yi, i = 1, . . . , N (5)

where p̃i and q̃i are ideal (noise free) image coordinates, xi = (x1
i , x

2
i , 0)T ∈ R

3 and yi = (y1
i , y2

i , 0)T ∈ R
3

and x1
i , x

2
i , y

1
i , y2

i are independent Gaussian random variables of identical distribution N(0, σ2). Substituting
pi and qi into the epipolar constraint (1), we obtain:

pT
i RŜqi = xT

i RŜq̃i + p̃T
i RŜyi + xT

i RŜyi.

Since the image coordinates pi and qi usually are magnitude larger than xi and yi, one can omit the last
term in the equation above. Then pT

i RŜqi are independent random variables approximately of Gaussian

3The spherical projection case is similar and is omitted for simplicity.
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distribution N(0, σ2(‖ê3RŜqi‖2 + ‖pT
i RŜê3‖2)) where e3 = (0, 0, 1)T ∈ R

3. If we assume the a prior dis-
tribution of the motion (R, S) is uniform, the maximum a posterior (MAP) estimates of (R, S) is then the
global minimum of the objective function:

Fs(R, S) =
N∑

i=1

(pT
i RŜqi)2

‖ê3RŜqi‖2 + ‖pT
i RŜê3‖2

(6)

for pi, qi ∈ R
3, (R, S) ∈ SO(3)× S

2. We here use Fs to denote the statistically normalized objective function
associated with the epipolar constraint. This objective function is also referred in the literature under the
name gradient criteria or epipolar improvement. Therefore, we have:

(R, S)MAP ≈ argmin Fs(R, S) (7)

Note that in the noise free case, Fs achieves zero, just like the unnormalized objective function F of equation
(2). Asymptotically, MAP estimates approach the unbiased minimum mean square estimates (MMSE). So, in
general, the MAP estimates give less biased estimates than the unnormalized objective function F . Note that
Fs is still a function defined on the manifold SO(3)×S

2. The discussion given in Section 2 about optimizing
a general function defined on the essential manifold certainly applies to Fs. Another commonly used criteria
to recover motion is to minimize the geometric distances between image points and corresponding epipolar
lines. This objective function is given as:

Fg(R, S) =
N∑

i=1

(pT
i RŜqi)2

‖ê3RŜqi‖2
+

(pT
i RŜqi)2

‖pT
i RŜêT

3 ‖2
(8)

for pi, qi ∈ R
3, (R, S) ∈ SO(3) × S

2. We here use Fg to denote this geometrically normalized objective
function. Notice that, similar to F and Fs, Fg is also a function defined on the essential manifold and
can be minimized using the given Newton’s algorithm. As we know from in the differential case [13], the
normalization has no effect when the translational motion is in the image plane, i.e., the unnormalized and
normalized objective functions are in fact equivalent. For the discrete case, we have a similar claim. Suppose
the camera motion is given by (R, S) ∈ SE(3) with S ∈ S

2 and R = ebωθ for some ω ∈ S
2 and θ ∈ R. If

ω = (0, 0, 1)T and S = (s1, s2, 0)T , i.e., the translation direction is in the image plane, then, since R and
ê3 now commute, the expression ‖ê3RŜqi‖2 simply becomes ‖S‖2 = 1. Similarly, ‖pT

i RŜêT
3 ‖2 = ‖S‖2 = 1.

Hence, in this case, all the three objective functions F , Fs and Fg are very similar to each other around the
actual (R, S).4 Practically, when the translation is in the image plane and rotation is small (i.e., R ≈ I),
the normalization will have little effect on the motion estimates, as will be verified by the simulation.5

3 Optimal Triangulation

Note that, in the presence of noise, for the motion (R, S) recovered from minimizing the unnormalized or
normalized objective functions F , Fs or Fg, the value of the objective functions is not necessarily zero. That
is, in general:

pT
i RŜqi 6= 0, i = 1, . . . , N. (9)

Consequently, if one directly uses pi and qi to recover the 3D location of the point to which the two images
pi and qi correspond, the two rays corresponding to pi and qi may not be coplanar, hence may not intersect
at one 3D point. Also, when we derived the normalized epipolar constraint Fs, we ignored the second order
terms. Therefore, rigorously speaking, it does not give the exact MAP estimates. Under the assumption of
Gaussian noise model (5), in order to obtain the optimal (MAP) estimates of camera motion and a consistent
3D structure reconstruction, in principle we need to solve the following optimization problem:

4Around a small neighborhood of the actual (R, S), they only differ by high order terms.
5Strictly speaking, this is the case only when the noise level is low, i.e., corrupted objective functions are not yet so different

from the noise-free one.
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Optimal Triangulation Problem: Seek camera motion (R, S) and points p̃i ∈ R
3 and q̃i ∈ R

3

on the image plane such that they minimize the distance from pi and qi:

Ft(R, S, p̃i, q̃i) =
N∑

i=1

‖p̃i − pi‖2 + ‖q̃i − qi‖2 (10)

subject to the conditions:

p̃T
i RŜq̃i = 0, p̃T

i e3 = 1, q̃T
i e3 = 1, i = 1, . . . , N. (11)

We here use Ft to denote the objective function for triangulation. This objective function is also referred
in literature as the reprojection error. Unlike [5], we do not assume a known essential matrix RŜ. Instead
we seek p̃i, q̃i and (R, S) which minimize the objective function Ft given by (10). The objective function Ft

then implicitly depends on the variables (R, S) through the constraints (11). Clearly, the optimal solution
to this problem is exactly equivalent to the optimal MAP estimates of both motion and structure. Using
Lagrangian multipliers, we can convert the minimization problem to an unconstrained one:

min
R,S,p̃i,q̃i

N∑
i=1

‖p̃i − pi‖2 + ‖q̃i − qi‖2 + λip̃
T
i RŜq̃i + (12)

+βi(p̃T
i e3 − 1) + γi(q̃T

i e3 − 1).

The necessary conditions for minima of this objective function are:

2(p̃i − pi) + λiRŜq̃i + βie3 = 0 (13)

2(q̃i − qi) + λiŜ
T RT p̃i + γie3 = 0 (14)

Under the necessary conditions, we obtain:


p̃i = pi − 1
2λiê

T
3 ê3RŜq̃i

q̃i = qi − 1
2λiê

T
3 ê3Ŝ

T RT p̃i

p̃T
i RŜq̃i = 0

(15)

where λi is given by:

λi =
2(pT

i RŜq̃i + qT
i ŜT RT p̃i)

q̃T
i ŜT RT êT

3 ê3RŜq̃i + p̃T
i RŜêT

3 ê3ŜT RT p̃i

(16)

or

λi =
2pT

i RŜq̃i

q̃T
i ŜT RT êT

3 ê3RŜq̃i

=
2qT

i ŜT RT p̃i

p̃T
i RŜêT

3 ê3ŜT RT p̃i

. (17)

Substituting (15) and (16) into Ft, we obtain:

Ft(R, S, p̃i, q̃i) =
N∑

i=1

(pT
i RŜq̃i + p̃T

i RŜqi)2

‖ê3RŜq̃i‖2 + ‖p̃T
i RŜêT

3 ‖2
(18)

and using (15) and (17) instead, we get:

Ft(R, S, p̃i, q̃i) =
N∑

i=1

(pT
i RŜq̃i)2

‖ê3RŜq̃i‖2
+

(p̃T
i RŜqi)2

‖p̃T
i RŜêT

3 ‖2
. (19)

Geometrically, both expressions of Ft are the distances from the image points pi and qi to the epipolar lines
specified by p̃i, q̃i and (R, S). Equations (18) and (19) give explicit formulae of the residue of ‖p̃i − pi‖2 +
‖q̃i − qi‖2 as pi, qi being triangulated by p̃i, q̃i. Note that the terms in Ft are normalized crossed epipolar
constraints between pi and q̃i or between p̃i and qi. These expressions of Ft can be further used to solve for
(R, S) which minimizes Ft. This leads to the following iterative scheme for obtaining optimal estimates of
both motion and structure, without explicitly introducing scale factors (or depths) of the 3D points.

Optimal Triangulation Algorithm Outline: The procedure for minimizing Ft can be outlined as follows:
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1. Initialize p̃∗i (R, S), q̃∗i (R, S) as pi, qi.

2. Motion: Update (R, S) by minimizing F ∗
t (R, S) = Ft(R, S, p̃∗i (R, S), q̃∗i (R, S)) given by (18) or (19)

as a function defined on the manifold SO(3) × S
2.

3. Structure (Triangulation): Solve for p̃∗i (R, S) and q̃∗i (R, S) which minimize the objective function
Ft (10) with respect to (R, S) computed in the previous step.

4. Back to step 2 until updates are small enough.

At step 3, for a fixed (R, S), p̃∗i (R, S) and q̃∗i (R, S) can be computed by minimizing the distance ‖p̃i −
pi‖2 + ‖q̃i − qi‖2 for each pair of image points. Let ti ∈ R

3 be the normal vector (of unit length) to the
(epipolar) plane spanned by (q̃i, S). Given such a ti, p̃i and q̃i are determined by:

p̃i(ti) =
ê3t

′
it
′T
i êT

3 pi + t̂′
T

i t̂′ie3

eT
3 t̂′

T

i t̂′ie3

, q̃i(ti) =
ê3tit

T
i êT

3 qi + t̂Ti t̂ie3

eT
3 t̂Ti t̂ie3

(20)

where t′i = Rti. Then the distance can be explicitly expressed as:

‖q̃i − qi‖2 + ‖p̃i − pi‖2 = ‖qi‖2 +
tTi Aiti
tTi Biti

+ ‖pi‖2 +
t′Ti Cit

′
i

t′Ti Dit′i
,

where

Ai = I − (ê3qiq
T
i êT

3 + q̂iê3 + ê3q̂i), Bi = êT
3 ê3

Ci = I − (ê3pip
T
i êT

3 + p̂iê3 + ê3p̂i), Di = êT
3 ê3

. (21)

Then the problem of finding p̃∗i (R, S) and q̃∗i (R, S) becomes one of finding t∗i which minimizes the function
of a sum of two singular Rayleigh quotients:

min
tT
i S=0,tT

i ti=1
V (ti) =

tTi Aiti

tTi Biti
+

tTi RT CiRti

tTi RT DiRti
. (22)

This is an optimization problem on a unit circle S
1 in the plane orthogonal to the vector S (therefore,

geometrically, motion and structure recovery from N pairs of image correspondences is an optimization
problem on the space SO(3)×S

2×T
N where T

N is an N -torus, i.e., an N -fold product of S
1). If n1, n2 ∈ R

3

are vectors such that S, n1, n2 form an orthonormal basis of R
3, then ti = cos(θ)n1+sin(θ)n2 with θ ∈ R. We

only need to find θ∗ which minimizes the function V (ti(θ)). From the geometric interpretation of the optimal
solution, we also know that the global minimum θ∗ should lie between two values: θ1 and θ2 such that ti(θ1)
and ti(θ2) correspond to normal vectors of the two planes spanned by (qi, S) and (RT pi, S) respectively (if
pi, qi are already triangulated, these two planes coincide). Therefore, in our approach the local minima is
no longer an issue for triangulation, as oppose to the method proposed in [5]. The problem now becomes
a simple bounded minimization problem for a scalar function and can be efficiently solved using standard
optimization routines (such as “fmin” in Matlab or the Newton’s algorithm). If one properly parameterizes
ti(θ), t∗i can also be obtained by solving a 6-degree polynomial equation, as shown in [5] (and an approximate
version results in solving a 4-degree polynomial equation [22]). However, the method given in [5] involves
coordinate transformation for each image pair and the given parameterization is by no means canonical. For
example, if one chooses instead the commonly used parameterization of a circle S

1:

sin(2θ) =
2λ

1 + λ2
, cos(2θ) =

1 − λ2

1 + λ2
, λ ∈ R, (23)

then it is straightforward to show from the Rayleigh quotient sum (22) that the necessary condition for
minima of V (ti) is equivalent to a 6-degree polynomial equation in λ.6 The triangulated pairs (p̃i, q̃i) and
the camera motion (R, S) obtained from the minimization automatically give a consistent (optimal) 3D
structure reconstruction by two-frame stereo.

6Since there is no closed form solution to 6-degree polynomial equations, directly minimizing the Rayleigh quotient sum (22)
avoids unnecessary transformations hence can be much more efficient.
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In the expressions of Ft given by (18) or (19), if we simply approximate p̃i, q̃i by pi, qi respectively, we
may obtain the normalized versions of epipolar constraints for recovering camera motion. Although subtle
difference between Fs, Fg and Ft has previously been pointed out in [25], our approach discovers that all
these three objective functions can be unified in the same optimization procedure – they are just slightly
different approximations of the same objective function F ∗

t . Practically speaking, using either normalized
objective function Fs or Fg, one can already get camera motion estimates which are very close to the optimal
ones. This will be demonstrated by extensive simulations in the next section.

4 Critical Values and Ambiguous Solutions

We devote the remainder of this paper to study of the robustness and sensitivity of motion and structure es-
timation problem in the presence of large levels of noise. We emphasize here the role of the linear techniques
for initialization and utilize the characterization of the space of essential matrices and the intrinsic optimiza-
tion techniques on the essential manifold. We make a distinction between the robustness issue (behavior of
the objective function in general configuration in the presence of large levels of noise) and sensitivity issues,
which is more related to sensitive configurations of motion/structure.

The focus of our robustness study deals with the appearance of new local minima. Like any nonlinear
system, when increasing the noise level, new critical points of the objective function can be introduced
through bifurcation. Although in general an objective function could have numerous critical points, numbers
of different types of critical points have to satisfy the so called Morse inequalities, which are associated to
topological invariants of the underlying manifold (see [16]). A study of these inequalities will help us to
understand how patterns of the objective function’s critical points may switch from one to another when the
noise level varies. Key to this study is the computation of the Euler characteristic χ(M) of the underlying
manifold SO(3) × RP

2 which is in this case 0; χ(SO(3) × RP
2) = 0. Euler characteristic is equal to∑n

λ=0(−1)λDλ, where Dλ is the dimension of the λth homology group Hλ(M, K) of M over any field K,
the so called λth Betti number. In our case Dλ = 1, 2, 3, 3, 2, 1 for λ = 0, 1, 2, 3, 4, 5 types of critical points
respectively. For details of this computation see [14]. Among all the critical points, those belonging to
type 0 are called (local) minima, type n are (local) maxima, and types 1 to n − 1 are saddles. From the
above computation any Morse function defined on SO(3)× RP

2 must have all three kinds of critical values.
The nonlinear search algorithms proposed in the above are trying to find the global minimum of given
objective functions. Ideally one would like to either study the critical points of the original reprojection
error objective function using Monte Carlo techniques or to study/visualize critical points of some reduced
objective function, which has the same critical points as the reprojection error, but it is a function of
translation only (i.e. two unknowns). This has been demonstrated in sequel to [18] for the differential case.
For the discrete case and the noise model considered, this type of reduction does not carry through unless one
resorts to approximations. Instead we study the issue of initialization by linear techniques and apperance of
new critical points on different slices of the nonlinear objective function which we can be easily visualized.
The choice of the section is determined by the estimate of rotation where the nonlinear algorithm converged
by initialization of the linear algorithm.

Rewriting the epipolar constraint as pT
i Eqi = 0, i = 1, . . . , N , minimizing the objective function F is

(approximately) equivalent to the following least square problem min ‖Ae‖2, where A is a N × 9 matrix
function of entries of pi and qi, and e ∈ R

9 is a vector of the nine entries of E. Then e is the (usually one
dimensional) null space of the 9×9 symmetric matrix AT A. In the presence of noise, e is simply chosen to be
the eigenvector corresponding to the least eigenvalue of AT A. At a low noise level, this eigenvector in general
gives a good initial estimate of the essential matrix. However, at a certain high noise level, the smallest two
eigenvalues may switch roles, as do the two corresponding eigenvectors – topologically, a bifurcation as shown
in Figure 1 occurs. Let us denote these two eigenvectors as e and e′. Since they both are eigenvectors of the
symmetric matrix AT A, they must be orthogonal to each other, i.e., eT e′ = 0. In terms of matrix notation,
we have tr(ET E′) = 0. For the motions recovered from E and E′ respectively, we have tr(ŜT RT R′Ŝ′) = 0.
It is well known that the rotation estimate R is usually much less sensitive to noise than the translation
estimates S. Therefore, approximately, we have R ≈ R′ hence tr(ŜT Ŝ′) ≈ 0. That is, S and S′ are almost
orthogonal to each other. This phenomena is very common in the motion estimation problem: at a high
noise level, the translation estimate may suddenly change direction by roughly 90o, especially in the case
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when translation is parallel to the image plane. We will refer to such estimates as the second eigenmotion.
A similar situation for the differential case and small field of view has previously been reported in [3].

Figure 2 and 3 demonstrate such a sudden appearance of the second eigenmotion. They are the simulation
results of the proposed nonlinear algorithm of minimizing the function Fs for a cloud of 40 randomly generated
pairs of image correspondences (in a field of view 90o, depth varying from 100 to 400 units of focal length.).
Gaussian noise of standard deviation of 6.4 or 6.5 pixels is added on each image point (image size 512× 512
pixels). To make the results comparable, we used the same random seeds for both runs. The actual rotation
is 10o about the Y -axis and the actual translation is along the X-axis.7 The ratio between translation and
rotation is 2.8 In the figures, “+” marks the actual translation, “∗” marks the translation estimate from
linear algorithm (see [15] for detail) and “◦” marks the estimate from nonlinear optimization. Up to the noise
level of 6.4 pixels, both rotation and translation estimates are very close to the actual motion. Increasing the
noise level further by 0.1 pixel, the translation estimate suddenly switches to one which is roughly 90o away
from the actual translation. Geometrically, this estimate corresponds to the second smallest eigenvector
of the matrix AT A as we discussed before. Topologically, this estimate corresponds to the local minimum
introduced by a bifurcation as shown by Figure 1. Clearly, in Figure 2, there is 1 maximum, 1 saddle and 1
minimum on RP

2; in Figure 3, there is 1 maximum, 2 saddles and 2 minima. Both patterns give the Euler
characteristic of RP

2 as 1.

Figure 1: Bifurcation which preserves the Euler characteristic by introducing a pair of saddle and node. The
indices of the two circled regions are both 1.

From the Figure 3, we can see that the the second eigenmotion ambiguity is even more likely to occur
(at certain high noise level) than the other local minimum marked by “3” in the figure which is a legitimate
estimate of the actual one. These two estimates always occur in pair and exist for general configuration even
when both the FOV and depth variation are sufficiently large. We propose a way for resolving the second
eigenmotion ambiguity by linear algorithm which is used for initialization. An indicator of the configuration
being close to critical is the ratio of the two smallest eigenvalues of AT A σ9 and σ8 . By using both
eigenvectors v9 and v8 for computing the linear motion estimates, the one which satisfies the positive depth
constraint by larger margin (i.e. larger number of points satisfies the positive depth constraint) leads to
the motion estimates closer to the true one. The motion estimate R, S which satisfies the positive depth
constraint should make the following inner product greater than 0 for all the corresponding points.

(Ŝpi)T (p̂iRqi) ≥ 0 (24)

Simple reinitialization then guarantees convergence of the nonlinear techniques to the true solution. Figure
5 depicts a slice of the objective function for varying translation and for the rotation estimate obtained by
linear algorithm using v9 and v8 as two different estimates of the essential matrix.

This second eigenmotion effect has a quite different interpretation as the one which was previously
attributed to the bas relief ambiguity. The bas relief effect is only evident when FOV and depth variation is
small, but the second eigenmotion ambiguity may show up for general configurations. Bas relief estimates
are statistically meaningful since they characterize a sensitive direction in which translation and rotation
are the most likely to be confound. The second eigenmotion, however, is not statistically meaningful: it is
an effect of initialization which with increasing noise level causes a perturbation to a different slice of the
objective function with a different topology of the residual. This effect occurs only at a high noise level
and this critical noise level gives a measure of the robustness of linear initialization of the given algorithm.
For comparison, Figure 7 demonstrates the effect of the bas relief ambiguity: the long narrow valley of
the objective function corresponds to the direction that is the most sensitive to noise.9 The (translation)
estimates of 20 runs, marked as “◦”, give a distribution roughly resembling the shape of this valley – the
actual translation is marked as “+”in the center of the valley which is covered by circles.

7We here use the convention that Y -axis is the vertical direction of the image and X-axis is the horizontal direction and the
Z-axis coincides with the optical axis of the camera.

8Rotation and translation magnitudes are compared with respect to the center of the cloud of 3D points generated.
9This direction is given by the eigenvector of the Hessian associated with the smallest eigenvalue.
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Figure 2: Value of objective function Fs for all S at
noise level 6.4 pixels (rotation fixed at the estimate
from the nonlinear optimization). Estimation errors:
0.014 in rotation estimate (in terms of the canonical
metric on SO(3)) and 2.39o in translation estimate
(in terms of angle).
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Figure 3: Value of objective function Fs for all S at
noise level 6.5 pixels (rotation fixed at the estimate
from the nonlinear optimization). Estimation errors:
0.227 in rotation estimate (in terms of the canonical
metric on SO(3)) and 84.66o in translation estimate
(in terms of angle).
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Figure 4: Contour plots of the effect of initialization of the nonlinear objective function by the estimate
of the linear algorithm

5 Experiments and Sensitivity Analysis

In this section, we clearly demonstrate by experiments the relationship among the linear algorithm (as
in [15]), nonlinear algorithm (minimizing F ), normalized nonlinear algorithm (minimizing Fs) and optimal
triangulation (minimizing Ft). Due to the nature of the second eigenmotion ambiguity (when not corrected),
it gives statistically meaningless estimates. Such estimates should be treated as “outliers” if one wants to
properly evaluate a given algorithm and compare simulation results. In order for all the simulation results to
be statistically meaningful and comparable to each other, in following simulations, we usually keep the noise
level below the critical level at which the second eigenmotion ambiguity occurs unless we need to comment
on its effect on the evaluation of algorithms’ performance.

We follow the same line of thought as the analysis of the differential case in [18]. We will demonstrate
by simulations that seemingly conflicting statements in the literature about the performance of existing
algorithms can in fact be given a unified explanation if we systematically compare the simulation results
with respect to a large range of noise levels (as long as the results are statistically meaningful). Some
existing evaluations of the algorithms turn out to be valid only for a certain small range of signal-to-noise
ratio. In particular, algorithms’ behaviors at very high noise levels have not yet been well understood or
explained. Since, for a fixed noise level, changing base line is equivalent to changing the signal-to-noise ratio,
we hence perform the simulations at a fixed base line but the noise level varies from very low (< 1 pixels) to
very high (tens of pixels for a typical image size of 512 × 512 pixels). The conclusions therefore hold for a
large range of base line. In particular, we emphasize that some of the statements given below are valid for
the differential case as well.
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Figure 5: Value of objective
function Fs for all S at noise level
6.7 pixels. Rotation is fixed at
the estimate from the linear algo-
rithm from the eigenvector v9 as-
sociated with the smallest eigen-
value. Note the verge of the bi-
furcation of the objective func-
tion.
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Figure 6: Value of objective
function Fs for all S at noise level
6.7 pixels. Rotation is fixed at
the estimate from the linear al-
gorithm from the eigenvector v8

associated with the second small-
est eigenvalue.
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Figure 7: Bas relief ambigu-
ity. FOV is 20o and the random
cloud depth varies from 100 to
150 units of focal length. Trans-
lation is along the X-axis and ro-
tation around the Y -axis. Rota-
tion magnitude is 2o. T/R ratio
is 2. 20 runs at the noise level
1.3 pixels.

In following simulations, for each trial, a random cloud of 40 3D points is generated in a region of truncated
pyramid with a field of view (FOV) 90o, and a depth variation from 100 to 400 units of the focal length.
Noises added to the image points are i.i.d. 2D Gaussian with standard deviation of the given noise level
(in pixels). Magnitudes of translation and rotation are compared at the center of random cloud. This will
be denoted as the translation-to-rotation ratio, or simply the T/R ratio. The algorithms will be evaluated
for different combinations of translation and rotation directions. We here use the convention that Y -axis is
the vertical direction of the image and X-axis is the horizontal direction and the Z-axis coincides with the
optical axis of nthe camera. All nonlinear algorithms are initialized by the estimates from the standard 8-
point linear algorithm (see [15]), instead of from the ground truth.10 The criteria for all nonlinear algorithms
to stop are: 1. The norm of gradient is less than a given error tolerance, which usually we pick as 10−8

unless otherwise stated;11 and 2. The smallest eigenvalue of the Hessian matrix is positive.12

Axis Dependency Profile

It has been well known that the sensitivity of the motion estimation depends on the camera motion. However,
in order to give a clear account of such a dependency, one has to be careful about two things: 1. The signal-
to-noise ratio and 2. Whether the simulation results are still statistically meaningful while varying the noise
level. Figure 8, 9, 10 and 11 give simulation results of 100 trials for each combination of translation and
rotation (“T-R”) axes, for example, “X-Y ” means translation is along the X-axis and the rotation axis is
the Y -axis. Rotation is always 10o about the axis and the T/R ratio is 2. In the figures, “linear” stands
for the standard 8-point linear algorithm; “nonlin” is the Riemannian Newton’s algorithm minimizing the
epipolar constraints F , “normal” is the Riemannian Newton’s algorithm minimizing the normalized epipolar
constraints Fs.

By carefully comparing the simulation results in Figure 8, 9, 10 and 11, we can draw the following
conclusions:

• Optimization Techniques (linear vs. nonlinear)

1. Minimizing F in general gives better estimates than the linear algorithm at low noise levels (Figure
10We like to point out that evaluation based on initializing from the ground truth is misleading for using these algorithms in

real applications since it usually does not reveal correctly the relationship between the linear algorithm and nonlinear algorithms.
11Our current implementation of the algorithms in Matlab has a numerical accuracy at 10−8.
12Since we have the explicit formulae for Hessian, this condition would keep the algorithms from stopping at saddle points.
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Figure 8: Axis dependency: estimation errors in
rotation and translation at noise level 1.0 pixel.
T/R ratio = 2 and rotation = 10o.
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Figure 9: Axis dependency: estimation errors in
rotation and translation at noise level 3.0 pixels.
T/R ratio = 2 and rotation = 10o.
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Figure 10: Axis dependency: estimation errors in
rotation and translation at noise level 5.0 pixel.
T/R ratio = 2 and rotation = 10o.
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Figure 11: Axis dependency: estimation errors in
rotation and translation at noise level 7.0 pixels.
T/R ratio = 2 and rotation = 10o.

8 and 9). At higher noise levels, this is no longer true (Figure 10 and 11), due to the more global
nature of the linear technique.

2. Minimizing the normalized Fs in general gives better estimates than the linear algorithm at
moderate noise levels (all figures). Very high noise level case will be studied in the next section.

• Optimization Criteria (F vs. Fs)

1. At relatively low noise levels (Figure 8), normalization has little effect when translation is parallel
to the image plane; and estimates are indeed improved when translation is along the Z-axis.

2. However, at moderate noise levels (Figure 9, 10 and 11), things are quite the opposite: when
translation is along the Z-axis, little improvement can be gained by minimizing Fs instead of F
since estimates are less sensitive to noise in this case (in fact all three algorithms perform very
close); however, when translation is parallel to the image plane, F is more sensitive to noise and
minimizing the statistically less biased Fs consistently improves the estimates.

• Axis Dependency (translation parallel to image plane vs. along Z-axis)

1. All three algorithms are the most robust to the increasing of noise when the translation is along
Z. At moderate noise levels (all figures), their performances are quite close to each other.
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2. Although, at relatively low noise levels (Figure 8, 9 and 10), estimation errors seem to be larger
when the translation is along the Z-axis, estimates are in fact much less sensitive to noise and
more robust to increasing of noise in this case. The larger estimation error in case of translation
along Z-axis is because the displacements of image points are smaller than those when translation
is parallel to the image plane. Thus, with respect to the same noise level, the signal-to-noise ratio
is in fact smaller in the case of translating along the Z-axis.

3. At a noise level of 7 pixels (Figure 11), estimation errors seem to become smaller when the
translation is along Z-axis. This is not only because, estimates are less sensitive to noise for this
case, but also due to the fact that, at a noise level of 7 pixels, the second eigenmotion ambiguity
already occurs in some of the trials when the translation is parallel to the image plane. Outliers
given by the second eigenmotion are averaged in the estimation errors and make them look even
worse.

The second statement about the axis dependency supplements the observation given in [21]. In fact,
the motion estimates are both robust and less sensitive to increasing of noise when translation is along the
Z-axis. Due to the exact reason given in [21], smaller signal-to-noise ratio in this case makes the effect of
robustness not to appear in the mean estimation error until at a higher noise level. As we have claimed
before, for a fixed base line, high noise level results resemble those for a smaller base line at a moderate
noise level. Figure 11 is therefore a generic picture of the axis dependency profile for the differential or small
base-line case (for more details see [13]).

Non-iterative vs. Iterative

In general, the motion estimates obtained from directly minimizing the normalized epipolar constraints
Fs or Fg are already very close to the solution of the optimal triangulation obtained by minimizing Ft

iteratively between motion and structure. It is already known that, at low noise levels, the estimates from
the non-iterative and iterative schemes usually differ by less than a couple of percent [25].
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Figure 12: Estimation errors of rotation (in canon-
ical metric on SO(3)). 50 trials, rotation 10 degree
around Y -axis and translation along X-axis, T/R
ratio is 2. Noises range from 0.5 to 5 pixels.
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Figure 13: Estimation errors of translation (in
degree). 50 trials, rotation 10 degree around Y -
axis and translation along X-axis, T/R ratio is 2.
Noises range from 0.5 to 5 pixels.

By comparing the simulation results in Figures 12, 13, 14 and 15, we can therefore draw the following
conclusions:

• Although the iterative optimal triangulation algorithm usually gives better estimates (as it should),
the non-iterative minimization of the normalized epipolar constraints Fs or Fg gives motion estimates
with only a few percent larger errors for all range of noise levels. The higher the noise level, the more
evident the improvement of the iterative scheme is.

• Within moderate noise levels, normalized nonlinear algorithms consistently give significantly better
estimates than the standard linear algorithm, especially when the translation is parallel to the image
plane. At very high noise levels, the performance of the standard linear algorithm, out performs
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Figure 14: Estimation errors of rotation (in canon-
ical metric on SO(3)). 40 points, 50 trials, ro-
tation 10 degree around Y -axis and translation
along Z-axis, T/R ratio is 2. Noises range from
2.5 to 20 pixels.
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Figure 15: Estimation errors of translation (in
degree). 40 points, 50 trials, rotation 10 degree
around Y -axis and translation along Z-axis, T/R
ratio is 2. Noises range from 2.5 to 20 pixels.

nonlinear algorithms. This is due to the more global nature of the linear algorithm. However, such
high noise levels are barely realistic in real applications.

For low level Gaussian noises, the iterative optimal triangulation algorithm gives the MAP estimates of the
camera motion and scene structure, the estimation error can be shown close to the theoretical error bounds,
such as the Cramer-Rao bound. This has been shown experimentally in [22]. Consequently, minimizing the
normalized epipolar constraints Fs or Fg gives motion estimates close to the error bound as well. At very
high noise levels, linear algorithm is certainly more robust and gives better estimates. Due to numerous local
minima, running nonlinear algorithms to update the estimate of the linear algorithm does not necessarily
reduce the estimation error further.

6 Discussions and Future Work

The motion and structure recovery problem has been studied extensively and many researchers have proposed
efficient nonlinear optimization algorithms. One may find historical reviews of these algorithms in [15, 8].
Although these algorithms already have good performance in practice, the geometric concepts behind them
have not yet been completely revealed. The non-degeneracy conditions and convergence speed of those
algorithms are usually not explicitly addressed. Due to the recent development of optimization methods
on Riemannian manifolds, we now can have a better mathematical understanding of these algorithms, and
propose new geometric algorithms or filters, which exploit the intrinsic geometric structure of the motion
and structure recovery problem. As shown in this paper, regardless of the choice of different objectives,
the problem of optimization on the essential manifold is common and essential to the optimal motion and
structure recovery problem. Furthermore, from a pure optimization theoretic viewpoint, most of the objective
functions previously used in the literature can be unified in a single optimization procedure. Consequently,
“minimizing (normalized) epipolar constraints”, “triangulation”, “minimizing reprojection errors” are all
different (approximate) versions of the same simple optimal triangulation algorithm.

We have applied only Newton’s algorithm to the motion and structure recovery problem since it has the
fastest convergence rate (among algorithms using second order information, see [4] for the comparison). In
fact, the application of other conjugate gradient algorithms would be easier since they usually only involve
calculation of the first order information (the gradient, not Hessian), at the cost of a slower convergence rate.
Like most iterative search algorithms, Newton’s and conjugate gradient algorithms are local methods, i.e.,
they do not guarantee convergence to the global minimum. Due to the fundamental relationship between the
motion recovery objective functions and the epipolar constraints discovered in this paper, at high noise levels
all the algorithms unavoidably will suffer from the second eigenmotion (except the case when translation
is along the Z-axis). Such an ambiguity is intrinsic to the problem of motion and structure recovery and
independent of the choice of objective functions.
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In this paper, we have studied in detail the problem of recovering a discrete motion (displacement)
from image correspondences. Similar ideas certainly apply to the differential case where the rotation and
translation are replaced by angular and linear velocities respectively [14]. Optimization schemes for the
differential case have also been studied by many researchers, including the most recent Bilinear Projection
Algorithm (BPA) proposed in [18] and a robust algorithm proposed in [24]. Similarly, one can show that
they all in fact minimize certain normalized versions of the differential epipolar constraint. We hope the
Riemannian optimization theoretic viewpoint proposed in this paper will provide a different perspective
to revisit these schemes. Although the study of the proposed algorithms is carried out in a calibrated
camera framework, due to a clear geometric connection between the calibrated and uncalibrated case [11],
the same approach and optimization schemes can be generalized with little effort to the uncalibrated case
as well. Details will be presented in future work. As we pointed out in this paper, Riemannian optimization
algorithms can be easily generalized to products of manifolds. Thus, although the proposed Newton’s
algorithm is for 2-frame and a single rigid body motion, it can be easily generalized to multi-frame and
multi-body cases. Only the underlying search spaces of optimization will be replaced by (products of) Lie
groups and Stiefel manifolds. Comparing to other existing algorithms and conjugate gradient algorithms,
the Newton’s algorithm involves more computational cost in each iteration step. However, it has the fastest
rate of convergence. This is very important when the dimension of the search space is high (for instance,
multi-body motion recovery problem). This is because the number of search steps usually increases with the
dimension, and each step becomes more costly. We will study these issues in future work.
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