
1

SQL Constraints and Triggers

Week 12

SQL Constraints

•  Constraints
– Primary Key (covered)
– Foreign Key (covered)
– General table constraints
– Domain constraints
– Assertions

•  Triggers

Primary Key Constraints

•  Every table should have a primary key
•  When a primary key constraint is created it

specifies that:
– The attributes of the primary key cannot be null
– The primary key must be unique

•  Violating a primary key causes the violating
update to be rejected

Foreign Key Constraints
•  Represents a relationship between two tables
•  If a table R contains a foreign key on attributes
{a} that references table S:
– {a} generally correspond to the primary key of S

•  Must have the same number of attributes, and
•  The same domains

– Any value for {a} in R must also exist in S
except that

•  If {a} is not part of the primary key of R it may be null
– There may be values for {a} in S that are not in R

Foreign Key Specification
•  Foreign keys specify the actions to be taken if

referenced records are updated or deleted
– For example, create a foreign key in Account that

references Branch
•  Assign accounts of a deleted branch to the Fairfax

branch
•  Cascade any change in branch names

Cascading Changes

•  It is possible that there can be a chain of
foreign key dependencies
–  e.g. branches, accounts, transactions

•  A cascading deletion in one table may cause
similar deletions in a table that references it
–  If any cascading deletion or update causes a

violation, the entire transaction is aborted

Referencing non-Primary Keys

•  By default SQL foreign keys reference the
primary key (of the referenced table)

•  It is possible to reference a list of (non-
primary-key) attributes
– The list must be specified after the name of the

referenced table
– The specified list of attributes must be declared

as a candidate key of the referenced table

General Constraints
•  A general or table constraint is a constraint

over a single table
–  Included in a table's CREATE TABLE

statement
– Table constraints may refer to other tables

•  Defined with the CHECK keyword followed
by a description of the constraint
– The constraint description is a Boolean

expression, evaluating to true or false
–  If the condition evaluates to false the update is

rejected

Constraint Example
•  Check that a customer's age is greater than 18,

and that a customer is not an employee

CREATE TABLE Customer
 (SSN CHAR(11),
 …,

 income REAL,
 PRIMARY KEY (SSN),
 CONSTRAINT CustAge CHECK (age > 18),
 CONSTRAINT notEmp CHECK (SSN NOT IN
 (SELECT empSSN
 FROM Employee)))

Domain Constraints

•  New domains can be created using the
CREATE DOMAIN statement
– Each such domain must have an underlying

source type (i.e. an SQL base type)
– A domain must have a name, base type, a

restriction, and a default optional value
•  The restriction is defined with a CHECK statement

•  Domains are part of the DB schema but are
not attached to individual table schemata

Domain Constraint Example
•  Create a domain for minors, who have ages

between 0 and 18
– Make the default age 10

CREATE DOMAIN minorAge INTEGER DEFAULT 10
 CHECK (VALUE > 0 AND VALUE <= 18)

Using Domain Constraints
•  A domain can be used instead of one of the base

types in a CREATE TABLE statement
–  Comparisons between two domains are made in terms of

the underlying base types
•  e.g. comparing an age with an account number domain simply

compares two integers

•  The SQL:1999 standard introduced syntax for distinct
types
–  Types are distinct so that values of different types cannot

be compared
•  Not supported by Oracle

–  Create a table that holds the domain values instead, and
reference this table

Creating Domains in Oracle (review)
•  Say you want to restrict the values of GPA

(0 < GPA <= 4.0)

•  Approach 1: Specify constraint when
defining the table

13

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa REAL check(gpa <= 4.0 AND gpa > 0));

Creating Domains
•  Approach 2: After CREATING TABLE,

use ALTER TABLE

14

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa REAL);

ALTER TABLE Students
ADD CONSTRAINT check_gpa CHECK(gpa > 0 AND gpa <= 4.0);

To specify a set of allowed values, do something like this (using either approach):
 … CHECK(gender=‘M’ OR gender=‘F’)

Creating Types

•  The SQL CREATE TYPE clause defines
new types
– To create distinct age and account number

types:
• CREATE TYPE Ages AS INTEGER
• CREATE TYPE Accounts AS INTEGER

– Assignments, or comparisons between ages and
account numbers would now be illegal

•  Although it is possible to cast one type to another

Deferring Constraint Checking

•  For circular references, or the chicken-and-
egg problems:

16

CREATE TABLE chicken (cID INT PRIMARY KEY,"
 eID INT REFERENCES egg(eID));"
"
CREATE TABLE egg(eID INT PRIMARY KEY,"
 cID INT REFERENCES chicken(cID));"

Deferring Constraint Checking

•  To get around this, create tables without
foreign key constraints, then alter table:

17

CREATE TABLE chicken(cID INT PRIMARY KEY,"
 eID INT);"
CREATE TABLE egg(eID INT PRIMARY KEY,"
 cID INT);"
"
ALTER TABLE chicken ADD CONSTRAINT chickenREFegg"
 FOREIGN KEY (eID) REFERENCES egg(eID)"
 INITIALLY DEFERRED DEFERRABLE;"
"
ALTER TABLE egg ADD CONSTRAINT eggREFchicken"
 FOREIGN KEY (cID) REFERENCES chicken(cID)"
 INITIALLY DEFERRED DEFERRABLE;"

•  To drop tables, drop the constraints first.

18

ALTER TABLE egg DROP CONSTRAINT eggREFchicken;"
ALTER TABLE chicken DROP CONSTRAINT chickenREFegg;"
"
DROP TABLE egg;"
DROP TABLE chicken;"

Deferring Constraint Checking

Assertions

•  Table constraints apply to only one table
•  Assertions are constraints that are separate

from CREATE TABLE statements
– Similar to domain constraints, they are separate

statements in the DB schema
– Assertions are tested whenever the DB is

updated
•  Therefore they may introduce significant overhead

Note: Not supported in Oracle

Example Assertion
•  Check that a branch's assets are greater than

the total account balances held in the branch
CREATE ASSERTION assetCoverage
CHECK (NOT EXISTS
 (SELECT *
 FROM Branch B
 WHERE assets <
 (SELECT SUM (A.balance)
 FROM Account A
 WHERE A.brName = B.brName)))

Assertion Limitations
•  There are some constraints that cannot be

modeled with table constraints or assertions
– What if there were participation constraints

between customers and accounts?
•  Every customer must have at least one account and

every account must be held by at least one customer

– An assertion could be created to check this
situation

•  But would prevent new customers or accounts being
added!

Triggers
•  A trigger is a procedure that is invoked by the

DBMS as a response to a specified change
•  A DB that has a set of associated triggers is

referred to as an active database
•  Triggers are available in most current

commercial DB products
– And are part of the SQL 1999 standard

•  Triggers carry out actions when their
triggering conditions are met
– Generally SQL constraints only reject transactions

Why Use Triggers?

•  Triggers can implement business rules
–  e.g. creating a new loan when a customer's

account is overdrawn
•  Triggers may also be used to maintain data

in related database tables
–  e.g. Updating derived attributes when

underlying data is changed, or maintaining
summary data

Trigger Components
•  Event (activates the trigger)

– A specified modification to the DB
•  May be an insert, deletion, or change
•  May be limited to specific tables
•  The trigger may fire before or after the transaction

•  Condition
•  Action

Trigger Components
•  Event
•  Condition (tests whether the triggers should

run)
– A Boolean expression or a query

•  If the query answer set is non-empty it evaluates to true,
otherwise false

•  If the condition is true the trigger action occurs

•  Action

Trigger Components
•  Event
•  Condition
•  Action (what happens if the trigger runs)

– A trigger's action can be very far-ranging, e.g.
•  Execute queries
•  Make modifications to the DB
•  Create new tables
•  Call host-language procedures

Triggers
•  Synchronization of the Trigger with the

activating statement (DB modification)
– Before
– After

•  Number of Activations of the Trigger
– Once per modified tuple

(FOR EACH ROW)
– Once per activating statement

(default).

Two kinds of triggers
•  Statement-level trigger: executed once for all the

tuples that are changed in one SQL statement.
	 REFERENCING	 	 NEW	 TABLE	 AS	 	 newtuples,	 	 	 //	 Set of new tuples

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 OLD	 TABLE	 AS	 	 	 oldtuples	 	 	 	 	 	 //	 Set of old tuples

•  Row-level trigger: executed once for each
modified tuple.
	 REFERENCING	 	 OLD	 AS	 	 	 	 oldtuple,	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 NEW	 AS	 	 newtuple	

newtuples, oldtuple, newtuple can be used in the CONDITION
and ACTION clauses

Triggers
•  Options for the REFERENCING clause:

–  NEW TABLE: the set of tuples newly inserted
(INSERT).

–  OLD TABLE: the set of deleted or old versions of tuples
(DELETE / UPDATE).

–  OLD ROW: the old version of the tuple (FOR EACH
ROW UPDATE).

–  NEW ROW: the new version of the tuple (FOR EACH
ROW UPDATE).

•  The action of a trigger can consist of multiple
SQL statements, surrounded by BEGIN . . .
END.

Triggers
CREATE TRIGGER youngSailorUpdate
 AFTER INSERT ON SAILORS /* Event */
 REFERENCING NEW TABLE NewSailors
 FOR EACH STATEMENT

 INSERT /* Action */
 INTO YoungSailors(sid, name, age, rating)
 SELECT sid, name, age, rating
 FROM NewSailors N
 WHERE N.age <= 18;

•  This trigger inserts young sailors into a separate table.
•  It has no (i.e., an empty, always true) condition.

Triggers
CREATE TRIGGER notTooManyReservations
 AFTER INSERT ON Reserves /* Event */
 REFERENCING NEW ROW NewReservation
 FOR EACH ROW
 WHEN (10 <= (SELECT COUNT(*)

 FROM Reserves
 WHERE sid =NewReservation.sid)) /* Condition */

 DELETE FROM Reserves R
 WHERE R.sid= NewReservation.sid /* Action */

 AND day=
 (SELECT MIN(day) FROM Reserves R2 WHERE R2.sid=R.sid);

•  This trigger makes sure that a sailor has less than 10 reservations, deleting

the oldest reservation of a given sailor, if neccesary.
•  It has a non- empty condition (WHEN).

Triggers in Oracle

CREATE [OR REPLACE] TRIGGER <trigger_name>
 {BEFORE|AFTER} {INSERT|DELETE|UPDATE} ON <table_name>

 [REFERENCING [NEW AS <new_row_name>] [OLD AS <old_row_name>]]
 [FOR EACH ROW [WHEN (<trigger_condition>)]]
 <trigger_body>

32

33

CREATE TABLE T4 (a INTEGER, b CHAR(10));
CREATE TABLE T5 (c CHAR(10), d INTEGER);

CREATE TRIGGER trig1

 AFTER INSERT ON T4
 REFERENCING NEW AS newRow
 FOR EACH ROW
 WHEN (newRow.a <= 10)
 BEGIN
 INSERT INTO T5 VALUES(:newRow.b, :newRow.a);
 END trig1;

Create a trigger that checks whether a new tuple inserted into T4
has the first attribute <= 10. If so, insert the reverse tuple into T5.

Examples from http://infolab.stanford.edu/~ullman/fcdb/oracle/or-triggers.html

