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Basic form of SQL Queries 

•  target-list  A list of attributes of output relations in 
relation-list 

•  relation-list  A list of relation names (possibly with a 
range-variable after each name) 

  e.g. Sailors S, Reserves R 
•  qualification  Comparisons (Attr op const or Attr1 op 

Attr2, where op is one of <, >, ≤, ≥, =, ≠)  combined using 
AND, OR and NOT. 

SELECT        target-list 
FROM         relation-list 
WHERE        qualification 
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What’s contained in an SQL Query? 
 
 
 
 
 
Every SQL Query must have: 
 
•  SELECT clause: specifies columns to be retained in 

result 
•  FROM clause: specifies a cross-product of tables 
 
The WHERE clause (optional) specifies selection 

conditions on the tables mentioned in the FROM clause 

SELECT        target-list 
FROM         relation-list 
WHERE        qualification 
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General SQL Conceptual Evaluation 
Strategy 

•   Semantics of an SQL query defined in terms of 
the following conceptual evaluation strategy: 
–  Compute the cross-product of relation-list. 
–  Discard resulting tuples if they fail qualifications. 
–  Delete attributes that are not in target-list. 

•  This strategy is probably the least efficient way 
to compute a query!  An optimizer will find more 
efficient strategies to compute the same answers. 



5 

Table Definitions 

We will be using the following relations in our 
examples: 

 
   Sailors(sid, sname, rating, age) 
 

   Boats(bid, bname, color) 
 

   Reserves(sid, bid, day) 
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sid sname rating age 

22 Dustin 7 45.0 

29 Brutus 1 33.0 

31 Lubber 8 55.5 

32 Andy 8 25.5 

58 Rusty 10 35.0 

64 Horatio 7 35.0 

71 Zorba 10 16.0 

74 Horatio 9 35.0 

85 Art 3 25.5 

95 Bob 3 63.5 

sid bid day 

22 101 10/10/04 

22 102 10/10/04 

22 103 10/08/04 

22 104 10/07/04 

31 102 11/10/04 

31 103 11/06/04 

31 104 11/12/04 

64 101 09/05/04 

64 102 09/08/04 

74 103 09/08/04 

bid bname Color 

101 Interlake blue 

102 Interlake red 

103 Clipper green 

104 Marine red 

Sailors Reserves 

Boats 
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A Simple SQL Query 

Find the names and 
ages of all sailors 

sid sname rating age 
22 Dustin 7 45.0 
29 Brutus 1 33.0 
31 Lubber 8 55.5 
32 Andy 8 25.5 
58 Rusty 10 35.0 
64 Horatio 7 35.0 
71 Zorba 10 16.0 
74 Horatio 9 35.0 
85 Art 3 25.5 
95 Bob 3 63.5 
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Result of Previous Query 

SELECT S.sname, S.age 
FROM Sailors S; 

Duplicate Results 

sname age 
Dustin 45.0 
Brutus 33.0 
Lubber 55.5 
Andy 25.5 
Rusty 35.0 

Horatio 35.0 
Zorba 16.0 

Horatio 35.0 
Art 25.5 
Bob 63.5 
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Preventing Duplicate Tuples in 
the Result 

•  Use the DISTINCT keyword in the 
SELECT clause: 

  SELECT DISTINCT S.sname, S.age 
  FROM Sailors S; 
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Results of Original Query 
without Duplicates 

Appears only once 

sname age 
Dustin 45.0 
Brutus 33.0 
Lubber 55.5 
Andy 25.5 
Rusty 35.0 

Horatio 35.0 
Zorba 16.0 

Art 25.5 
Bob 63.5 
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Example SQL Query…1 

 Find the names of sailors who have reserved boat 
103 

 

 Relational Algebra: 
 πsname ((σbid=103Reserves)     Sailors) 

 

 SQL: 
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Example SQL Query…1 

 Find the names of sailors who have reserved boat 
103 

 

 Relational Algebra: 
 πsname ((σbid=103Reserves)     Sailors) 

 

 SQL: 
 

 SELECT  S.sname 
 FROM     Sailors S, Reserves R 
 WHERE  S.sid=R.sid AND R.bid=103; 
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Result of Previous Query 
sid bid day 
22 103 10/08/04 

31 103 11/06/04 

74 103 09/08/04 

sid sname rating age 
22 Dustin 7 45.0 

29 Brutus 1 33.0 

31 Lubber 8 55.5 

32 Andy 8 25.5 

58 Rusty 10 35.0 

64 Horatio 7 35.0 

71 Zorba 10 16.0 

74 Horatio 9 35.0 

85 Art 3 25.5 

95 Bob 3 63.5 

sname 
Dustin 
Lubber 
Horatio 

Result: 
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A Note on Range Variables 

•  Really needed only if the same relation appears twice 
in the FROM clause.  The previous query can also be 
written as: 

 
SELECT  S.sname 
FROM     Sailors S, Reserves R 
WHERE  S.sid=R.sid AND R.bid=103; 
 
OR 
 
SELECT  sname 
FROM     Sailors, Reserves  
WHERE  Sailors.sid=Reserves.sid AND bid=103; 

However, it is a good  
style to always use 
range variables! 
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Example SQL Query…2 

Find the sids of sailors who have reserved a red boat 
 
SELECT R.sid 
FROM Boats B, Reserves R 
WHERE B.bid=R.bid AND B.color=‘red’; 
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Example SQL Query…3 

Find the names of sailors who have reserved a red boat 
 
SELECT S.sname 
FROM Sailors S, Boats B, Reserves R 
WHERE S.sid=R.sid AND B.bid=R.bid AND 
               B.color=‘red’; 
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Example SQL Query…4 

Find the colors of boats reserved by ‘Lubber’ 
 
SELECT B.color 
FROM Sailors S, Reserves R, Boats B 
WHERE S.sid=R.sid AND R.bid=B.bid AND    
               S.sname=‘Lubber’; 
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Example SQL Query…5 

Find the names of sailors who have reserved at 
least one boat 
 
SELECT S.sname 
FROM Sailors S, Reserves R 
WHERE S.sid=R.sid; 
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Expressions and Strings 

•  AS and = are two ways to name fields in 
result. 

•  LIKE is used for string matching. ‘_’ 
stands for exactly one arbitrary character 
and ‘%’ stands for 0 or more arbitrary 
characters.   
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Expressions and Strings Example 
Find triples (of ages of sailors and two fields defined by 

expressions, i.e. current age-1 and twice the current age) for 
sailors whose names begin and end with B and contain at 
least three characters. 

SELECT  S.age, age1=S.age-1, 2*S.age AS age2 
FROM  Sailors S 
WHERE  S.sname LIKE ‘B_%B’; 

age age1 age2 
63.5 62.5 127.0 

63.53Bob95
25.53Art85
35.09Horatio74
16.010Zorba71
35.07Horatio64
35.010Rusty58
25.58Andy32
55.58Lubber31
33.01Brutus29
45.07Dustin22
ageratingsnamesid

63.53Bob95
25.53Art85
35.09Horatio74
16.010Zorba71
35.07Horatio64
35.010Rusty58
25.58Andy32
55.58Lubber31
33.01Brutus29
45.07Dustin22
ageratingsnamesid

Result: 
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UNION, INTERSECT, EXCEPT 

•  UNION: Can be used to compute the union of any 
two union-compatible sets of tuples (which are 
themselves the result of SQL queries). 

•  EXCEPT: Can be used to compute the set-
difference operation on two union-compatible sets 
of tuples (Note: In ORACLE, the command for 
set-difference is MINUS). 

•  INTERSECT: Can be used to compute the 
intersection of any two  union-compatible sets of 
tuples. 
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Illustration of UNION…1 

Find the names of sailors who have reserved a red or a 
green boat 

 
Intuitively, we would write: 
 

 SELECT  S.sname 
 FROM  Sailors S, Boats B, Reserves R 
 WHERE  S.sid=R.sid AND R.bid=B.bid 

             AND (B.color=‘red’ OR B.color=‘green’); 
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Illustration of UNION…2 
We can also do this using a UNION keyword: 
 
SELECT  S.sname 
FROM  Sailors S, Boats B, Reserves R 
WHERE  S.sid=R.sid AND R.bid=B.bid 
                AND B.color=‘red’ 
UNION 
SELECT  S.sname 
FROM  Sailors S, Boats B, Reserves R 
WHERE  S.sid=R.sid AND R.bid=B.bid 
                AND B.color=‘green’; 

Unlike other operations, UNION 
eliminates duplicates! Same as INTERSECT, 
EXCEPT. To retain duplicates, use  
“UNION ALL” 
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Illustration of INTERSECT…1 

Find names of sailors who’ve reserved a red and a green 
boat 

Intuitively, we would write the SQL query as: 
 
SELECT  S.sname 
FROM     Sailors S, Boats B1, Reserves R1, Boats B2,       

       Reserves R2 
WHERE  S.sid=R1.sid AND R1.bid=B1.bid 
                AND  S.sid=R2.sid AND R2.bid=B2.bid 
         AND (B1.color=‘red’ AND B2.color=‘green’); 
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Illustration of INTERSECT…2 
         We can also do this using a INTERSECT keyword: 
 
SELECT  S.sname 
FROM  Sailors S, Boats B, Reserves R 
WHERE  S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’ 
INTERSECT 
SELECT  S2.sname 
FROM  Sailors S2, Boats B2, Reserves R2 
WHERE  S2.sid=R2.sid AND R2.bid=B2.bid AND B2.color=‘green’; 
 

(Is this correct??) 
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(Semi-)Correct SQL Query for 
the Previous Example 

 
SELECT  S.sid 
FROM  Sailors S, Boats B, Reserves R 
WHERE  S.sid=R.sid AND R.bid=B.bid 
                AND B.color=‘red’ 

INTERSECT 

SELECT  S2.sid 
FROM  Sailors S2, Boats B2, Reserves R2 
WHERE  S2.sid=R2.sid AND R2.bid=B2.bid 
                AND B2.color=‘green’; 
 
(This time we have actually extracted the sids of sailors, and not their 
names.) 
(But the query asks for the names of the sailors.) 
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Illustration of EXCEPT 

Find the sids of all sailors who have reserved red boats but 
not green boats: 
 
SELECT  S.sid 
FROM  Sailors S, Boats B, Reserves R 
WHERE  S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’ 
EXCEPT 

SELECT  S2.sid 
FROM  Sailors S2, Boats B2, Reserves R2 
WHERE  S2.sid=R2.sid AND R2.bid=B2.bid AND B2.color=‘green’; 

Use MINUS instead of EXCEPT in Oracle 
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Nested Queries 
•  A nested query is a query that has another query 

embedded within it; this embedded query is called the 
subquery. 

•  Subqueries generally occur within the WHERE clause 
(but can also appear within the FROM and HAVING 
clauses) 

 

•  Nested queries are a very powerful feature of SQL. They 
help us write short and efficient queries. 

 

(Think of nested for loops in C++. Nested queries in SQL are similar) 
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Nested Query 1 

Find names of sailors who have reserved boat 103 
 
 
SELECT  S.sname 
FROM  Sailors S 
WHERE  S.sid IN  ( SELECT  R.sid 
                                  FROM  Reserves R 
                                  WHERE  R.bid=103); 
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Nested Query 2 
 

Find names of sailors who have not reserved boat 103 
 
 
SELECT  S.sname 
FROM  Sailors S 
WHERE  S.sid NOT IN  ( SELECT  R.sid 
                                           FROM  Reserves R 
                                           WHERE  R.bid=103 ) 
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Nested Query 3 
 

Find the names of sailors who have reserved a red boat 
 
SELECT  S.sname 
FROM  Sailors S 
WHERE  S.sid IN  (SELECT  R.sid 
                                  FROM  Reserves R 
                                  WHERE  R.bid IN (SELECT B.bid 

             FROM Boats B 
             WHERE B.color = ‘red’)); 

What about Find the names of sailors who have NOT reserved a red boat? 
 



 
Revisit a previous query 

 
Find names of sailors who’ve reserved a red and a green boat 

 
SELECT  S.sid 
FROM  Sailors S, Boats B, Reserves R 
WHERE  S.sid=R.sid AND R.bid=B.bid 
                AND B.color=‘red’ 
INTERSECT 
SELECT  S2.sid 
FROM  Sailors S2, Boats B2, Reserves R2 
WHERE  S2.sid=R2.sid AND R2.bid=B2.bid 
                AND B2.color=‘green’; 
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SELECT  S.sname  
FROM Sailor S 
WHERE S.sid IN (SELECT R.sid 
                                 FROM  Boats B, Reserves R 
                                 WHERE  R.bid=B.bid AND B.color=‘red’ 
                                 INTERSECT 
                                 SELECT  R2.sid 
                                 FROM  Boats B2, Reserves R2 
                                 WHERE  R2.bid=B2.bid AND B2.color=‘green’); 

34 

 
Revisit a previous query 

 
Find names of sailors who’ve reserved a red and a green boat 
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Correlated Nested Queries…1 

•  Thus far, we have seen nested queries where 
the inner subquery is independent of the outer 
query. 

 
•  We can make the inner subquery depend on 

the outer query. This is called correlation. 
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Correlated Nested Queries…2 

Find names of sailors who have reserved boat 103 
 
 
SELECT  S.sname 
FROM  Sailors S 
WHERE  EXISTS  (SELECT  * 
                                 FROM  Reserves R 
                                 WHERE  R.bid=103 AND R.sid=S.sid); 
 
 

Tests whether the set 
is nonempty. If it is, 
then return TRUE. 

(For finding sailors who have not reserved boat 103, we   
would use NOT EXISTS) 
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Correlated Nested Query - Division 
 

Find the names of sailors who have reserved ALL boats 
(DIVISION) 
 
 
SELECT S.sname 
FROM Sailors S 
WHERE NOT EXISTS ((SELECT B.bid 

               FROM Boats B) 
               EXCEPT 
              (SELECT R.bid 
               FROM Reserves R 
               WHERE R.sid = S.sid)); 

 
 
(For each sailor S, we check to see that the set of boats reserved by S includes 

every boat) 
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Correlated Nested Query 2 

Alternatively, 
 

Find the names of sailors who have reserved ALL boats 
 
 
SELECT S.sname 
FROM Sailors S 
WHERE NOT EXISTS (SELECT B.bid 

               FROM Boats B 
               WHERE NOT EXISTS (SELECT R.bid 
               FROM Reserves R 
               WHERE R.bid = B.bid AND 
                R.sid = S.sid )); 

 
 



NOT EXISTS vs. NOT IN 

employee_id employee_name manager_id 
1 John 5 
2 David 5 
3 Joe 5 
4 Brandon 5 
5 Chris NULL 
6 Jen 5 
7 Kim 5 
8 Mary 5 
9 Dennis 5 
10 Jim 5 

Employee2 



NOT EXISTS vs. NOT IN 
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•  Find employees who are not managers 
Try: 
 
SELECT COUNT(*) 
FROM Employee2 E 
WHERE E.employee_id NOT IN 
                 (SELECT E2.manager_id 
                   FROM Employee2 E2); 



NOT EXISTS vs. NOT IN 
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•  Find employees who are not managers 
 
SELECT COUNT(*) 
FROM Employee2 E 
WHERE E.employee_id NOT IN 
                 (SELECT E2.manager_id 
                   FROM Employee2 E2); 
COUNT = 0 (!) 



NOT EXISTS vs. NOT IN 
•  Find employees who are not managers 
Try again: 
 
SELECT COUNT(*) 
FROM Employee2 E 
WHERE NOT EXISTS 
                 (SELECT * 
                   FROM Employee2 E2 

          WHERE E2.manager_id = E.employee_id); 



NOT EXISTS vs. NOT IN 
•  Find employees who are not managers 
Try again: 
 
SELECT COUNT(*) 
FROM Employee2 E 
WHERE NOT EXISTS 
                 (SELECT * 
                   FROM Employee2 E2 

          WHERE E2.manager_id = E.employee_id); 

COUNT = 9! 



NOT EXISTS vs. NOT IN 
•  Find employees who are not managers 
Another option: 
 
SELECT COUNT(*) 
FROM Employee2 E LEFT OUTER JOIN Employee2 E2 
            ON E.employee_id = E2.manager_id 
WHERE E2.manager_id IS NULL; 
 



NOT EXISTS vs. NOT IN 

•  Performance 
– NOT IN: Query performs nested full table scans 
– NOT EXISTS: Query can use an index within the sub-

query. 
 


