
SQL - 1

Week 6

2

Basic form of SQL Queries

•  target-list A list of attributes of output relations in
relation-list

•  relation-list A list of relation names (possibly with a
range-variable after each name)

 e.g. Sailors S, Reserves R
•  qualification Comparisons (Attr op const or Attr1 op

Attr2, where op is one of <, >, ≤, ≥, =, ≠) combined using
AND, OR and NOT.

SELECT target-list
FROM relation-list
WHERE qualification

3

What’s contained in an SQL Query?

Every SQL Query must have:

•  SELECT clause: specifies columns to be retained in

result
•  FROM clause: specifies a cross-product of tables

The WHERE clause (optional) specifies selection

conditions on the tables mentioned in the FROM clause

SELECT target-list
FROM relation-list
WHERE qualification

4

General SQL Conceptual Evaluation
Strategy

•  Semantics of an SQL query defined in terms of
the following conceptual evaluation strategy:
–  Compute the cross-product of relation-list.
–  Discard resulting tuples if they fail qualifications.
–  Delete attributes that are not in target-list.

•  This strategy is probably the least efficient way
to compute a query! An optimizer will find more
efficient strategies to compute the same answers.

5

Table Definitions

We will be using the following relations in our
examples:

 Sailors(sid, sname, rating, age)

 Boats(bid, bname, color)

 Reserves(sid, bid, day)

6

sid sname rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35.0

64 Horatio 7 35.0

71 Zorba 10 16.0

74 Horatio 9 35.0

85 Art 3 25.5

95 Bob 3 63.5

sid bid day

22 101 10/10/04

22 102 10/10/04

22 103 10/08/04

22 104 10/07/04

31 102 11/10/04

31 103 11/06/04

31 104 11/12/04

64 101 09/05/04

64 102 09/08/04

74 103 09/08/04

bid bname Color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

Sailors Reserves

Boats

7

A Simple SQL Query

Find the names and
ages of all sailors

sid sname rating age
22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5

8

Result of Previous Query

SELECT S.sname, S.age
FROM Sailors S;

Duplicate Results

sname age
Dustin 45.0
Brutus 33.0
Lubber 55.5
Andy 25.5
Rusty 35.0

Horatio 35.0
Zorba 16.0

Horatio 35.0
Art 25.5
Bob 63.5

9

Preventing Duplicate Tuples in
the Result

•  Use the DISTINCT keyword in the
SELECT clause:

 SELECT DISTINCT S.sname, S.age
 FROM Sailors S;

10

Results of Original Query
without Duplicates

Appears only once

sname age
Dustin 45.0
Brutus 33.0
Lubber 55.5
Andy 25.5
Rusty 35.0

Horatio 35.0
Zorba 16.0

Art 25.5
Bob 63.5

11

Example SQL Query…1

 Find the names of sailors who have reserved boat
103

 Relational Algebra:
 πsname ((σbid=103Reserves) Sailors)

 SQL:

12

Example SQL Query…1

 Find the names of sailors who have reserved boat
103

 Relational Algebra:
 πsname ((σbid=103Reserves) Sailors)

 SQL:

 SELECT S.sname
 FROM Sailors S, Reserves R
 WHERE S.sid=R.sid AND R.bid=103;

13

Result of Previous Query
sid bid day
22 103 10/08/04

31 103 11/06/04

74 103 09/08/04

sid sname rating age
22 Dustin 7 45.0

29 Brutus 1 33.0

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35.0

64 Horatio 7 35.0

71 Zorba 10 16.0

74 Horatio 9 35.0

85 Art 3 25.5

95 Bob 3 63.5

sname
Dustin
Lubber
Horatio

Result:

14

A Note on Range Variables

•  Really needed only if the same relation appears twice
in the FROM clause. The previous query can also be
written as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103;

OR

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid AND bid=103;

However, it is a good
style to always use
range variables!

15

Example SQL Query…2

Find the sids of sailors who have reserved a red boat

SELECT R.sid
FROM Boats B, Reserves R
WHERE B.bid=R.bid AND B.color=‘red’;

16

Example SQL Query…3

Find the names of sailors who have reserved a red boat

SELECT S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND B.bid=R.bid AND
 B.color=‘red’;

17

Example SQL Query…4

Find the colors of boats reserved by ‘Lubber’

SELECT B.color
FROM Sailors S, Reserves R, Boats B
WHERE S.sid=R.sid AND R.bid=B.bid AND
 S.sname=‘Lubber’;

18

Example SQL Query…5

Find the names of sailors who have reserved at
least one boat

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid;

19

Expressions and Strings

•  AS and = are two ways to name fields in
result.

•  LIKE is used for string matching. ‘_’
stands for exactly one arbitrary character
and ‘%’ stands for 0 or more arbitrary
characters.

20

Expressions and Strings Example
Find triples (of ages of sailors and two fields defined by

expressions, i.e. current age-1 and twice the current age) for
sailors whose names begin and end with B and contain at
least three characters.

SELECT S.age, age1=S.age-1, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’;

age age1 age2
63.5 62.5 127.0

63.53Bob95
25.53Art85
35.09Horatio74
16.010Zorba71
35.07Horatio64
35.010Rusty58
25.58Andy32
55.58Lubber31
33.01Brutus29
45.07Dustin22
ageratingsnamesid

63.53Bob95
25.53Art85
35.09Horatio74
16.010Zorba71
35.07Horatio64
35.010Rusty58
25.58Andy32
55.58Lubber31
33.01Brutus29
45.07Dustin22
ageratingsnamesid

Result:

21

UNION, INTERSECT, EXCEPT

•  UNION: Can be used to compute the union of any
two union-compatible sets of tuples (which are
themselves the result of SQL queries).

•  EXCEPT: Can be used to compute the set-
difference operation on two union-compatible sets
of tuples (Note: In ORACLE, the command for
set-difference is MINUS).

•  INTERSECT: Can be used to compute the
intersection of any two union-compatible sets of
tuples.

22

Illustration of UNION…1

Find the names of sailors who have reserved a red or a
green boat

Intuitively, we would write:

 SELECT S.sname
 FROM Sailors S, Boats B, Reserves R
 WHERE S.sid=R.sid AND R.bid=B.bid

 AND (B.color=‘red’ OR B.color=‘green’);

23

Illustration of UNION…2
We can also do this using a UNION keyword:

SELECT S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘red’
UNION
SELECT S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘green’;

Unlike other operations, UNION
eliminates duplicates! Same as INTERSECT,
EXCEPT. To retain duplicates, use
“UNION ALL”

24

Illustration of INTERSECT…1

Find names of sailors who’ve reserved a red and a green
boat

Intuitively, we would write the SQL query as:

SELECT S.sname
FROM Sailors S, Boats B1, Reserves R1, Boats B2,

 Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid
 AND S.sid=R2.sid AND R2.bid=B2.bid
 AND (B1.color=‘red’ AND B2.color=‘green’);

25

Illustration of INTERSECT…2
 We can also do this using a INTERSECT keyword:

SELECT S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
INTERSECT
SELECT S2.sname
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid AND B2.color=‘green’;

(Is this correct??)

26

(Semi-)Correct SQL Query for
the Previous Example

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘red’

INTERSECT

SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid
 AND B2.color=‘green’;

(This time we have actually extracted the sids of sailors, and not their
names.)
(But the query asks for the names of the sailors.)

27

Illustration of EXCEPT

Find the sids of all sailors who have reserved red boats but
not green boats:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
EXCEPT

SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid AND B2.color=‘green’;

Use MINUS instead of EXCEPT in Oracle

28

Nested Queries
•  A nested query is a query that has another query

embedded within it; this embedded query is called the
subquery.

•  Subqueries generally occur within the WHERE clause
(but can also appear within the FROM and HAVING
clauses)

•  Nested queries are a very powerful feature of SQL. They
help us write short and efficient queries.

(Think of nested for loops in C++. Nested queries in SQL are similar)

29

Nested Query 1

Find names of sailors who have reserved boat 103

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103);

30

Nested Query 2

Find names of sailors who have not reserved boat 103

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103)

31

Nested Query 3

Find the names of sailors who have reserved a red boat

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid IN (SELECT B.bid

 FROM Boats B
 WHERE B.color = ‘red’));

What about Find the names of sailors who have NOT reserved a red boat?

Revisit a previous query

Find names of sailors who’ve reserved a red and a green boat

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘red’
INTERSECT
SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid
 AND B2.color=‘green’;

32

SELECT S.sname
FROM Sailor S
WHERE S.sid IN (SELECT R.sid
 FROM Boats B, Reserves R
 WHERE R.bid=B.bid AND B.color=‘red’
 INTERSECT
 SELECT R2.sid
 FROM Boats B2, Reserves R2
 WHERE R2.bid=B2.bid AND B2.color=‘green’);

34

Revisit a previous query

Find names of sailors who’ve reserved a red and a green boat

35

Correlated Nested Queries…1

•  Thus far, we have seen nested queries where
the inner subquery is independent of the outer
query.

•  We can make the inner subquery depend on

the outer query. This is called correlation.

36

Correlated Nested Queries…2

Find names of sailors who have reserved boat 103

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
 FROM Reserves R
 WHERE R.bid=103 AND R.sid=S.sid);

Tests whether the set
is nonempty. If it is,
then return TRUE.

(For finding sailors who have not reserved boat 103, we
would use NOT EXISTS)

37

Correlated Nested Query - Division

Find the names of sailors who have reserved ALL boats
(DIVISION)

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS ((SELECT B.bid

 FROM Boats B)
 EXCEPT
 (SELECT R.bid
 FROM Reserves R
 WHERE R.sid = S.sid));

(For each sailor S, we check to see that the set of boats reserved by S includes

every boat)

38

Correlated Nested Query 2

Alternatively,

Find the names of sailors who have reserved ALL boats

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

 FROM Boats B
 WHERE NOT EXISTS (SELECT R.bid
 FROM Reserves R
 WHERE R.bid = B.bid AND
 R.sid = S.sid));

NOT EXISTS vs. NOT IN

employee_id employee_name manager_id
1 John 5
2 David 5
3 Joe 5
4 Brandon 5
5 Chris NULL
6 Jen 5
7 Kim 5
8 Mary 5
9 Dennis 5
10 Jim 5

Employee2

NOT EXISTS vs. NOT IN

40

•  Find employees who are not managers
Try:

SELECT COUNT(*)
FROM Employee2 E
WHERE E.employee_id NOT IN
 (SELECT E2.manager_id
 FROM Employee2 E2);

NOT EXISTS vs. NOT IN

41

•  Find employees who are not managers

SELECT COUNT(*)
FROM Employee2 E
WHERE E.employee_id NOT IN
 (SELECT E2.manager_id
 FROM Employee2 E2);
COUNT = 0 (!)

NOT EXISTS vs. NOT IN
•  Find employees who are not managers
Try again:

SELECT COUNT(*)
FROM Employee2 E
WHERE NOT EXISTS
 (SELECT *
 FROM Employee2 E2

 WHERE E2.manager_id = E.employee_id);

NOT EXISTS vs. NOT IN
•  Find employees who are not managers
Try again:

SELECT COUNT(*)
FROM Employee2 E
WHERE NOT EXISTS
 (SELECT *
 FROM Employee2 E2

 WHERE E2.manager_id = E.employee_id);

COUNT = 9!

NOT EXISTS vs. NOT IN
•  Find employees who are not managers
Another option:

SELECT COUNT(*)
FROM Employee2 E LEFT OUTER JOIN Employee2 E2
 ON E.employee_id = E2.manager_id
WHERE E2.manager_id IS NULL;

NOT EXISTS vs. NOT IN

•  Performance
– NOT IN: Query performs nested full table scans
– NOT EXISTS: Query can use an index within the sub-

query.

