

Relational Algebra 2

Week 5

2

Relational Algebra (So far)
•  Basic operations:

–  Selection (σ) Selects a subset of rows from relation.
–  Projection (π) Deletes unwanted columns from relation.
–  Cross-product (×) Allows us to combine two relations.
–  Set-difference (-) Tuples in reln. 1, but not in reln. 2.
–  Union (∪) Tuples in reln. 1 and tuples in reln. 2.

Also,
–  Rename (ρ) Changes names of the attributes
–  Intersection (∩) Tuples in both reln. 1 and in reln. 2.

•  Since each operation returns a relation, operations can be composed! (Algebra is
“closed”.)

•  Use of temporary relations recommended.

3

Additional Operations
We define additional operations that do not add

any power to the relational algebra, but that
simplify common queries.

– Natural join
– Conditional Join
– Equi-Join
– Division

Also, we’ve already seen “Set intersection”:
 r ∩ s = r - (r - s)

All joins are really
special cases of
conditional join

4

Quick note on notation

customer-name loan-number
Patty 1234
Apu 3421
Selma 2342
Ned 4531

customer-name loan-number
Seymour 3432
Marge 3467
Selma 7625
Abraham 3597

good_customers bad_customers

If we have two or more relations which feature
the same attribute names, we could confuse them.
To prevent this we can use dot notation.
For example

 good_customers.loan-number

5

Natural-Join Operation: Motivation
cust-name l-number
Patty 1234
Apu 3421

l-number branch
1234 Dublin
3421 Irvine

borrower loan

cust-name borrower.l-number loan.l-number branch

Patty 1234 1234 Dublin

Patty 1234 3421 Irvine

Apu 3421 1234 Dublin

Apu 3421 3421 Irvine

cust-name borrower.l-number loan.l-number branch

Patty 1234 1234 Dublin

Apu 3421 3421 Irvine

σborrower.l-number = loan.l-number(borrower x loan)))

Very often, we have a query and the
answer is not contained in a single
relation. For example, I might wish to
know where Apu banks.
The classic relational algebra way to do
such queries is a cross product, followed
by a selection which tests for equality on
some pair of fields.

While this works…

•  it is unintuitive
•  it requires a lot of memory
•  the notation is cumbersome

Note that in this example the two relations are the
same size (2 by 2), this does not have to be the case.

So, we have a more intuitive way of achieving the same effect,
the natural join, denoted by the symbol

6

Natural-Join Operation: Intuition
Natural join combines a cross product and a selection into one
operation. It performs a selection forcing equality on those
attributes that appear in both relation schemes. Duplicates are
removed as in all relation operations.
So, if the relations have one attribute in common, as in the last slide
(“l-number”), for example, we have…

borrower loan

There are two special cases:
•  If the two relations have no attributes in common, then their
natural join is simply their cross product.
•  If the two relations have more than one attribute in common,
then the natural join selects only the rows where all pairs of
matching attributes match. (let’s see an example on the next slide).

= σborrower.l-number = loan.l-number(borrower x loan)))

7

l-name f-name age
Bouvier Selma 40
Bouvier Patty 40
Smith Maggie 2

A!
l-name f-name ID
Bouvier Selma 1232
Smith Selma 4423

B!

l-name f-name age l-name f-name ID
Bouvier Selma 40 Bouvier Selma 1232
Bouvier Selma 40 Smith Selma 4423
Bouvier Patty 2 Bouvier Selma 1232
Bouvier Patty 40 Smith Selma 4423
Smith Maggie 2 Bouvier Selma 1232
Smith Maggie 2 Smith Selma 4423

l-name f-name age l-name f-name ID
Bouvier Selma 40 Bouvier Selma 1232

l-name f-name age ID
Bouvier Selma 40 1232 A B =

Both the l-name and the
f-name match, so select.

Only the f-names match,
so don’t select.

Only the l-names match,
so don’t select.

We remove duplicate
attributes…

The natural join of A and B!

Note that this is just a way to visualize the natural
join, we don’t really have to do the cross product as
in this example

8

Natural-Join Operation
•  Notation: r s!
•  Let r and s be relation instances on schemas R and S

respectively.The result is a relation on schema R ∪ S which is
obtained by considering each pair of tuples tr from r and ts from s.

•  If tr and ts have the same value on each of the attributes in R ∩ S, a
tuple t is added to the result, where
–  t has the same value as tr on r
–  t has the same value as ts on s

•  Example:
 R = (A, B, C, D)
 S = (E, B, D)

•  Result schema = (A, B, C, D, E)
•  r s is defined as:

 πr.A, r.B, r.C, r.D, s.E (σr.B = s.B r.D = s.D (r x s))

9

Natural Join Operation – Example
•  Relation instances r, s:

A! B!

α!
β!
γ!
α!
δ!

1!
2!
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b"
a"
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r!

A! B!

α!
α!
α!
α!
δ!

1!
1!
1!
1!
2!

C! D!

α!
α!
γ!
γ!
β!

a"
a"
a"
a"
b"

E!

α!
γ!
α!
γ!
δ!

s!

r s!
How did we get here?

Lets do a trace over the
next few slides…

10

A! B!

α!
β!
γ!
α!
δ!

1!
2!
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b"
a"
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r! s!

First we note which attributes the two relations have in common…

11

A! B!

α!
β!
γ!
α!
δ!

1!
2!
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b"
a"
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r!

A! B!

α!
α!
 !
!
!

1!
1!
!
!
!

C! D!

α!
α!
!
!
!

a"
a"
"
"
"

E!

α!
γ!
!
!
!

s!

There are two rows in s that match our first row in r, (in the relevant
attributes) so both are joined to our first row…

12

A! B!

α!
β!
γ!
α!
δ!

1!
2!
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b"
a"
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r! s!

A! B!

α!
α!
 !
!
!

1!
1!
!
!
!

C! D!

α!
α!
!
!
!

a!
a!
"
"
"

E!

α!
γ!
!
!
!

…there are no rows in s that match our second row in r, so do
nothing…

13

A! B!

α!
β!
γ!
α!
δ!

1!
2"
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b"
a"
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r! s!

A! B!

α!
α!
 !
!
!

1!
1!
!
!
!

C! D!

α!
α!
!
!
!

a!
a!
"
"
"

E!

α!
γ!
!
!
!

…there are no rows in s that match our third row in r, so do
nothing…

14

A! B!

α!
β!
γ!
α!
δ!

1!
2"
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b!
a"
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r! s!

A! B!

α!
α!
α!
α!
!

1!
1!
1!
1!
!

C! D!

α!
α!
γ!
γ!
!

a"
a"
a"
a"
"

E!

α!
γ!
α!
γ!
!

There are two rows in s that match our fourth row in r, so both are
joined to our fourth row…

15

A! B!

α!
β!
γ!
α!
δ!

1!
2"
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b!
a!
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r! s!

There is one row that matches our fifth row in r,.. so it is joined to
our fifth row and we are done!

A! B!

α!
α!
α!
α!
δ!

1!
1!
1!
1!
2!

C! D!

α!
α!
γ!
γ!
β!

a"
a"
a"
a"
b"

E!

α!
γ!
α!
γ!
δ!

16

Natural Join on Sailors Example

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

=11 RS 

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

S1 R1

17

Earlier We Saw…
Query: Find the name of the sailor who reserved boat 101.

€

Temp=ρ (sid→sid1, S1) × ρ(sid→sid2, R1)
Result=πSname(σsid1=sid2 ∧ bid=101(Temp))

* Note my use of “temporary” relation Temp.

18

Query revisited using natural join

Query: Find the name of the sailor who reserved boat 101.

€

Result=πSname(σbid=101(S1  R1))

Or
Result=πSname(S1  σbid=101(R1))

What’s the difference between these two approaches?

19

Conditional-Join Operation:
The conditional join is actually the most general type of join. I
introduced the natural join first only because it is more intuitive
and... natural!
 Just like natural join, conditional join combines a cross product and
a selection into one operation. However instead of only selecting
rows that have equality on those attributes that appear in both
relation schemes, we allow selection based on any predicate.

r c s = σc(r x s) Where c is any predicate
the attributes of r and/or s"

Duplicate rows are removed as always, but duplicate columns are
not removed!

20

l-name f-name marr-Lic age
Simpson Marge 777 35
Lovejoy Helen 234 38
Flanders Maude 555 24
Krabappel Edna 978 40

l-name f-name marr-Lic age
Simpson Homer 777 36
Lovejoy Timothy 234 36
Simpson Bart null 9

r r.age < s.age AND r.Marr-Lic = s.Marr-Lic s!
r.l-name r.f-name r.Marr-Lic r.age s.l-name s.f-name s.marr-Lic s.age
Simpson Marge 777 35 Simpson Homer 777 36

We want to find all women that are younger than their husbands…

Conditional-Join Example:

r! s!

Note we have removed ambiguity of attribute names by using “dot” notation
Also note the redundant information in the marr-lic attributes

21

Equi-Join

•  Equi-Join: Special case of conditional join
where the conditions consist only of
equalities.

•  Natural Join: Special case of equi-join in
which equalities are specified on ALL fields
having the same names in both relations.

22

l-name f-name marr-Lic age
Simpson Marge 777 35
Lovejoy Helen 234 38
Flanders Maude 555 24
Krabappel Edna 978 40

l-name f-name marr-Lic age
Simpson Homer 777 36
Lovejoy Timothy 234 36
Simpson Bart null 9

r r.Marr-Lic = s.Marr-Lic s!
r.l-name r.f-name Marr-Lic r.age s.l-name s.f-name s.age
Simpson Marge 777 35 Simpson Homer 36
Lovejoy Helen 234 38 Lovejoy Timothy 36

Equi-Join

r! s!

23

Review on Joins
•  All joins combine a cross product and a selection

into one operation.
•  Conditional Join

–  the selection condition can be of any predicate (e.g.
rating1 > rating2)

•  Equi-Join:
–  Special case of conditional join where the conditions

consist only of equalities.
•  Natural Join

–  Special case of equi-join in which equalities are
specified on ALL fields having the same names in both
relations.

A Note on Precedence

•  Unary operators have the highest
precedence: [σ, π, ρ]

•  Then “multiplicative” operators: [×,]
•  Then “additive” operators: [∩, ∪, −]

24

25

Banking Examples
branch (branch-id, branch-city, assets)

customer (customer-id, customer-name, customer-city)

account (account-number, branch-id, balance)

loan (loan-number, branch-id, amount)

depositor (customer-id, account-number)

borrower (customer-id, loan-number)

26

Example Queries 1
•  Find all loans over $1200

loan

loan-number branch-id amount
1234 001 1,923.03
3421 002 123.00
2342 004 56.25
4531 005 120.03

1234 001 1,923.03 σamount > 1200 (loan)

“select from the relation
loan, only the rows which
have a amount greater than
1200”

27

Example Queries 2
•  Find the loan number for each loan of an amount greater than $1200

loan

loan-number branch-id amount
1234 001 1,923.03
3421 002 123.00
2342 004 56.25
4531 005 120.03

σamount > 1200 (loan) 1234 001 1,923.03

πloan-number (σamount > 1200 (loan)) 1234

“select from the relation loan,
only the rows which have a
amount greater than 1200, then
project out just the
loan_number”

28

Example Queries 3
•  Find all loans greater than $1200 or less than $75

loan

loan-number branch-id amount
1234 001 1,923.03
3421 002 123.00
2342 004 56.25
4531 005 120.03

σamount > 1200 ∨ amount < 75(loan)

“select from the relation loan, only
the rows which have a amount
greater than 1200 or an amount less
than 75

1234 001 1,923.03
2342 004 56.25

29

Example Queries 4
•  Find the IDs of all customers who have a loan, an account, or both, from the

bank

customer-id loan-number
201 1234
304 3421
425 2342
109 4531

depositor borrower

customer-id account-number
333 3467
304 2312
201 9999
492 3423

201
304
425
109

333
304
201
492

201
304
425
109
333
492

πcustomer-id (borrower) πcustomer-id (depositor)

πcustomer-id (borrower) ∪ πcustomer-id (depositor)

Example Queries 5
Find the IDs of all customers who have a loan at branch 001.

customer-
id

loan-
number

201 1234
304 3421

loan-number branch-id amount
1234 001 1,923.03
3421 002 123.00

borrower loan

Note this example is
split over two slides!

customer-id borrower.loan-
number

loan.loan-
number

branch-
id

amount

201 1234 1234 001 1,923.03
201 1234 3421 002 123.00
304 3421 1234 001 1,923.03
304 3421 3421 002 123.00

We retrieve
borrower and
loan…

 …we
calculate
their cross
product…

…we calculate
their cross
product…

…we select the
rows where
borrower.loan-
number is equal to
loan.loan-number…

…we select the
rows where
branch-id is equal
to “001”

…we project out
the customer-id.

201

customer-id borrower.loan-
number

loan.loan-
number

branch-
id

amount

201 1234 1234 001 1,923.03
201 1234 3421 002 123.00
304 3421 1234 001 1,923.03
304 3421 3421 002 123.00

customer-id borrower.loan-
number

loan.loan-
number

branch-
id

amount

201 1234 1234 001 1,923.03
304 3421 3421 002 123.00

customer-id borrower.loan-
number

loan.loan-
number

branch-
id

amount

201 1234 1234 001 1,923.03

 πcustomer-id (σbranch-id=‘001’ (σborrower.loan-number = loan.loan-number(borrower x loan)))

Now Using Natural Join
Find the IDs of all customers who have a loan at branch 001.

customer-id loan-number

201 1234

304 3421

loan-number branch-id amount

1234 001 1,923.03

3421 002 123.00

borrower loan
We retrieve borrower
and loan…

1234 in borrower is
matched with 1234 in
loan…

3421 in borrower is
matched with 3421 in
loan…

The rest is the same.

customer-id loan-number branch-id amount

201 1234 001 1,923.03
304 3421 002 123.00

customer-id loan-number branch-id amount

201 1234 001 1,923.03
πcustomer-id (σbranch-id=‘001’ (σborrower.loan-number = loan.loan-number(borrower x loan)))
= πcustomer-id (σbranch-id=‘001’ (borrower loan))

33

Example Queries 7
•  Find the names of all customers who have a loan, an account, or both, from

the bank

201
304
425
109
333
492

πcustomer-id (borrower) U πcustomer-id (depositor)

customer-id customer-name customer-city
101 Carol Fairfax
109 David Fairfax
201 John Vienna
304 Mary McLean
333 Ben Chantilly
425 David Manassas
492 Jason Fairfax
501 Adam Burke

customer

Note this example is
split over two slides!

34

Example Queries
•  Find the names of all customers who have a loan, an account, or both, from

the bank

customer-id customer-name customer-city
109 David Fairfax
201 John Vienna
304 Mary McLean
333 Ben Chantilly
425 David Manassas
492 Jason Fairfax

customer-name
David
John
Mary
Ben
David
Jason

customer-name
David
John
Mary
Ben
Jason

πcustomer-name((πcustomer-id (borrower) U πcustomer-id (depositor)) customer)

35

Example Queries 8
Find the largest account balance

Note this example is
split over three slides!

balance

100.30
12.34
45.34

d

We do a rename to get
a “copy” of the
balance column from
account. We call this
copy d…

… next we will do a
cross product…

account-
number

branch-id balance

7777 001 100.30
8888 003 12.34
6666 004 45.34

account

36

account-
number

branch-
id

account.
balance

d.balance

7777 001 100.30 100.30

7777 001 100.30 12.34

7777 001 100.30 45.34

8888 003 12.34 100.30

8888 003 12.34 12.34

8888 003 12.34 45.34

6666 004 45.34 100.30

6666 004 45.34 12.34

6666 004 45.34 45.34

… do a cross
product…

…select out all rows
where account.balance
is less than
d.balance…

account-
number

branch-
id

account.
balance

d.balance

8888 003 12.34 100.30

8888 003 12.34 45.34

6666 004 45.34 100.30

.. next we project out
account.balance…

…then we do a set
difference between it
and the original
account.balance from
the account relation…

… the set difference
leaves us with one
number, the largest
value!

account.balance

12.34

45.34

balance
100.30
12.34
45.34

balance from account

100.30

πbalance(account) - πaccount.balance(σaccount.balance < d.balance (account x ρ(d, πbalance(account))))

account-
number

branch-
id

account.
balance

d.balance

8888 003 12.34 100.30

8888 003 12.34 45.34

6666 004 45.34 100.30

38

Now Using Conditional Join

Find the largest account balance

πbalance(account) - πaccount.balance(σaccount.balance < d.balance (account x ρ(d, πbalance(account))))

ρ(d, πaccount.balance (account))
πbalance(account) - πaccount.balance(account account.balance < d.balance d)

39

More Examples on Sailors
Relations

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

40

Find names of sailors who’ve reserved boat
#103

•  Solution 1: Find those who reserved boat 103, join
with Sailors to find the names, and project out the
names

•  Solution 2: Join Reserves and Sailors to get all
information, and find those who reserved boat 103.
Project out the names.

)))Re(((103 Sailorsservesbidsname 
=

σπ

 π σsname bid
serves Sailors((Re))

=103 

Which one is more efficient?

41

Find names of sailors who’ve reserved a
red boat

•  Information about boat color only available
in Boats; so need an extra join:

  A query optimizer can find this given the first solution!

•  A more efficient solution: Find the bids of

red boats first before doing the join.

43

Find sailors who’ve reserved a red or a green
boat

•  Can identify all red or green boats, then find sailors
who’ve reserved one of these boats:

45

Find sailors who’ve reserved a red or a green
boat

• What happens if “or” is replaced by “and”?

•  Can identify all red or green boats, then find sailors
who’ve reserved one of these boats:

•  Can also define Tempboats using union:

47

Find sailors who’ve reserved a red and a
green boat

48

Find sailors who’ve reserved a red and a
green boat

•  Previous first approach won’t work! (Why
not?) Must use intersection.

)Re))(''((servesBoats
redcolorsid

Tempred 
=

= σπ

))((Re SailorsTempgreenTempredsnamesult ∩=π

)Re))(''((servesBoats
greencolorsid

Tempgreen 
=

= σπ

49

Consider yet another query
•  Find the sailor(s) who reserved all the red

boats.
R1 B

sid bid day
22 101 10/10/96
22 103 10/11/96
56 102 11/12/96

bid color
101 Red
102 Green
103 Red

50

Start an attempt
•  Who reserved what boat:

•  All the red boats:

==)1(,1 RbidsidS π

=
=

=))((2 B
redcolorbid

S σπ

sid bid
22 101
22 103
56 102

bid
101
103

Now what?

•  We will solve the problem the “hard” way, and
then will introduce an operator specifically for
this kind of problem.

•  Idea: Compute the sids of sailors who didn’t
reserve all red boats.
1.  Find all possible reservations that could be made on red boats.
2.  Find actual reservations on red boats
3.  Find the possible reservations on red boats that were not

actually made (#1 – #2) <- that is a minus sign.
4.  Project out the sids from 3 – these are the sailors who didn’t

have reservation on some red boat(s).

Find the sailor(s) who reserved all the red boats.

•  Idea: Compute the sids of sailors who didn’t reserve all
red boats (then find the difference between this set and
set of all sailors).
1.  Find all possible reservations that could be made on red boats.
 AllPossibleRes = πsid (R1) × πbid σcolor=“red” (B)
2. Find actual reservations on red boats
 AllRedRes = πsid,bid (R1) πbid σcolor=“red” (B)
3. 4. Find the possible reservations on red boats that were not actually made,
and project out the sids.

 πsid (AllPossibleRes – AllRedRes)
5.  Find sids that are not in the result from above (sailors such that there is no

red boat that’s not reserved by him/her)
 πsid (R1) – πsid (AllPossibleRes – AllRedRes)

Find the sailor(s) who reserved all the red boats.

53

Division Operation
•  Suited to queries that include the phrase “for all”, e.g. Find sailors who have

reserved all red boats.
•  Produce the tuples in one relation, r, that match all tuples in another relation, s
•  Let S1 have 2 fields, x and y; S2 have only field y:

–  S1/S2 =

–  i.e., S1/S2 contains all x tuples (sailors) such that for every y tuple (redboat) in S2, there is an
xy tuple in S1 (i.e, x reserved y).

•  In general, x and y can be any lists of fields; y is the list of fields in S2, and x∪y is
the list of fields of S1.

•  Let r and s be relations on schemas R and S respectively where
–  R = (A1, …, Am, B1, …, Bn),
–  S = (B1, …, Bn),
The result of r / s is a relation on schema
R – S = (A1, …, Am)

r / s"

€

x |∀ y in S2 (∃ x,y in S1)$
%
&

' &

(
)
&

* &

54

Division (cont’d)

55

Division Operation – Example
Relations r, s:"

r / s:"

A!

B!

α!
β!

1!
2!

A! B!

α!
α!
α!
β!
γ!
δ!
δ!
δ!
∈!
∈!
β!

1!
2!
3!
1!
1!
1!
3!
4!
6!
1!
2!
r!

s!

α occurs in the presence of both 1 and 2, so it is returned.
β occurs in the presence of both 1 and 2, so it is returned.
γ  does not occur in the presence of both 1 and 2, so is ignored.
...

56

Another Division Example

A! B!

α!
α!
α!
β!
β!
γ!
γ!
γ!

a"
a"
a"
a"
a"
a"
a"
a!

C! D!

α!
γ!
γ!
γ!
γ!
γ!
γ!
β!

a"
a!
b!
a"
b"
a!
b!
b!

E!

1!
1!
1!
1!
3!
1!
1!
1!

Relations r, s:"

r /s:"

D!

a!
b!

E!

1!
1!

A! B!

α!
γ!

a"
a!

C!

γ!
γ!r!

s!

<α, a ,γ > occurs in the presence of both <a,1> and <b,1>, so it is returned.
< γ, a ,γ > occurs in the presence of both <a,1> and <b,1>, so it is returned.
<β, a ,γ > does not occur in the presence of both <a,1> and <b,1>, so it is ignored.

57

More Division Examples: A/B
sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2
s4 p2
s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3

58

Find the sailor(s) who reserved
ALL red boats

•  who reserved what boat:

•  All the red boats:

sid bid
22 101
22 103
58 102

==)1(,1 RbidsidS π

=
=

=))((2 B
redcolorbid

S σπ
bid
101
103

=> S1/S2

59

Find the names of sailors who’ve reserved all
boats

•  Uses division; schemas of the input relations to
“divide” must be carefully chosen:

))((/))(Re,(Tempsids Boats
bid

serves
bidsid

ππ=

)(Result SailorsTempsidssname π=

•  SALES(supId, prodId);
•  PRODUCTS(prodId);
•  SALES/PRODUCTS = ?

60

Expressing A/B Using Basic Operators
•  Division is not essential op; just a useful shorthand.

–  (Also true of joins, but joins are so common that
systems implement joins specially. Division is NOT
implemented in SQL).

•  Idea: For SALES/PRODUCTS, compute the IDs
of suppliers that don’t supply all products.

))Pr)(((SalesoductsSalessidsidA −×= ππ

The answer is πsid(Sales) - A

62

Additional Operator: Outer Join
•  An extension of the join operation that avoids loss of

information.
•  Computes the join and then adds tuples from one

relation that does not match tuples in the other
relation to the result of the join.

•  Uses null values:
–  null signifies that the value is unknown or does not exist
–  All comparisons involving null are (roughly speaking) false

by definition.
•  Will study precise meaning of comparisons with nulls later

63

Outer Join – Example

Relation loan

Relation borrower customer-name! loan-number!
Simpson"
Wiggum"
Flanders"

L-170!
L-230!
L-155"

loan-number! amount!
L-170!
L-230!
L-260"

3000"
4000"
1700"

branch-name!
Springfield"
Shelbyville "
Dublin

64

Outer Join – Example

•  Inner Join

loan Borrower

loan borrower
•  Left Outer Join

loan-number! amount!
L-170"
L-230"

3000"
4000"

customer-name!
Simpson"
Wiggum"

branch-name!
Springfield"
Shelbyville"

loan-number! amount!
L-170"
L-230"
L-260"

3000"
4000"
1700"

customer-name!
Simpson"
Wiggum"
null!

branch-name!
Springfield"
Shelbyville"
Dublin"

customer-name! loan-number!
Simpson"
Wiggum"
Flanders"

L-170!
L-230!
L-155"

loan-number! amount!
L-170!
L-230!
L-260"

3000"
4000"
1700"

branch-name!
Springfield"
Shelbyville "
Dublin

65

Outer Join – Example

Right Outer Join

loan borrower

loan-number! amount!
L-170"
L-230"
L-155"

3000"
4000"
null!

customer-name!
Simpson"
Wiggum"
Flanders"

loan-number! amount!
L-170"
L-230"
L-260"
L-155"

3000"
4000"
1700"
null!

customer-name!
Simpson"
Wiggum"
null"
Flanders"

loan borrower

Full Outer Join

branch-name!
Springfield"
Shelbyville"
null!

branch-name!
Springfield"
Shelbyville"
Dublin"
null!

customer-name! loan-number!
Simpson"
Wiggum"
Flanders"

L-170!
L-230!
L-155"

loan-number! amount!
L-170!
L-230!
L-260"

3000"
4000"
1700"

branch-name!
Springfield"
Shelbyville "
Dublin

66

Null Values
•  It is possible for tuples to have a null value, denoted by null, for

some of their attributes
•  null signifies an unknown value or that a value does not exist.
•  The result of any arithmetic expression involving null is null.
•  Aggregate functions simply ignore null values

–  Is an arbitrary decision. Could have returned null as result instead.
–  We follow the semantics of SQL in its handling of null values

•  For duplicate elimination and grouping, null is treated like any
other value, and two nulls are assumed to be the same
–  Alternative: assume each null is different from each other
–  Both are arbitrary decisions, so we simply follow SQL

67

Null Values
•  Comparisons with null values return the special truth value

unknown
•  Three-valued logic using the truth value unknown:

–  OR: (unknown or true) = true,
 (unknown or false) = unknown
 (unknown or unknown) = unknown

–  AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown

–  NOT: (not unknown) = unknown
–  In SQL “P is unknown” evaluates to true if predicate P

evaluates to unknown
•  Result of select predicate is treated as false if it evaluates

to unknown

68

Summary
•  The relational model has rigorously defined query

languages that are simple and powerful.
•  Relational algebra is more operational; useful as

internal representation for query evaluation plans.
•  Several ways of expressing a given query; a query

optimizer should choose the most efficient
version.

•  Operations covered: 5 basic operations (selection,
projection, union, set difference, cross product),
rename, joins (natural join, equi-join, conditional
join, outer joins), division

