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Relational Query Languages 
•  Query languages:  Allow manipulation and 

retrieval of data from a database. 
•  Relational model supports simple, powerful QLs: 

–  Strong formal foundation based on logic. 
–  Allows for much optimization. 

•  Query Languages != programming languages! 
–  QLs not expected to be “Turing complete”. 
–  QLs not intended to be used for complex calculations. 
–  QLs support easy, efficient access to large data sets. 
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Formal Relational Query Languages 
Two mathematical Query Languages form the basis 

for “real” languages (e.g. SQL), and for 
implementation: 

 Relational Algebra:  More operational, very useful 
for representing execution plans. 

 Relational Calculus:   Lets users describe what 
they want, rather than how to compute it.  (Non-
operational, declarative.) 

   Understanding Algebra is key to understanding SQL, 
      and query processing!  
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The Role of Relational Algebra in a DBMS 
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Algebra Preliminaries 

•  A query is applied to relation instances, and 
the result of a query is also a relation instance. 
–  Schemas of input relations for a query are fixed 

(but query will run regardless of instance!) 
–  The schema for the result of a given query is also 

fixed! Determined by definition of query language 
constructs. 
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Relational Algebra 
•  Procedural language 
•  Five basic operators 

•  selection    select  
•  projection    project 
•  union    (why no intersection?) 
•  set difference     difference 
•  Cross product     Cartesian product 

 
•  The are some other operators which are composed of the above 
operators. These show up so often that we give them special names.  
•  The operators take one or two relations as inputs and give a new 
relation as a result. 

SQL is closely based 
on relational algebra. 
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Select Operation – Example 

•  Relation r" A! B! C! D!

α!
α!
β!

β!

α!
β!
β!

β!

1!
5!
12!

23!

7!
7!
3!

10!

• σA=B ^ D > 5 (r)"
A! B! C! D!

α!
β!

α!
β!

1!
23!

7!
10!

Intuition: The select operation 
allows us to retrieve some rows 
of a relation (by “some” I mean 
anywhere from none of them to 
all of them) 
 
Here I have retrieved all the 
rows of the relation r where the 
value in field A equals the value 
in field B, and the value in field 
D is greater than 5. 

lowercase 
Greek sigma 
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Select Operation 
•  Notation:  σ p(r)      lowercase Greek sigma σ   

•  p is called the selection predicate 
•  Defined as: 

    σp(r) = {t | t ∈ r and p(t)} 
 Where p is a formula in propositional calculus consisting 
of terms connected by : ∧ (and), ∨ (or), ¬ (not) 
Each term is one of: 
  <attribute>  op  <attribute> or <constant> 

     where op is one of:  =, ≠, >, ≥, <, ≤ 
•  Example of selection: 

  σ name=‘Lee’(professor) 
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Project Operation – Example I 

•  Relation r: 

A! B! C!

α!
α!
β!

β!

10!
20!
30!

40!

7!
1!
1!

2!

A! C!

α!
α!
β!

β!

7!
1!
1!

2!

•  πA,C (r) 

Intuition: The project operation 
allows us to retrieve some 
columns of a relation (by 
“some” I mean anywhere from 
none of them to all of them) 
 
Here I have retrieved columns 
A and C.  

Greek lower-case 
pi  
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Project Operation – Example II 

•  Relation r: 

A! B! C!

α!
α!
β!

β!

10!
20!
30!

40!

1!
1!
1!

2!

A! C!

α!
α!
β!

β!

1!
1!
1!

2!

="

A! C!

α!
β!
β!

1!
1!
2!

•  πA,C (r) 

Intuition: The project 
operation removes 
duplicate rows, since 
relations are sets.  
 
Here there are two rows 
with A = α and C = 1. So 
one was discarded. 
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Project Operation 
•  Notation: 

 
 πA1, A2, …, Ak (r)      Greek lower-case pi  

 where A1, A2 are attribute names and r is a 
relation name. 

•  The result is defined as the relation of k 
columns obtained by erasing the columns that 
are not listed 

•  Duplicate rows removed from result, since 
relations are sets. 
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Union Operation – Example 

Relations r, s: 

r ∪ s: 

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

r!
s!

A! B!

α!
α!
β!

β!

1!
2!
1!

3!

Intuition: The union 
operation concatenates 
two relations, and removes 
duplicate rows (since 
relations are sets).  
 
Here there are two rows 
with A = α and B = 2. So 
one was discarded. 



13 

Union Operation 
•  Notation:  r ∪ s 
•  Defined as:  

  r  ∪ s = {t | t ∈ r or t ∈ s} 
For r ∪ s to be valid. 

 1.  r, s must have the same arity (same number of attributes) 
 2.  The attribute domains must be compatible (e.g., 2nd column  
     of r deals with the same type of values as does the 2nd  
     column of s). 

Although the field types must be the same, the names can be 
different. For example I can union professor and lecturer where: 

 
    professor(PID : string, name : string) 
    lecturer(LID : string, first_name : string) 
 

“Union-compatible” 
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Related Operation: Intersection 

Relations r, s: 

r ∩ s: 

r!

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

s!

A! B!!
α!
!

!
2!
!

• Similar to Union 
operation. 

• But Intersection is NOT 
one of the five basic 
operations. 

• Intuition: The 
intersection operation 
computes the common 
rows between two 
relations 
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Set Difference Operation – Example 

Relations r, s: 

   r – s: 

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

r!
s!

A! B!

α!
β!

1!
1!

Intuition: The set 
difference operation 
returns all the rows that 
are in r but not in s. 
 



16 

Set Difference Operation 
•  Notation r – s 
•  Defined as: 

   r – s  = {t | t ∈ r and t ∉ s}  
•  Set differences must be taken between 

compatible relations. 
–  r and s must have the same arity 
–  attribute domains of r and s must be compatible 

•  Note that in general   r – s  ≠  s – r 
 

“Union-compatible” 
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Cross-Product Operation-Example 
Relations r, s:"

r x s:"

A! B!

α!
β!

1!
2!

C! D!

α!
β!
β!
γ!

10!
10!
20!
10!

E!

a!
a!
b!
b!r! s!

A! B!

α!
α!
α!
α!
β!
β!
β!
β!

1!
1!
1!
1!
2!
2!
2!
2!

C! D!

α!
β !
β!
γ!
α!
β!
β!
γ!

10!
10!
20!
10!
10!
10!
20!
10!

E!

a!
a!
b!
b!
a!
a!
b!
b!

Intuition: The cross 
product operation 
returns all possible 
combinations of rows in 
r with rows in s. 
 
In other words the result 
is every possible pairing 
of the rows of r and s. 
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Cross-Product Operation 

•  Notation r x s 
•  Defined as: 

  r x s = {t q | t ∈ r and q ∈ s} 
•  Assume that attributes of r(R) and s(S) are 

disjoint.  (That is, R ∩ S = ∅). 
•  If attributes names of r(R) and s(S) are not 

disjoint, then renaming must be used. 
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Composition of Operations 
•  We can build expressions using 

multiple operations 
•  Example:  σA= C(r x s) 
 

A! B! C! D! E!

α!
β!
β!

1!
2!
2!

α!
β!
β!

10!
10!
20!

a!
a!
b!

A! B!

α!
β!

1!
2!

C! D!

α!
β!
β!
γ!

10!
10!
20!
10!

E!

a!
a!
b!
b!r! s!

r x s:"

σA=C(r x s) 

A! B!

α!
α!
α!
α!
β!
β!
β!
β!

1!
1!
1!
1!
2!
2!
2!
2!

C! D!

α!
β !
β!
γ!
α!
β!
β!
γ!

10!
10!
20!
10!
10!
10!
20!
10!

E!

a!
a!
b!
b!
a!
a!
b!
b!

“take the cross product of r 
and s, then return only the 
rows where A equals B” 
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Rename Operation  
•  Allows us to name, and therefore to 

refer to, the results of relational-
algebra expressions. 

Example:     
 ρ (myRelation, (r – s)) 

Renaming columns (rename A to A2): 
 ρ (myRelation(A->A2), (r – s)) 

 

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

r! s!

A! B!

α!
β!

1!
1!

myRelation!

Take the set difference of r and s, 
and call the result myRelation"
Renaming in relational algebra is 
essentiality the same as assignment 
in a programming language 
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Rename Operation 
If a relational-algebra expression Y 

has arity n, then  
        ρ(X(A->A1, B->A2, …), Y) 
 
returns the result of expression Y under 

the name X, and with the attributes 
renamed to A1, A2, …., An. 

 
For example, 
ρ (myRelation(A->E, B->K), (r – s)) 
 
 
 

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

r! s!

E! K!

α!
β!

1!
1!

myRelation!Take the set difference of r and s, and call the 
result myRelation, while renaming the first field 
to E, and the second field to K. 
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Sailors Example 

Sailors(sid, sname, rating, age) 
Boats(bid, bname, color) 
Reserves(sid, bid, day) 
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Example Instances 
sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1 

S1 

S2 

•  “Sailors” and “Reserves” 
relations for our examples. 
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Algebra Operations 
•  Look what we want to get from the 

following table: 

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2 
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Selection 

=
>

)2(8 Sratingσ

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

•  Selects rows that 
satisfy selection 
condition. 

•  No duplicates in 
result!  (Why?) 

•  Schema of result 
identical to schema of 
(only) input relation. 

S2 
sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0
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Projection 
sname rating
yuppy 9
lubber 8
guppy 5
rusty 10

π sname rating S, ( )2

age
35.0
55.5

πage S( )2

•  Deletes attributes that are not in 
projection list. 

•  Schema of result contains exactly the 
fields in the projection list, with the 
same names that they had in the 
(only) input relation. 

•  Projection operator has to eliminate 
duplicates!  (Why??) 

–  Note: real systems typically don’t do 
duplicate elimination unless the user 
explicitly asks for it.   
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Composition of Operations 
•  Result relation can be the input for another relational 

algebra operation!  (Operator composition) 

sname rating
yuppy 9
rusty 10

=
>

))2(8(, Sratingratingsname σπ

S2 sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0
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What do we want to get from two 
relations? 

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1 
S1 

What about: Who reserved boat 101? 
 
Or: Find the name of the sailor who reserved boat 101. 
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Cross-Product 
•  Each row of S1 is paired with each row of R1. 
•  Result schema has one field per field of S1 and 

R1, with field names inherited. 

)1,2()1,1( RsidsidSsidsid →×→ ρρ

sid1 sname rating age sid2 bid day 
22 dustin 7 45.0 22 101 10/10/96 
22 dustin 7 45.0 58 103 11/12/96 
31 lubber 8 55.5 22 101 10/10/96 
31 lubber 8 55.5 58 103 11/12/96 
58 rusty 10 35.0 22 101 10/10/96 
58 rusty 10 35.0 58 103 11/12/96 

 

 

  Renaming operator (because of naming conflict):  
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Why does this cross product help 
Query: Find the name of the sailor who reserved boat 101. 
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Another example 
•  Find the name of the sailor having the highest 

rating. 

€ 

AllR=πratingAρ(rating−>ratingA, S2)

Result?=πSname(σrating<ratingA(S2×AllR))

What’s in “Result?” ? 

Does it answer our query? 

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2 



33 

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2 
ratingA 

9 

8 

5 

10 

× 

AllR 

sid sname rating age ratingA 

28 yuppy 9 35.0 9 

28 yuppy 9 35.0 8 

28 yuppy 9 35.0 5 

28 yuppy 9 35.0 10 

31 lubber 8 55.5 9 

31 lubber 8 55.5 8 

31 lubber 8 55.5 5 

31 lubber 8 55.5 10 

44 guppy 5 35.0 9 

44 guppy 5 35.0 8 

44 guppy 5 35.0 5 

44 guppy 5 35.0 10 

58 rusty 10 35.0 9 

58 rusty 10 35.0 8 

58 rusty 10 35.0 5 

58 rusty 10 35.0 10 

= 

€ 

AllR=πratingAρ(rating−>ratingA, S2)

Result?=πSname(σrating<ratingA(S2×AllR))
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Union, Intersection, Set-Difference 
•  All of these operations 

take two input relations, 
which must be union-
compatible: 
–  Same number of fields. 
–  ‘Corresponding’ fields 

have the same type. 
•  What is the schema of 

result? 

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2∪

S S1 2∩

sid sname rating age
22 dustin 7 45.0

S S1 2−
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Back to our query 
•  Find the name of the sailor having the highest 

rating. 
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Relational Algebra (Summary) 
•  Basic operations: 

–  Selection  ( σ )    Selects a subset of rows from relation. 
–  Projection  ( π )   Deletes unwanted columns from relation. 
–  Cross-product  ( × )  Allows us to combine two relations. 
–  Set-difference  ( - )  Tuples in reln. 1, but not in reln. 2. 
–  Union  (   ∪  )  Tuples in reln. 1 and in reln. 2. 
 
Also, 
–  Rename  (   ρ  )  Changes names of the attributes 

•  Since each operation returns a relation, operations can be composed! (Algebra is 
“closed”.) 

•  Use of temporary relations recommended. 


