

Relational Algebra 1

Week 4

2

Relational Query Languages
•  Query languages: Allow manipulation and

retrieval of data from a database.
•  Relational model supports simple, powerful QLs:

–  Strong formal foundation based on logic.
–  Allows for much optimization.

•  Query Languages != programming languages!
–  QLs not expected to be “Turing complete”.
–  QLs not intended to be used for complex calculations.
–  QLs support easy, efficient access to large data sets.

3

Formal Relational Query Languages
Two mathematical Query Languages form the basis

for “real” languages (e.g. SQL), and for
implementation:

 Relational Algebra: More operational, very useful
for representing execution plans.

 Relational Calculus: Lets users describe what
they want, rather than how to compute it. (Non-
operational, declarative.)

  Understanding Algebra is key to understanding SQL,
 and query processing!

4

The Role of Relational Algebra in a DBMS

5

Algebra Preliminaries

•  A query is applied to relation instances, and
the result of a query is also a relation instance.
–  Schemas of input relations for a query are fixed

(but query will run regardless of instance!)
–  The schema for the result of a given query is also

fixed! Determined by definition of query language
constructs.

6

Relational Algebra
•  Procedural language
•  Five basic operators

•  selection select
•  projection project
•  union (why no intersection?)
•  set difference difference
•  Cross product Cartesian product

•  The are some other operators which are composed of the above
operators. These show up so often that we give them special names.
•  The operators take one or two relations as inputs and give a new
relation as a result.

SQL is closely based
on relational algebra.

7

Select Operation – Example

•  Relation r" A! B! C! D!

α!
α!
β!

β!

α!
β!
β!

β!

1!
5!
12!

23!

7!
7!
3!

10!

• σA=B ^ D > 5 (r)"
A! B! C! D!

α!
β!

α!
β!

1!
23!

7!
10!

Intuition: The select operation
allows us to retrieve some rows
of a relation (by “some” I mean
anywhere from none of them to
all of them)

Here I have retrieved all the
rows of the relation r where the
value in field A equals the value
in field B, and the value in field
D is greater than 5.

lowercase
Greek sigma

8

Select Operation
•  Notation: σ p(r) lowercase Greek sigma σ

•  p is called the selection predicate
•  Defined as:

 σp(r) = {t | t ∈ r and p(t)}
 Where p is a formula in propositional calculus consisting
of terms connected by : ∧ (and), ∨ (or), ¬ (not)
Each term is one of:
 <attribute> op <attribute> or <constant>

 where op is one of: =, ≠, >, ≥, <, ≤
•  Example of selection:

 σ name=‘Lee’(professor)

9

Project Operation – Example I

•  Relation r:

A! B! C!

α!
α!
β!

β!

10!
20!
30!

40!

7!
1!
1!

2!

A! C!

α!
α!
β!

β!

7!
1!
1!

2!

•  πA,C (r)

Intuition: The project operation
allows us to retrieve some
columns of a relation (by
“some” I mean anywhere from
none of them to all of them)

Here I have retrieved columns
A and C.

Greek lower-case
pi

10

Project Operation – Example II

•  Relation r:

A! B! C!

α!
α!
β!

β!

10!
20!
30!

40!

1!
1!
1!

2!

A! C!

α!
α!
β!

β!

1!
1!
1!

2!

="

A! C!

α!
β!
β!

1!
1!
2!

•  πA,C (r)

Intuition: The project
operation removes
duplicate rows, since
relations are sets.

Here there are two rows
with A = α and C = 1. So
one was discarded.

11

Project Operation
•  Notation:

 πA1, A2, …, Ak (r) Greek lower-case pi

 where A1, A2 are attribute names and r is a
relation name.

•  The result is defined as the relation of k
columns obtained by erasing the columns that
are not listed

•  Duplicate rows removed from result, since
relations are sets.

12

Union Operation – Example

Relations r, s:

r ∪ s:

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

r!
s!

A! B!

α!
α!
β!

β!

1!
2!
1!

3!

Intuition: The union
operation concatenates
two relations, and removes
duplicate rows (since
relations are sets).

Here there are two rows
with A = α and B = 2. So
one was discarded.

13

Union Operation
•  Notation: r ∪ s
•  Defined as:

 r ∪ s = {t | t ∈ r or t ∈ s}
For r ∪ s to be valid.

 1. r, s must have the same arity (same number of attributes)
 2. The attribute domains must be compatible (e.g., 2nd column
 of r deals with the same type of values as does the 2nd
 column of s).

Although the field types must be the same, the names can be
different. For example I can union professor and lecturer where:

 professor(PID : string, name : string)
 lecturer(LID : string, first_name : string)

“Union-compatible”

14

Related Operation: Intersection

Relations r, s:

r ∩ s:

r!

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

s!

A! B!!
α!
!

!
2!
!

• Similar to Union
operation.

• But Intersection is NOT
one of the five basic
operations.

• Intuition: The
intersection operation
computes the common
rows between two
relations

15

Set Difference Operation – Example

Relations r, s:

 r – s:

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

r!
s!

A! B!

α!
β!

1!
1!

Intuition: The set
difference operation
returns all the rows that
are in r but not in s.

16

Set Difference Operation
•  Notation r – s
•  Defined as:

 r – s = {t | t ∈ r and t ∉ s}
•  Set differences must be taken between

compatible relations.
–  r and s must have the same arity
–  attribute domains of r and s must be compatible

•  Note that in general r – s ≠ s – r

“Union-compatible”

17

Cross-Product Operation-Example
Relations r, s:"

r x s:"

A! B!

α!
β!

1!
2!

C! D!

α!
β!
β!
γ!

10!
10!
20!
10!

E!

a!
a!
b!
b!r! s!

A! B!

α!
α!
α!
α!
β!
β!
β!
β!

1!
1!
1!
1!
2!
2!
2!
2!

C! D!

α!
β !
β!
γ!
α!
β!
β!
γ!

10!
10!
20!
10!
10!
10!
20!
10!

E!

a!
a!
b!
b!
a!
a!
b!
b!

Intuition: The cross
product operation
returns all possible
combinations of rows in
r with rows in s.

In other words the result
is every possible pairing
of the rows of r and s.

18

Cross-Product Operation

•  Notation r x s
•  Defined as:

 r x s = {t q | t ∈ r and q ∈ s}
•  Assume that attributes of r(R) and s(S) are

disjoint. (That is, R ∩ S = ∅).
•  If attributes names of r(R) and s(S) are not

disjoint, then renaming must be used.

19

Composition of Operations
•  We can build expressions using

multiple operations
•  Example: σA= C(r x s)

A! B! C! D! E!

α!
β!
β!

1!
2!
2!

α!
β!
β!

10!
10!
20!

a!
a!
b!

A! B!

α!
β!

1!
2!

C! D!

α!
β!
β!
γ!

10!
10!
20!
10!

E!

a!
a!
b!
b!r! s!

r x s:"

σA=C(r x s)

A! B!

α!
α!
α!
α!
β!
β!
β!
β!

1!
1!
1!
1!
2!
2!
2!
2!

C! D!

α!
β !
β!
γ!
α!
β!
β!
γ!

10!
10!
20!
10!
10!
10!
20!
10!

E!

a!
a!
b!
b!
a!
a!
b!
b!

“take the cross product of r
and s, then return only the
rows where A equals B”

20

Rename Operation
•  Allows us to name, and therefore to

refer to, the results of relational-
algebra expressions.

Example:
 ρ (myRelation, (r – s))

Renaming columns (rename A to A2):
 ρ (myRelation(A->A2), (r – s))

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

r! s!

A! B!

α!
β!

1!
1!

myRelation!

Take the set difference of r and s,
and call the result myRelation"
Renaming in relational algebra is
essentiality the same as assignment
in a programming language

21

Rename Operation
If a relational-algebra expression Y

has arity n, then
 ρ(X(A->A1, B->A2, …), Y)

returns the result of expression Y under

the name X, and with the attributes
renamed to A1, A2, …., An.

For example,
ρ (myRelation(A->E, B->K), (r – s))

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

r! s!

E! K!

α!
β!

1!
1!

myRelation!Take the set difference of r and s, and call the
result myRelation, while renaming the first field
to E, and the second field to K.

22

Sailors Example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

23

Example Instances
sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1

S1

S2

•  “Sailors” and “Reserves”
relations for our examples.

24

Algebra Operations
•  Look what we want to get from the

following table:

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2

25

Selection

=
>

)2(8 Sratingσ

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

•  Selects rows that
satisfy selection
condition.

•  No duplicates in
result! (Why?)

•  Schema of result
identical to schema of
(only) input relation.

S2
sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

26

Projection
sname rating
yuppy 9
lubber 8
guppy 5
rusty 10

π sname rating S, ()2

age
35.0
55.5

πage S()2

•  Deletes attributes that are not in
projection list.

•  Schema of result contains exactly the
fields in the projection list, with the
same names that they had in the
(only) input relation.

•  Projection operator has to eliminate
duplicates! (Why??)

–  Note: real systems typically don’t do
duplicate elimination unless the user
explicitly asks for it.

27

Composition of Operations
•  Result relation can be the input for another relational

algebra operation! (Operator composition)

sname rating
yuppy 9
rusty 10

=
>

))2(8(, Sratingratingsname σπ

S2 sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

28

What do we want to get from two
relations?

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1
S1

What about: Who reserved boat 101?

Or: Find the name of the sailor who reserved boat 101.

29

Cross-Product
•  Each row of S1 is paired with each row of R1.
•  Result schema has one field per field of S1 and

R1, with field names inherited.

)1,2()1,1(RsidsidSsidsid →×→ ρρ

sid1 sname rating age sid2 bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

  Renaming operator (because of naming conflict):

30

Why does this cross product help
Query: Find the name of the sailor who reserved boat 101.

32

Another example
•  Find the name of the sailor having the highest

rating.

€

AllR=πratingAρ(rating−>ratingA, S2)

Result?=πSname(σrating<ratingA(S2×AllR))

What’s in “Result?” ?

Does it answer our query?

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2

33

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2
ratingA

9

8

5

10

×

AllR

sid sname rating age ratingA

28 yuppy 9 35.0 9

28 yuppy 9 35.0 8

28 yuppy 9 35.0 5

28 yuppy 9 35.0 10

31 lubber 8 55.5 9

31 lubber 8 55.5 8

31 lubber 8 55.5 5

31 lubber 8 55.5 10

44 guppy 5 35.0 9

44 guppy 5 35.0 8

44 guppy 5 35.0 5

44 guppy 5 35.0 10

58 rusty 10 35.0 9

58 rusty 10 35.0 8

58 rusty 10 35.0 5

58 rusty 10 35.0 10

=

€

AllR=πratingAρ(rating−>ratingA, S2)

Result?=πSname(σrating<ratingA(S2×AllR))

34

Union, Intersection, Set-Difference
•  All of these operations

take two input relations,
which must be union-
compatible:
–  Same number of fields.
–  ‘Corresponding’ fields

have the same type.
•  What is the schema of

result?

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2∪

S S1 2∩

sid sname rating age
22 dustin 7 45.0

S S1 2−

35

Back to our query
•  Find the name of the sailor having the highest

rating.

37

Relational Algebra (Summary)
•  Basic operations:

–  Selection (σ) Selects a subset of rows from relation.
–  Projection (π) Deletes unwanted columns from relation.
–  Cross-product (×) Allows us to combine two relations.
–  Set-difference (-) Tuples in reln. 1, but not in reln. 2.
–  Union (∪) Tuples in reln. 1 and in reln. 2.

Also,
–  Rename (ρ) Changes names of the attributes

•  Since each operation returns a relation, operations can be composed! (Algebra is
“closed”.)

•  Use of temporary relations recommended.

