Relational Algebra 1

Week 4

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
- Strong formal foundation based on logic.
- Allows for much optimization.
- Query Languages != programming languages!
- QLs not expected to be "Turing complete".
- QLs not intended to be used for complex calculations.
- QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
(1) Relational Algebra: More operational, very useful for representing execution plans.
(2) Relational Calculus: Lets users describe what they want, rather than how to compute it. (Nonoperational, declarative.)

- Understanding Algebra is key to understanding SQL, and query processing!

The Role of Relational Algebra in a DBMS

Algebra Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance.
- Schemas of input relations for a query are fixed (but query will run regardless of instance!)
- The schema for the result of a given query is also fixed! Determined by definition of query language constructs.

Relational Algebra

- Procedural language
- Five basic operators
- selection
- projection
- union
- set difference
- Cross product

SQL is closely based on relational algebra.
select
project
(why no intersection?)
difference
Cartesian product

- The are some other operators which are composed of the above operators. These show up so often that we give them special names.
- The operators take one or two relations as inputs and give a new relation as a result.

Select Operation - Example

- Relation r

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- $\sigma_{\mathrm{A}=\mathrm{B}} \wedge \mathrm{D}>5(r)$

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
α	α	1	7
β	β	23	10

Intuition: The select operation allows us to retrieve some rows of a relation (by "some" I mean anywhere from none of them to all of them)

Here I have retrieved all the rows of the relation r where the value in field A equals the value in field B, and the value in field D is greater than 5.

Select Operation

- Notation: $\sigma_{p}(r)$
- p is called the selection predicate
- Defined as:

$$
\sigma_{p}(\boldsymbol{r})=\{t \mid t \in r \text { and } p(t)\}
$$

Where p is a formula in propositional calculus consisting of terms connected by : $\wedge($ and $), \vee(\mathbf{o r}), \neg($ not $)$ Each term is one of:

$$
<\text { attribute }>o p \quad<\text { attribute }>\text { or }<\text { constant }>
$$

where $o p$ is one of: $=, \neq,>, \geq,<, \leq$

- Example of selection:

$$
\sigma_{\text {name }} \text { 'Lee'(professor) }
$$

Project Operation - Example I

- Relation r :

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}
α	10	7
α	20	1
β	30	1
β	40	2

Intuition: The project operation allows us to retrieve some columns of a relation (by "some" I mean anywhere from none of them to all of them)

\boldsymbol{A}	\boldsymbol{C}
α	7
α	1
β	1
β	2

Here I have retrieved columns A and C.

Project Operation - Example II

- Relation $r: \quad$| \boldsymbol{A} | \boldsymbol{B} | \boldsymbol{C} |
| :---: | :---: | :---: |
| α | 10 | 1 |
| α | 20 | 1 |
| β | 30 | 1 |
| β | 40 | 2 |

Intuition: The project operation removes duplicate rows, since relations are sets.

\boldsymbol{A}	\boldsymbol{C}			
$\boldsymbol{A}_{\mathrm{A}, \mathrm{C}}(r)$				
α	1			
α	1			
β	1			
β	2	$=$	\boldsymbol{A}	\boldsymbol{C}
:---:	:---:			
α	1			
β	1			
β	2			

Here there are two rows with $A=\alpha$ and $C=1$. So one was discarded.

Project Operation

- Notation:

$$
\pi_{\mathrm{A} 1, \mathrm{~A} 2, \ldots, A k}(r)
$$ relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets.

Union Operation - Example

Relations $r, s:$\begin{tabular}{|c|c|}
\hline \boldsymbol{A} \& \boldsymbol{B}

\hline \hlineα \& 1

α \& 2

β \& 1

\hline

\quad

\hline \boldsymbol{A} \& \boldsymbol{B}

\hline \hline \& \multicolumn{2}{|c|}{| α |
| :---: |
| β |
| β |} \& 2

\hline
\end{tabular}

Intuition: The union
operation concatenates two relations, and removes

\boldsymbol{A}	\boldsymbol{B}
α	1
α	2
β	1
β	3

Here there are two rows with $A=\alpha$ and $B=2$. So one was discarded.

Union Operation

- Notation: $r \cup s$
- Defined as:

$$
r \cup s=\{t \mid t \in r \text { or } t \in s\} \quad \text { "Union-compatible" }
$$

For $r \cup s$ to be valid.

1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (e.g., $2^{\text {nd }}$ column of r deals with the same type of values as does the 2 nd column of s).

Although the field types must be the same, the names can be different. For example I can union professor and lecturer where:

$$
\begin{aligned}
& \text { professor (PID : string, name : string }) \\
& \text { lecturer }(\underline{\text { LID }}: \text { string, first_name }: \text { string })
\end{aligned}
$$

Related Operation: Intersection

Set Difference Operation - Example

Set Difference Operation

- Notation $r-s$
- Defined as:

$$
r-s=\{t \mid t \in r \text { and } \mathfrak{t} \notin s\}
$$

- Set differences must be taken between compatible relations.
"Union-compatible"
$-r$ and s must have the same arity
- attribute domains of r and s must be compatible
- Note that in general $r-s \neq s-r$

Cross-Product Operation-Example

Relations r, s :	A	B			c
	α	1 2			α β β β γ
r X S:	A	B	C	D	E
	α	1	α	10	a
	α	1	β	10	a
	α	1	β	20	b
	α	1	γ	10	b
	β	2	α	10	a
	β	2	β	10	a
	β	2	β	20	b
	β	2	γ	10	b

Intuition: The cross product operation returns all possible combinations of rows in r with rows in S.

In other words the result is every possible pairing of the rows of r and S.

Cross-Product Operation

- Notation $r \times s$
- Defined as:

$$
r \mathrm{x} s=\{t q \mid t \in r \text { and } q \in s\}
$$

- Assume that attributes of $\mathrm{r}(\mathrm{R})$ and $\mathrm{s}(\mathrm{S})$ are disjoint. (That is, $R \cap S=\varnothing$).
- If attributes names of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.

Composition of Operations

- We can build expressions using multiple operations
- Example: $\sigma_{\mathrm{A}=\mathrm{C}}(r \times s)$

\boldsymbol{A}	\boldsymbol{B}				
α	1				
β	2				
\boldsymbol{r}		\quad	\boldsymbol{C}	\boldsymbol{D}	\boldsymbol{E}
:---	:---	:---			
α	10	a			
β	10	a			
β	20	b			
γ	10	b			
\boldsymbol{S}					

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}	\boldsymbol{E}
$\boldsymbol{\alpha}$	1	$\boldsymbol{\alpha}$	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
$\boldsymbol{\beta}$	2	$\boldsymbol{\beta}$	10	a
$\boldsymbol{\beta}$	2	$\boldsymbol{\beta}$	20	b
β	2	γ	10	b

"take the cross product of r and S, then return only the rows where A equals B "

$$
\sigma_{\mathrm{A}=\mathrm{C}}(r \times s) \square
$$

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}	\boldsymbol{E}
α	1	α	10	a
β	2	β	10	a
β	2	β	20	b

Rename Operation

- Allows us to name, and therefore to refer to, the results of relationalalgebra expressions.
Example:

$$
\rho \text { (myRelation, }(r-s))
$$

Renaming columns (rename A to A2):

$$
\rho \text { (myRelation }(A->A 2),(r-s))
$$

A	B	A	B
α	1	α	2
α	2	β	
β	1	S	
	r		

> Take the set difference of r and s, and call the result myRelation
> Renaming in relational algebra is essentiality the same as assignment in a programming language

\boldsymbol{A}	\boldsymbol{B}
α	1
β	1

myRepation

Rename Operation

If a relational-algebra expression Y has arity n, then

$$
\rho(X(A->A 1, B->A 2, \ldots), Y)
$$

returns the result of expression Y under

A	B	A	B
α	1	α	2
α	2	β	
β	1	S	

For example,
ρ (myRelation $(A->E, B->K),(r-s))$
Take the set difference of r and s, and call the result myRelation, while renaming the first field to E, and the second field to K.

Sailors Example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

Example Instances

- "Sailors" and "Reserves" relations for our examples.

R1

$\underline{\text { sid }}$	$\underline{\text { bid }}$	$\underline{\text { day }}$
22	101	$10 / 10 / 96$
58	103	$11 / 12 / 96$

$S 1$| $\underline{\text { sid }}$ | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

S2 | $\underline{\text { sid }}$ | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 28 | yuppy | 9 | 35.0 |
| 31 | lubber | 8 | 55.5 |
| 44 | guppy | 5 | 35.0 |
| 58 | rusty | 10 | 35.0 |

Algebra Operations

- Look what we want to get from the following table:

S2 \quad| sid | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 28 | yuppy | 9 | 35.0 |
| 31 | lubber | 8 | 55.5 |
| 44 | guppy | 5 | 35.0 |
| 58 | rusty | 10 | 35.0 |

Selection

- Selects rows that satisfy selection condition.
- No duplicates in result! (Why?)
- Schema of result identical to schema of

S2 | sid | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 28 | yuppy | 9 | 35.0 |
| 31 | lubber | 8 | 55.5 |
| 44 | guppy | 5 | 35.0 |
| 58 | rusty | 10 | 35.0 | (only) input relation.

$\sigma_{\text {rating }>8}(S 2)=$

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate duplicates! (Why??)
- Note: real systems typically don' t do duplicate elimination unless the user explicitly asks for it.

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

π
sname, rating
(S2)

Composition of Operations

- Result relation can be the input for another relational algebra operation! (Operator composition)

What do we want to get from two relations?

R1			S1			
			sid	sname	rating	age
sid	$\underline{\text { bid }}$	day	22	dustin	7	45.0
22	101	10/10/96	31	lubber	8	55.5
58	103	11/12/96	58	rusty	10	35.0

What about: Who reserved boat 101?

Or: Find the name of the sailor who reserved boat 101.

Cross-Product

- Each row of S1 is paired with each row of R1.
- Result schema has one field per field of S1 and R1, with field names inherited.

sid1	sname	rating	age	sid2	bid	day
22	dustin	7	45.0	22	101	$10 / 10 / 96$
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	22	101	$10 / 10 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$
58	rusty	10	35.0	22	101	$10 / 10 / 96$
58	rusty	10	35.0	58	103	$11 / 12 / 96$

- Renaming operator (because of naming conflict):

$$
\rho(\text { sid } \rightarrow \operatorname{sid} 1, S 1) \times \rho(\text { sid } \rightarrow \operatorname{sid} 2, R 1)
$$

Why does this cross product help

Query: Find the name of the sailor who reserved boat 101.

Another example

- Find the name of the sailor having the highest rating.

AllR $=\pi_{\text {rating } A} \rho($ rating $->$ rating $A, S 2)$
Result $?=\pi_{\operatorname{Sname}}\left(\sigma_{\text {rating }<\text { rating } A}(S 2 \times \mathrm{AllR})\right)$
What's in "Result?" ?
Does it answer our query?
S2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

$\underline{\text { sid }}$	sname	rating	age		
28	yuppy	9	35.0		
31	lubber	8	55.5		
44	guppy	5	35.0		
58	rusty	10	35.0	$=$	ratingA
:---	$=$	9			
:---					
5					
10					

$\operatorname{AllR}=\pi_{r a t i n g} A\left(\right.$ rating $_{->}$rating $\left.A, S 2\right)$
Result $?=\pi_{\text {Sname }}\left(\sigma_{\text {rating }<\text { rating } A}(S 2 \times \mathrm{AllR})\right)$

sid	sname	rating	age	ratingA
28	yuppy	9	35.0	9
28	yuppy	9	35.0	8
28	yuppy	9	35.0	5
28	yuppy	9	35.0	10
31	lubber	8	55.5	9
31	lubber	8	55.5	8
31	lubber	8	55.5	5
31	lubber	8	55.5	10
44	guppy	5	35.0	9
44	guppy	5	35.0	8
44	guppy	5	35.0	5
44	guppy	5	35.0	10
58	rusty	10	35.0	9
58	rusty	10	35.0	8
58	rusty	10	35.0	5
58	rusty	10	35.0	10

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be unioncompatible:
- Same number of fields.
- 'Corresponding' fields have the same type.

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

$S 1 \cup S 2$

- What is the schema of result?

sid	sname	rating	age
22	dustin	7	45.0

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0
$S 1 \cap S 2$			

Back to our query

- Find the name of the sailor having the highest rating.

Relational Algebra (Summary)

- Basic operations:
- Selection (σ) Selects a subset of rows from relation.
- Projection (π) Deletes unwanted columns from relation.
- Cross-product (\times) Allows us to combine two relations.
- Set-difference (-) Tuples in reln. 1, but not in reln. 2.
- Union (\cup) Tuples in reln. 1 and in reln. 2.

Also,

- Rename (ρ) Changes names of the attributes
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)
- Use of temporary relations recommended.

