
1

Schema Refinement &
Normalization Theory

Functional Dependencies

Week 13

2

What’s the Problem
•  Consider relation obtained (call it SNLRHW)

Hourly_Emps(ssn, name, lot, rating, hrly_wage, hrs_worked)

•  What if we know rating determines hrly_wage?

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

3

Redundancy

•  When part of data can be derived from other
parts, we say redundancy exists.
– Example: the hrly_wage of Smiley can be

derived from the hrly_wage of Attishoo
because they have the same rating and we know
rating determines hrly_wage.

•  Redundancy exists because of the existence
of integrity constraints (e.g., FD: R→ W).

4

What’s the problem, again

•  Update anomaly: Can we change W in just
the 1st tuple of SNLRWH?

•  Insertion anomaly: What if we want to
insert an employee and don’t know the
hourly wage for his rating?

•  Deletion anomaly: If we delete all
employees with rating 5, we lose the
information about the wage for rating 5!

5

What do we do?
•  Since constraints, in particular functional

dependencies, cause problems, we need to study
them, and understand when and how they cause
redundancy.

•  When redundancy exists, refinement is needed.
–  Main refinement technique: decomposition (replacing

ABCD with, say, AB and BCD, or ACD and ABD).
•  Decomposition should be used judiciously:

–  Is there reason to decompose a relation?
–  What problems (if any) does the decomposition cause?

6

What do we do? Decomposition

S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

=

7

Refining an ER Diagram
•  1st diagram translated:

Employees(S,N,L,D,S2)
Departments(D,M,B)
–  Lots associated with

employees.

•  Suppose all employees in a
dept are assigned the same
lot: D L

•  Can fine-tune this way:
Employees2(S,N,D,S2)
Departments(D,M,B,L)

→

lot
dname

budget did

since
name

Works_In Departments Employees

ssn

lot

dname

budget

did

since
name

Works_In Departments Employees

ssn

Before:

After:

8

Functional Dependencies (FDs)
•  A functional dependency (FD) has the form: X→Y,

where X and Y are two sets of attributes.
–  Examples: rating→hrly_wage, AB →C

•  The FD X→Y is satisfied by a relation instance r if:
–  for each pair of tuples t1 and t2 in r:

t1.X = t2.X implies t1.Y =t2.Y
–  i.e., given any two tuples in r, if the X values agree, then the Y

values must also agree. (X and Y are sets of attributes.)

•  Convention: X, Y, Z etc denote sets of attributes, and A,
B, C, etc denote attributes.

9

Functional Dependencies (FDs)
•  The FD holds over relation name R if, for every

allowable instance r of R, r satisfies the FD.
•  An FD, as an integrity constraint, is a statement

about all allowable relation instances.
–  Must be identified based on semantics of application.
–  Given some instance r1 of R, we can check if it violates

some FD f or not
–  But we cannot tell if f holds over R by looking at an

instance!
•  Cannot prove non-existence (of violation) out of ignorance

–  This is the same for all integrity constraints!

10

Example: Constraints on Entity Set
•  Consider relation obtained from Hourly_Emps:

–  Hourly_Emps (ssn, name, lot, rating, hrly_wage,
hrs_worked)

•  Notation: We will denote this relation schema by
listing the attributes: SNLRWH
–  This is really the set of attributes {S,N,L,R,W,H}.
–  Sometimes, we will refer to all attributes of a relation by

using the relation name. (e.g., Hourly_Emps for SNLRWH)
•  Some FDs on Hourly_Emps:

–  ssn is the key: S → SNLRWH
–  rating determines hrly_wage: R → W

11

One more example

A B C
1 1 2
1 1 3
2 1 3
2 1 2

How many possible
FDs totally on this
relation instance?

FDs with A as
the left side:

Satisfied by
the relation
instance?

A→A yes
A→B yes
A→C No
A→AB yes
A→AC No
A→BC No
A→ABC No

12

Violation of FD by a relation

•  The FD X→Y is NOT satisfied by a
relation instance r if:
– There exists a pair of tuples t1 and t2 in r such

that
t1.X = t2.X but t1.Y ≠ t2.Y

–  i.e., we can find two tuples in r, such that X
values agree, but Y values don’t.

13

Some other FDs

A B C
1 1 2
1 1 3
2 1 3
2 1 2

FD Satisfied by
the relation
instance?

C→B yes
C→AB No
B→C No
B→B Yes
AC →B Yes [note!]
… …

14

Relationship between FDs and Keys
•  Given R(A, B, C).

– A→ABC means that A is a key.
•  In general,

– X → R means X is a (super)key.

•  How about key constraint?
–  ssn → did

lot
dname

budget did

since
name

Works_In Departments Employees

ssn

15

Reasoning About FDs
•  Given some FDs, we can usually infer

additional FDs:
–  ssn→ did, did → lot implies ssn→ lot
–  A → BC implies A → B

•  An FD f is logically implied by a set of FDs
F if f holds whenever all FDs in F hold.
–  F+ = closure of F is the set of all FDs that are

implied by F.

16

Armstrong’s axioms

•  Armstrong’s axioms are sound and
complete inference rules for FDs!
– Sound: all the derived FDs (by using the

axioms) are those logically implied by the
given set

– Complete: all the logically implied (by the
given set) FDs can be derived by using the
axioms.

17

Reasoning about FDs
•  How do we get all the FDs that are logically

implied by a given set of FDs?
•  Armstrong’s Axioms (X, Y, Z are sets of

attributes):
–  Reflexivity:

•  If X ⊇ Y, then X → Y
–  Augmentation:

•  If X → Y, then XZ → YZ for any Z
–  Transitivity:

•  If X → Y and Y → Z, then X → Z

A B C
1 1 2
2 1 3
2 1 3
1 1 2

18

Example of using Armstrong’s
Axioms

•  Couple of additional rules (that follow from
AA):
–  Union: If X → Y and X → Z, then X →

YZ
–  Decomposition: If X → YZ, then X → Y and

X → Z
•  Derive the above two by using Armstrong’s

axioms!

19

Derive Union

•  Show that

 If X → Y and X → Z, then X → YZ

20

Derive Decomposition

•  Show that

 If X → YZ, then X → Y and X → Z

21

Another Useful Rule:
Accumulation Rule

•  If X → YZ and Z → W, then X →YZW

Proof:

22

Derivation Example

•  R = (A, B, C, G, H, I)
F = {A → B; A → C; CG → H; CG → I; B → H }

•  some members of F+ (how to derive them?)
–  A → H

–  AG → I

–  CG → HI

23

Procedure for Computing F+

•  To compute the closure of a set of functional dependencies F:
 F + = F

repeat
 for each functional dependency f in F+

 apply reflexivity and augmentation rules on f
 add the resulting functional dependencies to F +

 for each pair of functional dependencies f1and f2 in F +

 if f1 and f2 can be combined using transitivity
 then add the resulting functional dependency to F +

until F + does not change any further

 NOTE: We shall see an alternative procedure for this task later

24

Example on Computing F+
•  F = {A → B, B → C, C D → E }
•  Step 1: For each f in F, apply reflexivity rule

–  We get: CD → C; CD → D
–  Add them to F:

•  F = {A → B, B → C, C D → E; CD → C; CD → D }

•  Step 2: For each f in F, apply augmentation rule
–  From A → B we get: A → AB; AB → B; AC → BC; AD
→ BD; ABC →BC; ABD → BD; ACD →BCD

–  From B → C we get: AB → AC; BC → C; BD → CD;
ABC → AC; ABD → ACD, etc etc.

•  Step 3: Apply transitivity on pairs of f’s
•  Keep repeating… You get the idea

25

Reasoning About FDs (Contd.)

•  Computing the closure of a set of FDs can be expensive.
(Size of closure is exponential in # of attrs!)

•  Typically, we just want to check if a given FD X →Y is in
the closure of a set of FDs F. An efficient check:

–  Compute attribute closure of X (denoted X+) wrt F:
•  Set of all attributes Z such that X → Z is in F+

•  There is a linear time algorithm to compute this.
–  Check if Y is in X+

•  Does F = {A → B, B → C, C D → E } imply A → E?
–  i.e, is A → E in the closure F+? Equivalently, is E in A+?

26

Computing X+

•  Input F (a set of FDs), and X (a set of
attributes)

•  Output: Result=X+ (under F)

•  Method:
– Step 1: Result :=X;
– Step 2: Take Y → Z in F, and Y is in Result, do:

 Result := Result ∪ Z
– Repeat step 2 until Result cannot be changed and

then output Result.

27

Example of Attribute Closure X+

•  Does F = {A → B, B → C, C D → E } imply A →
E?
–  i.e, is A → E in the closure F+? Equivalently, is E in A+?

Step 1: Result = A
Step 2: Consider A → B, Result = AB
 Consider B → C, Result = ABC

 Consider CD → E, CD is not in ABC, so stop
Step 3: A+ = {ABC}
 E is NOT in A+, so A → E is NOT in F+

28

Example of computing X+

 F = {A →B, AC →D, AB →C}?

 What is X+ for X = A? (i.e. what is the attribute

closure for A?)

 Answer: A+ = ABCD

29

Example of Attribute Closure

R = (A, B, C, G, H, I)
F = {A → B; A → C; CG → H; CG → I; B → H}

•  (AG)+ = ?

–  Answer: ABCGHI
•  Is AG a candidate key?

–  This question involves two parts:
1.  Is AG a super key?

–  Does AG → R? == Is (AG)+ ⊇ R

2.  Is any subset of AG a superkey?
–  Does A → R? == Is (A)+ ⊇ R
–  Does G → R? == Is (G)+ ⊇ R

30

Uses of Attribute Closure
There are several uses of the attribute closure

algorithm:
•  Testing for superkey:

–  To test if X is a superkey, we compute X+, and check if
X+ contains all attributes of R.

•  Testing functional dependencies
–  To check if a functional dependency X → Y holds (or,

in other words, is in F+), just check if Y ⊆ X+.
–  That is, we compute X+ by using attribute closure, and

then check if it contains Y.
–  Is a simple and cheap test, and very useful

•  Computing closure of F

31

Computing F+

•  Given F={ A → B, B → C}. Compute F+ (with
attributes A, B, C).

A B C AB AC BC ABC

A

B

C

AB

AC

BC

ABC

Attribute closure
A+=?
B+=?
C+=?
AB+=?
AC+=?
BC+=?
ABC+=?

Step 1: Construct an empty matrix, with all
Possible combinations of attributes in the rows
And columns

Step 2: Compute the attribute
closures for all attribute/
combination of attributes

Step 3: Fill in the matrix using the results from Step 2

32

Computing F+

•  Given F={ A → B, B → C}. Compute F+ (with
attributes A, B, C).

We’ll do an example on A+.

Step 1: Result = A
Step 2: Consider A → B, Result = A ∪ B = AB
 Consider B → C, Result = AB ∪ C = ABC
Step 3: A+ = {ABC}

33

Computing F+

•  Given F={ A → B, B → C}. Compute F+ (with
attributes A, B, C).

A B C AB AC BC ABC

A √ √ √ √ √ √ √
B

C

:

Attribute closure
A+=ABC
B+=?
C+=?
AB+=?
AC+=?
BC+=?
ABC+=?

Step 1: Construct an empty matrix, with all
Possible combinations of attributes in the rows
And columns

Step 2: Compute the attribute
closures for all attribute/
combination of attributes

Step 3: Fill in the matrix using the results from Step 2.
We have A+=ABC. Now fill in the row for A. Consider
the first column. Is A part of A+? Yes, so check it.
Is B part of A+? Yes, so check it… and so on.

34

Computing F+

•  Given F={ A → B, B → C}. Compute F+ (with
attributes A, B, C).

A B C AB AC BC ABC
A √ √ √ √ √ √ √
B √ √ √
C √
AB √ √ √ √ √ √ √
AC √ √ √ √ √ √ √
BC √ √ √
ABC √ √ √ √ √ √ √

Attribute closure

A+=ABC
B+=BC
C+=C
AB+=ABC
AC+=ABC
BC+=BC
ABC+=ABC

•  An entry with √ means FD (the row) → (the column) is in F+.
•  An entry gets √ when (the column) is in (the row)+

35

Computing F+

A B C AB AC BC ABC
A √ √ √ √ √ √ √
B √ √ √
C √
AB √ √ √ √ √ √ √
AC √ √ √ √ √ √ √
BC √ √ √
ABC √ √ √ √ √ √ √

Attribute closure

A+=ABC
B+=BC
C+=C
AB+=ABC
AC+=ABC
BC+=BC
ABC+=ABC

•  An entry with √ means FD (the row) → (the column) is in F+.
•  An entry gets √ when (the column) is in (the row)+

A→BC Step 4: Derive rules.

36

Check if two sets of FDs are
equivalent

•  Two sets of FDs are equivalent if they logically
imply the same set of FDs.
–  i.e., if F1

+ = F2
+, then they are equivalent.

•  For example, F1={A →B, A →C} is equivalent to
F2={A → BC}

•  How to test? Two steps:
–  Every FD in F1 is in F2

+

–  Every FD in F2 is in F1
+

•  These two steps can use the algorithm (many
times) for X+

37

Summary
•  Constraints give rise to redundancy

–  Three anomalies
•  FD is a “popular” type of constraint

–  Satisfaction & violation
–  Logical implication
–  Reasoning

•  Armstrong’s Axioms
–  FD inference/derivation

•  Computing the closure of FD’s (F+)
•  Check for existence of an FD

–  By computing the Attribute closure

38

Normal Forms
•  The first question: Is any refinement needed?
•  Normal forms:

–  If a relation is in a certain normal form (BCNF, 3NF etc.), it
is known that certain kinds of problems are avoided/
minimized. This can be used to help us decide whether
decomposing the relation will help.

•  Role of FDs in detecting redundancy:
–  Consider a relation R with 3 attributes, ABC.

•  No FDs hold: There is no redundancy here.
•  Given A → B: Several tuples could have the same A value, and if

so, they’ll all have the same B value!

39

Normal Forms
•  First normal form (1NF)

–  Every field must contain atomic values, i.e. no sets or lists.
–  Essentially all relations are in this normal form

•  Second normal form (2NF)
–  Any relation in 2NF is also in 1NF
–  All the non-key attributes must depend upon the WHOLE of

the candidate key rather than just a part of it.
•  It is only relevant when the key is composite, i.e., consists of several

fields.
–  e.g. Consider a relation:

•  Inventory(part, warehouse, quantity, warehouse_address).
•  Suppose {part, warehouse} is a candidate key.
•  warehouse_address depends upon warehouse alone - 2NF violation
•  Solution: decompose

40

Normal Forms

•  Boyce-Codd Normal Form (BCNF)
–  Any relation in BCNF is also in 2NF

•  Third normal form (3NF)
–  Any relation in BCNF is also in 3NF

Boyce-Codd Normal Form (BCNF)
•  Reln R with FDs F is in BCNF if for each non-trivial FD

X → A in F , X is a super key for R (i.e., X → R in F+).
–  An FD X → A is said to be “trivial” if A ∈ X.
–  However if not all XA are in R, then we don’t care.

•  In other words, R is in BCNF if the only non-trivial FDs
that hold over R are key constraints.

•  If BCNF:
–  No “data” in R can be predicted using FDs alone. Why:
–  Because X is a (super)key, we can’t have two
 different tuples that agree on the X value

X Y A

x y1 a
x y2 ?

Suppose we know that this instance satisfies X → A. This situation
cannot arise if the relation is in BCNF.

42

BCNF
•  Consider relation R with FDs F. If X → A in F

over R violates BCNF, it means
–  XA are all in R, and
–  A is not in X, and → non-trivial FD
–  X → R is not in F+ → X is not a superkey

•  In other words, for X → A in F over R to satisfy
BCNF requirement, one of the followings must be
true:
–  XA are not all in R, or
–  X → A is trivial, i.e. A is in X, or
–  X is a superkey, i.e. X → R is in F+

43

Decomposition of a Relation Schema
•  When a relation schema is not in BCNF: decompose.
•  Suppose that relation R contains attributes A1 ... An. A

decomposition of R consists of replacing R by two or more
relations such that:

–  Each new relation scheme contains a subset of the attributes of R
(and no attributes that do not appear in R), and

–  Every attribute of R appears as an attribute of at least one of the new
relations.

•  Intuitively, decomposing R means we will store instances of
the relation schemes produced by the decomposition,
instead of instances of R.

44

Decomposition example

S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

=

Original relation
(not stored in DB!)

Decomposition
(in the DB)

45

Problems with Decompositions
•  There are three potential problems to consider:
  Some queries become more expensive.

•  e.g., How much did sailor Attishoo earn? (earn = W*H)
  Given instances of the decomposed relations, we may not be

able to reconstruct the corresponding instance of the original
relation!

•  Fortunately, not in the SNLRWH example.
  Checking some dependencies may require joining the

instances of the decomposed relations.
•  Fortunately, not in the SNLRWH example.

•  Tradeoff: Must consider these issues vs. redundancy.

46

Example of problem 2
Student_ID Name Dcode Cno Grade
123-22-3666 Attishoo INFS 501 A
231-31-5368 Guldu CS 102 B
131-24-3650 Smethurst INFS 614 B
434-26-3751 Guldu INFS 614 A
434-26-3751 Guldu INFS 612 C

Name Dcode Cno Grade
Attishoo INFS 501 A
Guldu CS 102 B
Smethurst INFS 614 B
Guldu INFS 614 A
Guldu INFS 612 C

Student_ID Name
123-22-3666 Attishoo
231-31-5368 Guldu
131-24-3650 Smethurst
434-26-3751 Guldu

≠

47

Lossless Join Decompositions
•  Decomposition of R into R1 and R2 is lossless-

join w.r.t. a set of FDs F if, for every instance r
that satisfies F, we have:

•  It is always true that

•  In general, the other direction does not hold!
If it does, the decomposition is lossless-join.

rrr RR =)()(
21

ππ

)()(
21
rrr RR ππ ⊆

48

Example (lossy decomposition)

A B C
1 2 3
4 5 6
7 2 8
1 2 8
7 2 3

A B C
1 2 3
4 5 6
7 2 8

A B
1 2
4 5
7 2

B C
2 3
5 6
2 8

)()(rr BCAB ππ

)(rBCπ

)(rABπ

r

49

Example (lossless join decomposition)

A B C
1 2 3
4 5 6
7 2 3

A B C
1 2 3
4 5 6
7 2 3

A B
1 2
4 5
7 2

B C
2 3
5 6

)()(rr BCAB ππ

)(rBCπ

)(rABπ
r

Suppose (AB∩BC)→ BC

50

Lossless Join Decomposition
•  The decomposition of R into R1 and R2 is

lossless-join wrt F if and only if F+ contains:
–  R1 ∩R2 → R1, or
–  R1 ∩R2 → R2

•  In particular, the decomposition of R into
(UV) and (R-V) is lossless-join if U → V
holds on R
–  assume U and V do not share attributes.
– WHY?

51

Decomposition
•  Definition extended to decomposition into 3

or more relations in a straightforward way.

•  It is essential that all decompositions used to
deal with redundancy be lossless! (Avoids
Problem (2))

52

Decomposition into BCNF
•  Recall: Consider relation R with FDs F. If X → A

in F over R violates BCNF, it means
–  XA are all in R, and
–  A is not in X, and → non-trivial FD
–  X → R is not in F+ → X is not a superkey

•  Recall that for X → A in F over R to satisfy BCNF
requirement, one of the followings must be true:
–  XA are not all in R, or
–  X → A is trivial, i.e. A is in X, or
–  X is a superkey, i.e. X → R is in F+

53

Decomposition into BCNF
•  Consider relation R with FDs F. If X → A in F

over R violates BCNF, i.e.,
–  XA are all in R, and
–  A is not in X, and → non-trivial FD
–  X → R is not in F+ → X is not a (super)key

•  Then: decompose R into R - A and XA.
•  Repeated application of this idea will give us a

collection of relations that are in BCNF; lossless
join decomposition, and guaranteed to terminate.

54

BCNF Decomposition Example

•  R = (A, B, C)
F = {A → B; B → C}
Key = {A}

•  R is not in BCNF (B → C but B is not a superkey)
•  Decomposition

–  R1 = (B, C)
–  R2 = (A, B)

55

BCNF Decomposition Example 2
•  Assume relation schema CSJDPQV:

 Contracts(contract_id, supplier, project, dept, part, qty, value)
–  key C, JP → C, SD → P, J → S

•  To deal with SD → P, decompose into SDP, CSJDQV.
•  To deal with J → S, decompose CSJDQV into JS and CJDQV
•  A tree representation of the decomposition:

CSJDPQV

SDP CSJDQV

JS CJDQV
Using SD → P

Using J → S

56

BCNF Decomposition

•  In general, several dependencies may cause
violation of BCNF. The order in which we
“deal with” them could lead to very
different sets of relations!

57

How do we know R is in BCNF?
•  If R has only two attributes, then it is in

BCNF
•  If F only uses attributes in R, then:

– R is in BCNF if and only if for each X → Y in
F (not F+!), X is a superkey of R, i.e., X → R is
in F+ (not F!).

58

Checking for BCNF Violations
•  List all non-trivial FDs
•  Ensure that left hand side of each FD is a

superkey
•  We have to first find all the keys!

59

Checking for BCNF Violations
•  Is Courses(course_num, dept_name, course_name,

classroom, enrollment, student_name, address) in BCNF?
•  FDs are:

–  course_num, dept_name → course_name
–  course_num, dept_name → classroom
–  course_num, dept_name → enrollment

•  What is (course_num, dept_name)+?
–  {course_num, dept_name, course_name, classroom, enrollment}

•  Therefore, the key is
{course_num, dept_name, course_name, classroom, enrollment,
student_name, address}

•  The relation is not in BCNF

