Schema Refinement & Normalization Theory

Functional Dependencies

Week 13

What's the Problem

- Consider relation obtained (call it SNLRHW) Hourly_Emps(<u>ssn, name, lot, rating, hrly_wage, hrs_worked</u>)
- What if we *know* rating determines hrly_wage?

S	Ν	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Redundancy

- When part of data can be derived from other parts, we say *redundancy* exists.
 - Example: the hrly_wage of Smiley can be derived from the hrly_wage of Attishoo because they have the same rating and we know rating determines hrly_wage.
- Redundancy exists because of the existence of *integrity constraints* (e.g., FD: $R \rightarrow W$).

What's the problem, again

- <u>Update anomaly</u>: Can we change W in just the 1st tuple of SNLRWH?
- *Insertion anomaly*: What if we want to insert an employee and don't know the hourly wage for his rating?
- *Deletion anomaly*: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

What do we do?

- Since constraints, in particular *functional dependencies*, cause problems, we need to study them, and understand when and how they cause redundancy.
- When redundancy exists, refinement is needed.
 - Main refinement technique: <u>decomposition</u> (replacing ABCD with, say, AB and BCD, or ACD and ABD).
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

What do we do? Decomposition

S	N	L	R	W	Η
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

S	N	L	R	Η
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

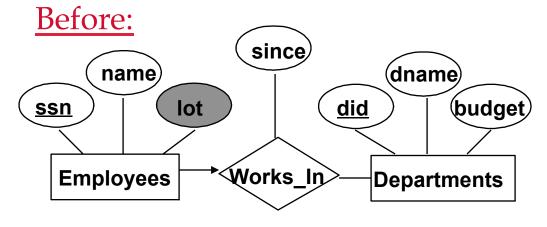
R	W	
8	10	
5	7	

 $\triangleright \triangleleft$

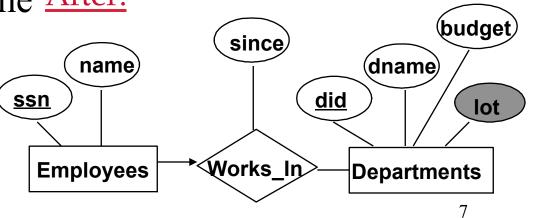
6

Refining an ER Diagram

- 1st diagram translated: Employees(S,N,L,D,S2) Departments(D,M,B)
 - Lots associated with employees.



- Suppose all employees in a dept are assigned the same <u>After</u>:
 lot: D → L
- Can fine-tune this way: (Employees2(S,N,D,S2) Departments(D,M,B,L)



Functional Dependencies (FDs)

- A <u>functional dependency</u> (FD) has the form: $X \rightarrow Y$, where X and Y are two *sets* of attributes.
 - Examples: rating \rightarrow hrly_wage, AB \rightarrow C
- The FD $X \rightarrow Y$ is satisfied by a relation instance r if:
 - for each pair of tuples t1 and t2 in r: t1.X = t2.X implies t1.Y = t2.Y
 - i.e., given any two tuples in *r*, if the X values agree, then the Y values must also agree. (X and Y are *sets* of attributes.)
- Convention: X, Y, Z etc denote sets of attributes, and A, B, C, etc denote attributes.

Functional Dependencies (FDs)

- *The FD holds* over relation name R if, for every *allowable* instance *r* of R, *r* satisfies the FD.
- An FD, as an integrity constraint, is a statement about *all* allowable relation instances.
 - Must be identified based on semantics of application.
 - Given some instance *r1* of R, we can check if it *violates* some FD *f* or not
 - But we cannot tell if *f* holds over R by looking at an instance!
 - Cannot prove non-existence (of violation) out of ignorance
 - This is the same for all integrity constraints!

Example: Constraints on Entity Set

- Consider relation obtained from Hourly_Emps:
 - Hourly_Emps (<u>ssn</u>, name, lot, rating, hrly_wage, hrs_worked)
- <u>Notation</u>: We will denote this relation schema by listing the attributes: <u>SNLRWH</u>
 - This is really the *set* of attributes {S,N,L,R,W,H}.
 - Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly_Emps for SNLRWH)
- Some FDs on Hourly_Emps:
 - *ssn* is the key: $S \rightarrow SNLRWH$
 - rating determines $hrly_wage: R \rightarrow W$

One more example

А	В	С
1	1	2
1	1	3
2	1	3
2	1	2

How many *possible* FDs totally on this relation instance?

FDs with A as the left side:	Satisfied by the relation instance?
A→A	yes
A→B	yes
A→C	No
A→AB	yes
A→AC	No
A→BC	No
A→ABC	No 11

Violation of FD by a relation

- The FD X→Y is NOT satisfied by a *relation instance r if:*
 - There exists a pair of tuples t1 and t2 in r such that

t1.X = t2.X but $t1.Y \neq t2.Y$

i.e., we can find two tuples in *r*, such that X values agree, but Y values don't.

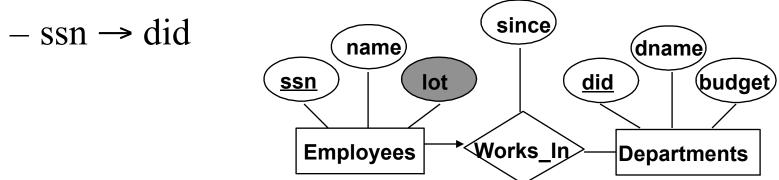
Some other FDs

А	В	С
1	1	2
1	1	3
2	1	3
2	1	2

FD	Satisfied by the relation instance?
C→B	yes
C→AB	No
B→C	No
B→B	Yes
AC →B	Yes [note!]
•••	

Relationship between FDs and Keys

- Given R(A, B, C).
 - $-A \rightarrow ABC$ means that A is a key.
- In general,
 - $X \rightarrow R$ means X is a (super)key.
- How about key constraint?



Reasoning About FDs

• Given some FDs, we can usually infer additional FDs:

 $-ssn \rightarrow did, did \rightarrow lot \text{ implies } ssn \rightarrow lot$

 $-A \rightarrow BC \text{ implies } A \rightarrow B$

• An FD f is *logically implied by* a set of FDs F if f holds whenever all FDs in F hold.

- $F^+ = closure of F$ is the set of all FDs that are implied by *F*.

Armstrong's axioms

- Armstrong's axioms are *sound* and *complete* inference rules for FDs!
 - Sound: all the derived FDs (by using the axioms) are those logically implied by the given set
 - Complete: all the logically implied (by the given set) FDs can be derived by using the axioms.

Reasoning about FDs

- How do we get all the FDs that are logically implied by a given set of FDs?
- Armstrong's Axioms (X, Y, Z are sets of attributes):
 - <u>Reflexivity</u>:

• If $X \supseteq Y$, then $X \rightarrow Y$

- Augmentation:
 - If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
- <u>Transitivity</u>:

• If $X \to Y$ and $Y \to Z$, then $X \to Z$

Α	В	С
1	1	2
2	1	3
2	1	3
1	1	2

Example of using Armstrong's Axioms

- Couple of additional rules (that follow from AA):
 - *Union*: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - *Decomposition*: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
- Derive the above two by using Armstrong's axioms!

Derive Union

• Show that

If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

Derive Decomposition

• Show that

If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

Another Useful Rule: Accumulation Rule

• If $X \rightarrow YZ$ and $Z \rightarrow W$, then $X \rightarrow YZW$

Proof:

Derivation Example

- R = (A, B, C, G, H, I) $F = \{A \rightarrow B; A \rightarrow C; CG \rightarrow H; CG \rightarrow I; B \rightarrow H\}$
- some members of F^+ (how to derive them?) - $A \rightarrow H$

$$-AG \rightarrow I$$

 $-CG \rightarrow HI$

Procedure for Computing F⁺

• To compute the closure of a set of functional dependencies F:

 $F^{+} = F$ repeat
for each functional dependency f in F^{+} apply reflexivity and augmentation rules on fadd the resulting functional dependencies to F^{+} for each pair of functional dependencies f_{1} and f_{2} in F^{+} if f_{1} and f_{2} can be combined using transitivity
then add the resulting functional dependency to F^{+} until F^{+} does not change any further

NOTE: We shall see an alternative procedure for this task later

Example on Computing F+

- $F = \{A \rightarrow B, B \rightarrow C, C D \rightarrow E \}$
- Step 1: For each f in F, apply reflexivity rule
 - We get: $CD \rightarrow C$; $CD \rightarrow D$
 - Add them to F:

• $F = \{A \rightarrow B, B \rightarrow C, C D \rightarrow E; CD \rightarrow C; CD \rightarrow D \}$

- Step 2: For each f in F, apply augmentation rule
 - From A → B we get: A → AB; AB → B; AC → BC; AD → BD; ABC → BC; ABD → BD; ACD → BCD
 - From B → C we get: AB → AC; BC → C; BD → CD; ABC → AC; ABD → ACD, etc etc.
- Step 3: Apply transitivity on pairs of f's
- Keep repeating... You get the idea

Reasoning About FDs (Contd.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # of attrs!)
- Typically, we just want to check if a given $FD X \rightarrow Y$ is in the closure of a set of FDs *F*. An efficient check:
 - Compute <u>attribute closure</u> of X (denoted X^+) wrt *F*:
 - Set of all attributes Z such that $X \rightarrow Z$ is in F^+
 - There is a linear time algorithm to compute this.
 - Check if Y is in X⁺
- Does $F = \{A \rightarrow B, B \rightarrow C, C D \rightarrow E\}$ imply $A \rightarrow E$?
 - i.e, is $A \rightarrow E$ in the closure F^+ ? Equivalently, is E in A^+ ?

- Input F (a set of FDs), and X (a set of attributes)
- Output: Result=X⁺ (under F)
- Method:
 - Step 1: Result :=X;
 - Step 2: Take $Y \rightarrow Z$ in F, and Y is in Result, do: Result := Result $\cup Z$
 - Repeat step 2 until Result cannot be changed and then output Result.

Example of Attribute Closure X⁺

• Does $F = \{A \rightarrow B, B \rightarrow C, C D \rightarrow E\}$ imply $A \rightarrow E$?

- i.e, is $A \rightarrow E$ in the closure F^+ ? Equivalently, is E in A^+ ?

Step 1: Result = A Step 2: Consider A \rightarrow B, Result = AB Consider B \rightarrow C, Result = ABC Consider CD \rightarrow E, CD is not in ABC, so stop Step 3: A⁺ = {ABC} E is NOT in A⁺, so A \rightarrow E is NOT in F⁺

Example of computing X⁺

 $F = \{A \rightarrow B, AC \rightarrow D, AB \rightarrow C\}?$

What is X^+ for X = A? (i.e. what is the attribute closure for A?)

Answer: $A^+ = ABCD$

Example of Attribute Closure

R = (A, B, C, G, H, I) $F = \{A \rightarrow B; A \rightarrow C; CG \rightarrow H; CG \rightarrow I; B \rightarrow H\}$

- $(AG)^+ = ?$
 - Answer: ABCGHI
- Is AG a candidate key?
 - This question involves two parts:
 - 1. Is AG a super key?
 - Does $AG \rightarrow R? ==$ Is $(AG)^+ \supseteq R$
 - 2. Is any subset of AG a superkey?
 - Does $A \rightarrow R? ==$ Is $(A)^+ \supseteq R$
 - Does $G \rightarrow R? ==$ Is $(G)^+ \supseteq R$

Uses of Attribute Closure

- There are several uses of the attribute closure algorithm:
- Testing for superkey:
 - To test if X is a superkey, we compute $X^{+,}$ and check if X^{+} contains all attributes of *R*.
- Testing functional dependencies
 - To check if a functional dependency $X \rightarrow Y$ holds (or, in other words, is in F^+), just check if $Y \subseteq X^+$.
 - That is, we compute X⁺ by using attribute closure, and then check if it contains Y.
 - Is a simple and cheap test, and very useful
- Computing closure of F

• Given $F = \{ A \rightarrow B, B \rightarrow C \}$. Compute F^+ (with attributes A, B, C).

Step 1: Construct an empty matrix, with all Possible combinations of attributes in the rows And columns

	A	В	C	AB	AC	BC	ABC
А							
В							
С							
AB							
AC							
BC							
ABC							

Step 3: Fill in the matrix using the results from Step 2

Step 2: Compute the attribute closures for all attribute/ combination of attributes

Attribute closure
A+=?
B+=?
C+=?
AB+=?
AC+=?
BC+=?
ABC+=?

• Given $F = \{ A \rightarrow B, B \rightarrow C \}$. Compute F^+ (with attributes A, B, C).

We'll do an example on A⁺.

Step 1: Result = A Step 2: Consider A \rightarrow B, Result = A \cup B = AB Consider B \rightarrow C, Result = AB \cup C = ABC Step 3: A⁺ = {ABC}

• Given $F = \{ A \rightarrow B, B \rightarrow C \}$. Compute F^+ (with attributes A, B, C).

Step 1: Construct an empty matrix, with all Possible combinations of attributes in the rows And columns

	А	В	С	AB	AC	BC	ABC
А							\checkmark
В							
С							
•							

Step 3: Fill in the matrix using the results from Step 2. We have $A^+=ABC$. Now fill in the row for A. Consider the first column. Is A part of A^+ ? Yes, so check it. Is B part of A^+ ? Yes, so check it... and so on.

Step 2: Compute the attribute closures for all attribute/ combination of attributes

Attribute closure	
A ⁺ = ABC	
B+=?	
C+=?	
AB+=?	
AC+=?	
BC+=?	
ABC+=?	33

• Given $F = \{ A \rightarrow B, B \rightarrow C \}$. Compute F^+ (with attributes A, B, C).

	A	В	C	AB	AC	BC	ABC	Attribute closure
А							\checkmark	A ⁺ =ABC
В								B ⁺ =BC
С								$C^+=C$
AB								AB+=ABC
AC								AC+=ABC
BC								BC+=BC
ABC								ABC+=ABC

• An entry with \checkmark means FD (the row) \rightarrow (the column) is in F⁺.

• An entry gets $\sqrt{\text{when (the column) is in (the row)}^+}$

Step 4: Derive rules.

	A	B	C	AB	AC	BC	ABC
А							
В							
С							
AB							
AC							
BC							
ABC							

Attribute closure $A^+=ABC$ $B^+=BC$ $C^+=C$ $AB^+=ABC$ $AC^+=ABC$ $BC^+=BC$ $ABC^+=ABC$

A→BC

- An entry with \checkmark means FD (the row) \rightarrow (the column) is in F⁺.
- An entry gets \checkmark when (the column) is in (the row)⁺

35

Check if two sets of FDs are equivalent

• Two sets of FDs are equivalent if they logically imply the same set of FDs.

- i.e., if $F_1^+ = F_2^+$, then they are equivalent.

- For example, $F_1 = \{A \rightarrow B, A \rightarrow C\}$ is equivalent to $F_2 = \{A \rightarrow BC\}$
- How to test? Two steps:
 - *Every* FD in F_1 is in F_2^+
 - *Every* FD in F_2 is in F_1^+
- These two steps can use the algorithm (many times) for X⁺

Summary

- Constraints give rise to redundancy
 - Three anomalies
- FD is a "popular" type of constraint
 - Satisfaction & violation
 - Logical implication
 - Reasoning
- Armstrong's Axioms
 - FD inference/derivation
- Computing the closure of FD' s (F⁺)
- Check for existence of an FD
 - By computing the Attribute closure

Normal Forms

- The first question: Is any refinement needed?
- Normal forms:
 - If a relation is in a certain *normal form* (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No FDs hold: There is no redundancy here.
 - Given A → B: Several tuples could have the same A value, and if so, they'll all have the same B value!

Normal Forms

- First normal form (1NF)
 - Every field must contain atomic values, i.e. no sets or lists.
 - Essentially all relations are in this normal form
- Second normal form (2NF)
 - Any relation in 2NF is also in 1NF
 - All the non-key attributes must depend upon the WHOLE of the candidate key rather than just a part of it.
 - It is only relevant when the key is composite, i.e., consists of several fields.
 - e.g. Consider a relation:
 - Inventory(part, warehouse, quantity, warehouse_address).
 - Suppose {part, warehouse} is a candidate key.
 - warehouse_address depends upon warehouse alone 2NF violation
 - Solution: decompose

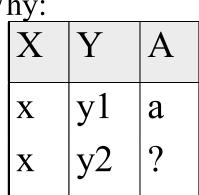
Normal Forms

- Boyce-Codd Normal Form (BCNF)
 Any relation in BCNF is also in 2NF
- Third normal form (3NF)
 Any relation in BCNF is also in 3NF

Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if for each non-trivial FD $X \rightarrow A$ in F, X is a super key for R (i.e., $X \rightarrow R$ in F^+).
 - An FD X \rightarrow A is said to be "trivial" if A \in X.
 - However if not all XA are in R, then we don't care.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are *key constraints*.
- If BCNF:
 - No "data" in R can be predicted using FDs alone. Why:
 - Because X is a (super)key, we can't have two different tuples that agree on the X value

Suppose we know that this instance satisfies $X \rightarrow A$. This situation cannot arise if the relation is in BCNF.



BCNF

- Consider relation R with FDs F. If $X \rightarrow A$ in F over R violates BCNF, it means
 - XA are all in R, and
 - A is not in X, and
 - $X \rightarrow R$ is not in F^+

 \rightarrow non-trivial FD

- \rightarrow X is not a superkey
- In other words, for $X \rightarrow A$ in *F* over R to satisfy BCNF requirement, one of the followings must be true:
 - XA are not all in R, or
 - $X \rightarrow A$ is trivial, i.e. A is in X, <u>or</u>
 - X is a superkey, i.e. $X \rightarrow R$ is in F^+

Decomposition of a Relation Schema

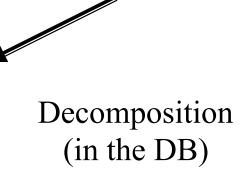
- When a relation schema is not in BCNF: decompose.
- Suppose that relation R contains attributes *A1* ... *An*. A *decomposition* of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
 - Every attribute of R appears as an attribute of at least one of the new relations.
- Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.

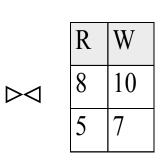
Decomposition example

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

S	Ν	L	R	Η
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Original relation (not stored in DB!)





44

Problems with Decompositions

- There are three potential problems to consider:
 - Some queries become more expensive.
 - e.g., How much did sailor Attishoo earn? (earn = W^*H)
 - ② Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
 - Fortunately, not in the SNLRWH example.
 - Checking some dependencies may require joining the instances of the decomposed relations.
 - Fortunately, not in the SNLRWH example.
- <u>*Tradeoff*</u>: Must consider these issues vs. redundancy.

Example of problem 2

Student_ID	Name	Dcode	Cno	Grade
123-22-3666	Attishoo	INFS	501	А
231-31-5368	Guldu	CS	102	В
131-24-3650	Smethurst	INFS	614	В
434-26-3751	Guldu	INFS	614	A
434-26-3751	Guldu	INFS	612	С

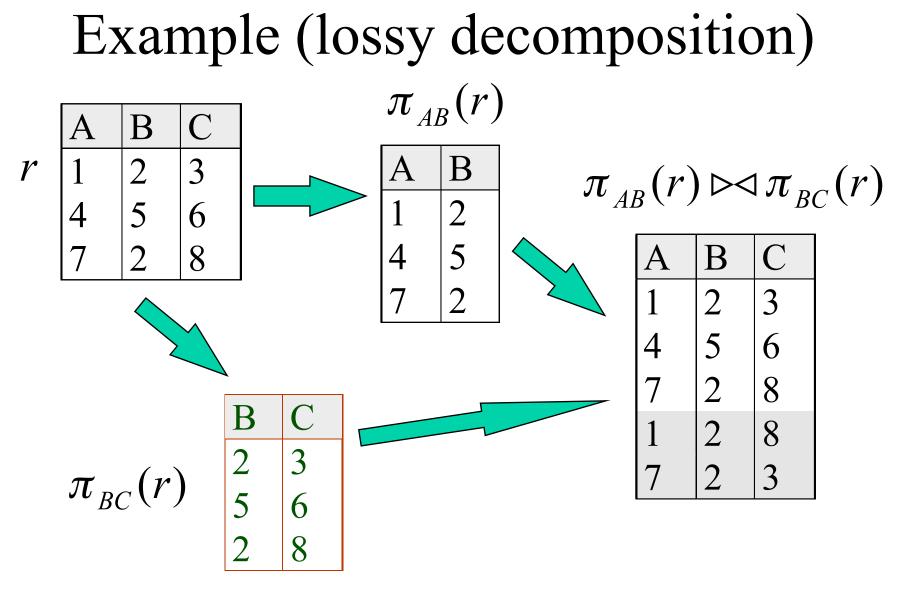
Name	Dcode	Cno	Grade
Attishoo	INFS	501	А
Guldu	CS	102	В
Smethurst	INFS	614	В
Guldu	INFS	614	A
Guldu	INFS	612	C

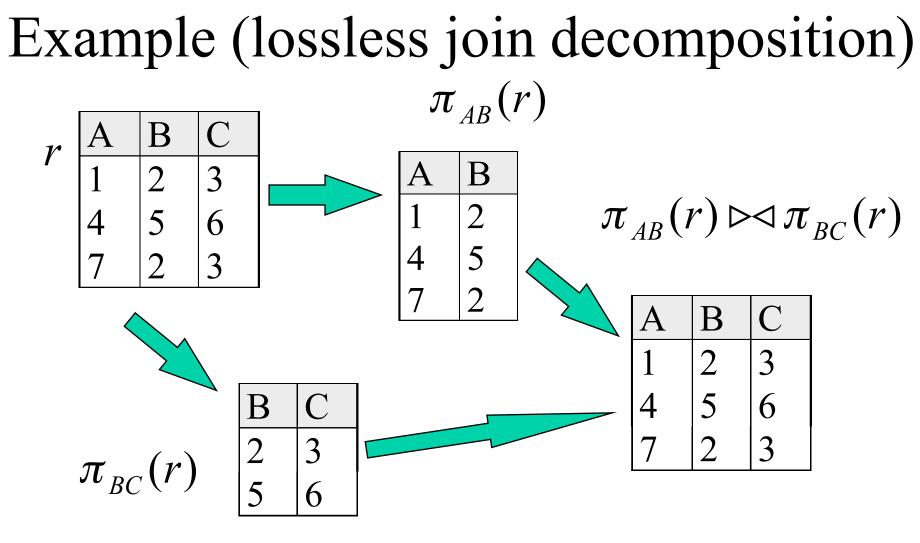
Student_ID	Name
123-22-3666	Attishoo
231-31-5368	Guldu
131-24-3650	Smethurst
434-26-3751	Guldu

 \neq

Lossless Join Decompositions

- Decomposition of R into R₁ and R₂ is <u>lossless-join</u> w.r.t. a set of FDs F if, for every instance r that satisfies F, we have: $\pi_{R_1}(r) \triangleright \triangleleft \pi_{R_2}(r) = r$
- It is always true that $r \subseteq \pi_{R_1}(r) \triangleright \triangleleft \pi_{R_2}(r)$
- In general, the other direction does not hold! If it does, the decomposition is *lossless-join*.





Suppose $(AB \cap BC) \rightarrow BC$

Lossless Join Decomposition

• The decomposition of R into R_1 and R_2 is lossless-join wrt F if and only if F⁺ contains:

$$-R_1 \cap R_2 \rightarrow R_1, \text{ or}$$

 $- R_1 \cap R_2 \rightarrow R_2$

- In particular, the decomposition of R into (UV) and (R-V) is lossless-join if U → V holds on R
 - assume U and V do not share attributes.
 - WHY?

Decomposition

- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! <u>(Avoids</u> <u>Problem (2))</u>

Decomposition into BCNF

- Recall: Consider relation R with FDs F. If $X \rightarrow A$ in *F* over R violates BCNF, it means
 - XA are all in R, and
 - A is not in X, and
 - $X \rightarrow R$ is not in F^+

 \rightarrow non-trivial FD

- \rightarrow X is not a superkey
- Recall that for $X \rightarrow A$ in *F* over R to satisfy BCNF requirement, one of the followings must be true:
 - XA are not all in R, or
 - $X \rightarrow A$ is trivial, i.e. A is in X, <u>or</u>
 - X is a superkey, i.e. $X \rightarrow R$ is in F^+

Decomposition into BCNF

- Consider relation R with FDs F. If $X \rightarrow A$ in F over R violates BCNF, i.e.,
 - XA are all in R, and
 - A is not in X, and
 - $X \rightarrow R$ is not in F^+

 \rightarrow non-trivial FD

- \rightarrow X is not a (super)key
- Then: decompose R into R A and XA.
- Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.

BCNF Decomposition Example

•
$$R = (A, B, C)$$

 $F = \{A \rightarrow B; B \rightarrow C\}$
 $Key = \{A\}$

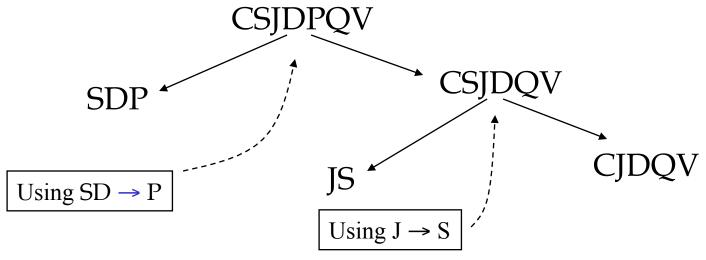
- *R* is not in BCNF ($B \rightarrow C$ but *B* is not a superkey)
- Decomposition

$$-R_1 = (B, C)$$

 $-R_2 = (A, B)$

BCNF Decomposition Example 2

- Assume relation schema CSJDPQV: Contracts(*contract_id, supplier, project, dept, part, qty, value*)
 key C, JP → C, SD → P, J → S
- To deal with $SD \rightarrow P$, decompose into SDP, CSJDQV.
- To deal with $J \rightarrow S$, decompose CSJDQV into JS and CJDQV
- A tree representation of the decomposition:



BCNF Decomposition

• In general, several dependencies may cause violation of BCNF. The order in which we "deal with" them could lead to very different sets of relations!

How do we know R is in BCNF?

- If R has only two attributes, then it is in BCNF
- If F only uses attributes in R, then:
 - R is in BCNF *if and only if* for each $X \rightarrow Y$ in F (*not* F^+ !), X is a superkey of R, i.e., $X \rightarrow R$ is in F⁺ (not F!).

Checking for BCNF Violations

- List all non-trivial FDs
- Ensure that left hand side of each FD is a superkey
- We have to first find all the keys!

Checking for BCNF Violations

- Is Courses(course_num, dept_name, course_name, classroom, enrollment, student_name, address) in BCNF?
- FDs are:
 - course_num, dept_name → course_name
 - course_num, dept_name \rightarrow classroom
 - course_num, dept_name → enrollment
- What is (course_num, dept_name)⁺?
 - {course_num, dept_name, course_name, classroom, enrollment}
- Therefore, the key is
 {course_num, dept_name, course_name, classroom, enrollment,
 student_name, address}
- The relation is not in BCNF