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What’s the Problem 
•  Consider relation obtained (call it SNLRHW) 

Hourly_Emps(ssn, name, lot, rating, hrly_wage, hrs_worked) 

•  What if we know rating determines hrly_wage? 

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40
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Redundancy 

•  When part of data can be derived from other 
parts, we say redundancy exists. 
– Example: the hrly_wage of Smiley can be 

derived from the hrly_wage of Attishoo 
because they have the same rating and we know 
rating determines hrly_wage. 

•  Redundancy exists because of the existence 
of integrity constraints (e.g., FD: R→ W). 
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What’s the problem, again 

•  Update anomaly:  Can we change W in just 
the 1st  tuple of SNLRWH? 

•  Insertion anomaly:  What if we want to 
insert an employee and don’t know the 
hourly wage for his rating? 

•  Deletion anomaly: If we delete all 
employees with rating 5, we lose the 
information about the wage for rating 5!   
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What do we do? 
•  Since constraints, in particular functional 

dependencies, cause problems, we need to study 
them, and understand when and how they cause 
redundancy. 

•  When redundancy exists, refinement is needed. 
–  Main refinement technique:  decomposition (replacing 

ABCD with, say, AB and BCD, or ACD and ABD). 
•  Decomposition should be used judiciously: 

–  Is there reason to decompose a relation? 
–  What problems (if any) does the decomposition cause? 
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What do we do? Decomposition 

S N L R H 
123-22-3666 Attishoo 48 8 40 
231-31-5368 Smiley 22 8 30 
131-24-3650 Smethurst 35 5 30 
434-26-3751 Guldu 35 5 32 
612-67-4134 Madayan 35 8 40 
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123-22-3666 Attishoo 48 8 10 40 
231-31-5368 Smiley 22 8 10 30 
131-24-3650 Smethurst 35 5 7 30 
434-26-3751 Guldu 35 5 7 32 
612-67-4134 Madayan 35 8 10 40 
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Refining an ER Diagram 
•  1st diagram translated:           

Employees(S,N,L,D,S2)       
Departments(D,M,B) 
–  Lots associated with 

employees. 

•  Suppose all employees in a 
dept are assigned the same 
lot:   D       L 

•  Can fine-tune this way: 
Employees2(S,N,D,S2) 
Departments(D,M,B,L)  

→

lot 
dname 

budget did 

since 
name 

Works_In Departments Employees 

ssn 

lot 

dname 

budget 

did 

since 
name 

Works_In Departments Employees 

ssn 

Before: 

After: 
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Functional Dependencies (FDs) 
•  A functional dependency (FD) has the form: X→Y, 

where X and Y are two sets of attributes. 
–  Examples: rating→hrly_wage, AB →C 

•  The FD X→Y is satisfied by a relation instance r if: 
–  for each pair of tuples t1 and t2 in r: 

t1.X = t2.X  implies t1.Y =t2.Y 
–  i.e., given any two tuples in r, if the X values agree, then the Y 

values must also agree.  (X and Y are sets of attributes.) 

•  Convention: X, Y, Z etc denote sets of attributes, and A, 
B, C, etc denote attributes. 
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Functional Dependencies (FDs) 
•  The FD holds over relation name R if, for every 

allowable instance r of R, r satisfies the FD. 
•  An FD, as an integrity constraint, is a statement 

about all allowable relation instances. 
–  Must be identified based on semantics of application. 
–  Given some instance r1 of R, we can check if it violates 

some FD f or not 
–  But we cannot tell if f holds over R by looking at an 

instance! 
•  Cannot prove non-existence (of violation) out of ignorance 

–  This is the same for all integrity constraints! 
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Example:  Constraints on Entity Set 
•  Consider relation obtained from Hourly_Emps: 

–  Hourly_Emps (ssn, name, lot, rating, hrly_wage, 
hrs_worked) 

•  Notation:  We will denote this relation schema by 
listing the attributes:   SNLRWH 
–  This is really the set of attributes {S,N,L,R,W,H}. 
–  Sometimes, we will refer to all attributes of a relation by 

using the relation name.  (e.g., Hourly_Emps for SNLRWH) 
•  Some FDs on Hourly_Emps: 

–  ssn is the key:    S → SNLRWH  
–  rating determines hrly_wage:    R → W 
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One more example 

A B C 
1 1 2 
1 1 3 
2 1 3 
2 1 2 

How many possible 
FDs totally on this  
relation instance? 
      

FDs with A as 
the left side: 

Satisfied by 
the relation 
instance? 

A→A yes 
A→B yes 
A→C No 
A→AB yes 
A→AC No 
A→BC No 
A→ABC No 
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Violation of FD by a relation 

•  The FD X→Y is NOT satisfied by a 
relation instance r if: 
– There exists a pair of tuples t1 and t2 in r such 

that 
t1.X = t2.X  but t1.Y  ≠ t2.Y 

–  i.e., we can find two tuples in r, such that X 
values agree, but Y values don’t. 
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Some other FDs 

A B C 
1 1 2 
1 1 3 
2 1 3 
2 1 2 

FD Satisfied by 
the relation 
instance? 

C→B yes 
C→AB No 
B→C No 
B→B Yes 
AC →B Yes [note!] 
… … 
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Relationship between FDs and Keys 
•  Given R(A, B, C). 

– A→ABC means that A is a key. 
•  In general, 

– X → R means X is a (super)key. 

•  How about key constraint? 
–  ssn → did 

lot 
dname 

budget did 

since 
name 

Works_In Departments Employees 

ssn 
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Reasoning About FDs 
•  Given some FDs, we can usually infer 

additional FDs: 
–  ssn→ did,  did → lot    implies    ssn→ lot 
–  A → BC implies A → B 

•  An FD f is logically implied by a set of FDs 
F if f  holds whenever all FDs in F hold. 
–  F+ = closure of F is the set of all FDs that are 

implied by F. 
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Armstrong’s axioms 

•  Armstrong’s axioms are sound and 
complete inference rules for FDs! 
– Sound: all the derived FDs (by using the 

axioms) are those logically implied by the 
given set 

– Complete: all the logically implied (by the 
given set) FDs can be derived by using the 
axioms. 
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Reasoning about FDs 
•  How do we get all the FDs that are logically 

implied by a given set of FDs? 
•  Armstrong’s Axioms (X, Y, Z are sets of 

attributes): 
–  Reflexivity:   

•  If  X ⊇ Y,  then   X → Y  
–  Augmentation:   

•  If  X → Y,  then   XZ → YZ   for any Z 
–  Transitivity:   

•  If  X → Y  and  Y → Z,  then   X → Z 

A B C 
1 1 2 
2 1 3 
2 1 3 
1 1 2 
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Example of using Armstrong’s 
Axioms 

•  Couple of additional rules (that follow from 
AA): 
–  Union:   If X → Y  and  X → Z,   then  X → 

YZ 
–  Decomposition:  If X → YZ,  then X → Y and  

X → Z 
•  Derive the above two by using Armstrong’s 

axioms! 
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Derive Union 

•  Show that  
  
 If X → Y  and  X → Z,   then  X → YZ 
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Derive Decomposition 

•  Show that 
  
 If X → YZ,  then X → Y and  X → Z 
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Another Useful Rule:  
Accumulation Rule 

•  If X → YZ and Z → W, then X →YZW 

Proof: 
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Derivation Example 

•  R = (A, B, C, G, H, I) 
F = {A → B; A → C; CG → H; CG → I; B → H } 

•  some members of F+ (how to derive them?) 
–  A → H         

 
 

–  AG → I        

–  CG → HI      
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Procedure for Computing F+ 

•  To compute the closure of a set of functional dependencies F: 
    F + = F 

repeat 
 for each functional dependency f in F+ 

        apply reflexivity and augmentation rules on f 
        add the resulting functional dependencies to F + 

 for each pair of functional dependencies f1and f2 in F + 

        if f1 and f2 can be combined using transitivity 
   then add the resulting functional dependency to F + 

until F + does not change any further 
 

 NOTE:  We shall see an alternative procedure for this task later  
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Example on Computing F+ 
•  F = {A → B,  B → C,  C D → E } 
•  Step 1: For each f in F, apply reflexivity rule 

–  We get: CD → C; CD → D 
–  Add them to F:  

•  F = {A → B,  B → C,  C D → E; CD → C; CD → D } 

•  Step 2: For each f in F, apply augmentation rule 
–  From A → B we get: A →  AB; AB → B; AC → BC; AD 
→ BD; ABC →BC; ABD → BD; ACD →BCD 

–  From B → C we get: AB → AC; BC → C; BD → CD; 
ABC  → AC; ABD  → ACD, etc etc. 

•  Step 3: Apply transitivity on pairs of f’s 
•  Keep repeating… You get the idea  
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Reasoning About FDs  (Contd.) 

•  Computing the closure of a set of FDs can be expensive.  
(Size of closure is exponential in # of attrs!) 

•  Typically, we just want to check if a given FD X →Y is in 
the closure of a set of FDs F.  An efficient check: 

–  Compute attribute closure of X (denoted X+) wrt F: 
•  Set of all attributes Z such that X → Z is in F+ 

•  There is a linear time algorithm to compute this.  
–  Check if Y is in X+ 

•  Does F = {A → B,  B → C,  C D → E }  imply  A → E? 
–  i.e,  is  A → E  in the closure F+?  Equivalently, is E in A+?  
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Computing X+ 

•  Input F (a set of FDs), and X (a set of 
attributes) 

•  Output: Result=X+ (under F) 

•  Method: 
– Step 1: Result :=X; 
– Step 2: Take Y → Z in F, and Y is in Result, do: 

             Result := Result ∪ Z 
– Repeat step 2 until Result cannot be changed and 

then output Result. 
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Example of Attribute Closure X+ 

•  Does F = {A → B,  B → C,  C D → E }  imply  A → 
E? 
–  i.e,  is  A → E  in the closure F+?  Equivalently, is E in A+?  

Step 1: Result = A 
Step 2: Consider A → B, Result = AB 
            Consider B → C, Result = ABC 

 Consider CD → E, CD is not in ABC, so stop 
Step 3: A+ = {ABC} 
            E is NOT in A+, so A → E is NOT in F+ 
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Example of computing X+ 

 F = {A →B, AC →D, AB →C}? 
 
   What is X+ for X = A? (i.e. what is the attribute 

closure for A?) 
 
 
    Answer: A+ = ABCD 
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Example of Attribute Closure 

R = (A, B, C, G, H, I) 
F = {A → B; A → C; CG → H; CG → I; B → H} 
 
•  (AG)+ = ?                            

–  Answer: ABCGHI 
•  Is AG a candidate key?  

–  This question involves two parts:  
1.  Is AG a super key? 

–  Does AG → R? == Is (AG)+ ⊇ R 

2.  Is any subset of AG a superkey? 
–  Does A → R? == Is (A)+ ⊇ R 
–  Does G → R? == Is (G)+ ⊇ R 
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Uses of Attribute Closure 
There are several uses of the attribute closure 

algorithm: 
•  Testing for superkey: 

–  To test if X is a superkey, we compute X+, and check if 
X+ contains all attributes of R. 

•  Testing functional dependencies 
–  To check if a functional dependency X → Y holds (or, 

in other words, is in F+), just check if Y ⊆ X+.  
–  That is, we compute X+ by using attribute closure, and 

then check if it contains Y.  
–  Is a simple and cheap test, and very useful 

•  Computing closure of F 
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Computing F+ 

•  Given F={ A → B, B → C}. Compute F+ (with 
attributes A, B, C). 

A B C AB AC BC ABC 

A 

B 

C 

AB 

AC 

BC 

ABC 

Attribute closure 
A+=? 
B+=? 
C+=? 
AB+=? 
AC+=? 
BC+=? 
ABC+=? 

Step 1: Construct an empty matrix, with all  
Possible combinations of attributes in the rows 
And columns 

Step 2: Compute the attribute 
closures for all attribute/
combination of attributes 

Step 3: Fill in the matrix using the results from Step 2 
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Computing F+ 

•  Given F={ A → B, B → C}. Compute F+ (with 
attributes A, B, C). 

We’ll do an example on A+. 
 
 
 

Step 1: Result = A 
Step 2: Consider A → B, Result = A ∪ B = AB 
            Consider B → C, Result = AB ∪ C = ABC 
Step 3: A+ = {ABC} 
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Computing F+ 

•  Given F={ A → B, B → C}. Compute F+ (with 
attributes A, B, C). 

A B C AB AC BC ABC 

A √ √ √ √ √ √ √ 
B 

C 

: 

Attribute closure 
A+=ABC 
B+=? 
C+=? 
AB+=? 
AC+=? 
BC+=? 
ABC+=? 

Step 1: Construct an empty matrix, with all  
Possible combinations of attributes in the rows 
And columns 

Step 2: Compute the attribute 
closures for all attribute/
combination of attributes 

Step 3: Fill in the matrix using the results from Step 2. 
We have A+=ABC. Now fill in the row for A. Consider 
the first column. Is A part of A+? Yes, so check it.  
Is B part of A+? Yes, so check it… and so on. 
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Computing F+ 

•  Given F={ A → B, B → C}. Compute F+ (with 
attributes A, B, C). 

A B C AB AC BC ABC 
A √ √ √ √ √ √ √ 
B √ √ √ 
C √ 
AB √ √ √ √ √ √ √ 
AC √ √ √ √ √ √ √ 
BC √ √ √ 
ABC √ √ √ √ √ √ √ 

Attribute closure 

A+=ABC 
B+=BC 
C+=C 
AB+=ABC 
AC+=ABC 
BC+=BC 
ABC+=ABC 

•  An entry with √ means FD (the row) → (the column) is in F+. 
•  An entry gets √ when (the column) is in (the row)+ 
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Computing F+ 

A B C AB AC BC ABC 
A √ √ √ √ √ √ √ 
B √ √ √ 
C √ 
AB √ √ √ √ √ √ √ 
AC √ √ √ √ √ √ √ 
BC √ √ √ 
ABC √ √ √ √ √ √ √ 

Attribute closure 

A+=ABC 
B+=BC 
C+=C 
AB+=ABC 
AC+=ABC 
BC+=BC 
ABC+=ABC 

•  An entry with √ means FD (the row) → (the column) is in F+. 
•  An entry gets √ when (the column) is in (the row)+ 

A→BC Step 4: Derive rules. 
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Check if two sets of FDs are 
equivalent 

•  Two sets of FDs are equivalent if they logically 
imply the same set of FDs. 
–  i.e., if F1

+ = F2
+, then they are equivalent. 

•  For example, F1={A →B, A →C} is equivalent to 
F2={A → BC} 

•  How to test? Two steps: 
–  Every FD in F1 is in F2

+ 

–  Every FD in F2 is in F1
+ 

•  These two steps can use the algorithm (many 
times) for X+ 
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Summary 
•  Constraints give rise to redundancy 

–  Three anomalies 
•  FD is a “popular” type of constraint 

–  Satisfaction & violation 
–  Logical implication 
–  Reasoning 

•  Armstrong’s Axioms 
–  FD inference/derivation 

•  Computing the closure of FD’s (F+) 
•  Check for existence of an FD 

–  By computing the Attribute closure 
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Normal Forms 
•  The first question: Is any refinement needed? 
•  Normal forms: 

–  If a relation is in a certain normal form (BCNF, 3NF etc.), it 
is known that certain kinds of problems are avoided/
minimized.  This can be used to help us decide whether 
decomposing the relation will help. 

•  Role of FDs in detecting redundancy: 
–  Consider a relation R with 3 attributes, ABC.   

•  No FDs hold:   There is no redundancy here. 
•  Given A → B:   Several tuples could have the same A value, and if 

so, they’ll all have the same B value! 
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Normal Forms 
•  First normal form (1NF) 

–  Every field must contain atomic values, i.e. no sets or lists. 
–  Essentially all relations are in this normal form 

•  Second normal form (2NF) 
–  Any relation in 2NF is also in 1NF 
–  All the non-key attributes must depend upon the WHOLE of 

the candidate key rather than just a part of it. 
•  It is only relevant when the key is composite, i.e., consists of several 

fields. 
–  e.g. Consider a relation: 

•  Inventory(part, warehouse, quantity, warehouse_address).  
•  Suppose {part, warehouse} is a candidate key. 
•  warehouse_address depends upon warehouse alone - 2NF violation 
•  Solution: decompose 
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Normal Forms 

•  Boyce-Codd Normal Form (BCNF) 
–  Any relation in BCNF is also in 2NF 

•  Third normal form (3NF) 
–  Any relation in BCNF is also in 3NF 



Boyce-Codd Normal Form  (BCNF) 
•  Reln R with FDs F is in BCNF if for each non-trivial FD  

X → A  in F , X is a super key for R (i.e., X → R  in F+). 
–  An FD X → A is said to be “trivial” if A ∈ X. 
–  However if not all XA are in R, then we don’t care. 

•  In other words, R is in BCNF if the only non-trivial FDs 
that hold over R are key constraints.  

•  If BCNF: 
–  No “data” in R can be predicted using FDs alone. Why: 
–  Because X is a (super)key, we can’t have two  
   different tuples that agree on the X value 
 

X Y A 

x y1 a 
x y2 ? 

 

 

Suppose we know that this instance satisfies X → A. This situation 
cannot arise if the relation is in BCNF.  
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BCNF 
•  Consider relation R with FDs F.  If X → A in F 

over R violates BCNF, it means 
–  XA are all in R, and 
–  A is not in X, and   → non-trivial FD 
–  X → R is not in F+   → X is not a superkey 

•  In other words, for X → A in F over R to satisfy 
BCNF requirement, one of the followings must be 
true: 
–  XA are not all in R, or 
–  X → A  is trivial, i.e. A is in X, or    
–  X is a superkey, i.e. X → R is in F+    
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Decomposition of a Relation Schema 
•  When a relation schema is not in BCNF: decompose. 
•  Suppose that relation R contains attributes A1 ... An.  A 

decomposition of R consists of replacing R by two or more 
relations such that: 

–  Each new relation scheme contains a subset of the attributes of R 
(and no attributes that do not appear in R), and 

–  Every attribute of R appears as an attribute of at least one of the new 
relations. 

•  Intuitively, decomposing R means we will store instances of 
the relation schemes produced by the decomposition, 
instead of instances of R. 
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Decomposition example 

S N L R H 
123-22-3666 Attishoo 48 8 40 
231-31-5368 Smiley 22 8 30 
131-24-3650 Smethurst 35 5 30 
434-26-3751 Guldu 35 5 32 
612-67-4134 Madayan 35 8 40 

 

 

R W 
8 10 
5 7 

 

 

S N L R W H 
123-22-3666 Attishoo 48 8 10 40 
231-31-5368 Smiley 22 8 10 30 
131-24-3650 Smethurst 35 5 7 30 
434-26-3751 Guldu 35 5 7 32 
612-67-4134 Madayan 35 8 10 40 

 

 

=

Original relation 
(not stored in DB!) 

Decomposition 
(in the DB) 
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Problems with Decompositions 
•  There are three potential problems to consider: 
  Some queries become more expensive.   

•  e.g.,  How much did sailor Attishoo earn?  (earn = W*H) 
  Given instances of the decomposed relations, we may not be 

able to reconstruct the corresponding instance of the original 
relation! 

•  Fortunately, not in the SNLRWH example. 
  Checking some dependencies may require joining the 

instances of the decomposed relations. 
•  Fortunately, not in the SNLRWH example. 

•  Tradeoff:   Must consider these issues vs. redundancy. 
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Example of problem 2 
Student_ID Name Dcode Cno Grade 
123-22-3666 Attishoo INFS 501 A 
231-31-5368 Guldu CS 102 B 
131-24-3650 Smethurst INFS 614 B 
434-26-3751 Guldu INFS 614 A 
434-26-3751 Guldu INFS 612 C 

 

 

Name Dcode Cno Grade 
Attishoo INFS 501 A 
Guldu CS 102 B 
Smethurst INFS 614 B 
Guldu INFS 614 A 
Guldu INFS 612 C 

 

 

Student_ID Name 
123-22-3666 Attishoo 
231-31-5368 Guldu 
131-24-3650 Smethurst 
434-26-3751 Guldu 

 

 



≠
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Lossless Join Decompositions 
•  Decomposition of R into R1 and R2 is lossless-

join w.r.t. a set of FDs F if, for every instance r 
that satisfies F, we have: 

•  It is always true that  
  

•  In general, the other direction does not hold!  
If it does, the decomposition is lossless-join.  

rrr RR =)()(
21

ππ 

)()(
21
rrr RR ππ ⊆
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Example (lossy decomposition) 

A B C 
1 2 3 
4 5 6 
7 2 8 
1 2 8 
7 2 3 

 

 

A B C 
1 2 3 
4 5 6 
7 2 8 

 

 

A B 
1 2 
4 5 
7 2 

 

 

B C
2 3
5 6
2 8

)()( rr BCAB ππ 

)(rBCπ

)(rABπ

r
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Example (lossless join decomposition) 

A B C 
1 2 3 
4 5 6 
7 2 3 

 

 

A B C 
1 2 3 
4 5 6 
7 2 3 

 

 

A B 
1 2 
4 5 
7 2 

 

 

B C 
2 3 
5 6 

 

 

)()( rr BCAB ππ 

)(rBCπ

)(rABπ
r

Suppose (AB∩BC)→ BC
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Lossless Join Decomposition 
•  The decomposition of R into  R1 and R2 is 

lossless-join wrt F if and only if F+ contains: 
–  R1 ∩R2 → R1,   or 
–  R1 ∩R2 → R2 

•  In particular, the decomposition of R into        
(UV) and (R-V) is lossless-join if  U → V  
holds on R 
–  assume U and V do not share attributes. 
– WHY? 
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Decomposition 
•  Definition extended to decomposition into 3 

or more relations in a straightforward way. 

•  It is essential that all decompositions used to 
deal with redundancy be lossless!  (Avoids 
Problem (2))  
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Decomposition into BCNF 
•  Recall: Consider relation R with FDs F.  If X → A 

in F over R violates BCNF, it means 
–  XA are all in R, and 
–  A is not in X, and   → non-trivial FD 
–  X → R is not in F+   → X is not a superkey 

•  Recall that for X → A in F over R to satisfy BCNF 
requirement, one of the followings must be true: 
–  XA are not all in R, or 
–  X → A  is trivial, i.e. A is in X, or    
–  X is a superkey, i.e. X → R is in F+    
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Decomposition into BCNF 
•  Consider relation R with FDs F.  If X → A in F 

over R violates BCNF, i.e., 
–  XA are all in R, and 
–  A is not in X, and   → non-trivial FD 
–  X → R is not in F+   → X is not a (super)key 

•  Then: decompose R into  R - A and XA. 
•  Repeated application of this idea will give us a 

collection of relations that are in BCNF; lossless 
join decomposition, and guaranteed to terminate. 
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BCNF Decomposition Example 

•  R = (A, B, C ) 
F = {A → B; B → C} 
Key = {A} 

•  R is not in BCNF (B → C but B is not a superkey) 
•  Decomposition 

–  R1 = (B, C) 
–  R2 = (A, B) 
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BCNF Decomposition Example 2 
•  Assume relation schema CSJDPQV: 

 Contracts(contract_id, supplier, project, dept, part, qty, value) 
–  key C,  JP → C,  SD → P,   J → S 

•  To deal with SD → P, decompose into  SDP, CSJDQV. 
•  To deal with J → S, decompose CSJDQV into JS and CJDQV 
•  A tree representation of the decomposition: 

CSJDPQV 

SDP CSJDQV 

JS CJDQV 
Using SD → P 

Using J → S 
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BCNF Decomposition 

•  In general, several dependencies may cause 
violation of BCNF.  The order in which we 
“deal with” them could lead to very 
different sets of relations! 
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How do we know R is in BCNF?  
•  If R has only two attributes, then it is in 

BCNF 
•  If F only uses attributes in R, then: 

– R is in BCNF if and only if for each X → Y in 
F (not F+!), X is a superkey of R, i.e., X → R is 
in F+ (not F!). 
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Checking for BCNF Violations 
•  List all non-trivial FDs 
•  Ensure that left hand side of each FD is a 

superkey 
•  We have to first find all the keys! 
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Checking for BCNF Violations 
•  Is Courses(course_num, dept_name, course_name, 

classroom, enrollment, student_name, address) in BCNF? 
•  FDs are: 

–  course_num, dept_name → course_name 
–  course_num, dept_name → classroom 
–  course_num, dept_name → enrollment 

•  What is (course_num, dept_name)+? 
–  {course_num, dept_name, course_name, classroom, enrollment} 

•  Therefore, the key is 
{course_num, dept_name, course_name, classroom, enrollment, 
student_name, address} 

•  The relation is not in BCNF 


