Schema Refinement &
Normalization Theory

Functional Dependencies

Week 13



What’s the Problem

* Consider relation obtained (call it SNLRHW)

Hourly Emps(ssn, name, lot, rating, hrly wage, hrs worked)

* What if we know rating determines hrly wage?

S N L R W H
123-22-3666 |Attishoo (48 |8 |10 |40
231-31-5368 |Smiley 22 '8 |10 |30
131-24-3650 ' Smethurst 35 |5 30
434-26-3751 |Guldu 35 |5 32
612-67-4134 |Madayan |35 |8 |10 |40




Redundancy

 When part of data can be derived from other

parts, we say redundancy exists.
— Example: the hrly wage of Smiley can be
derived from the hrly wage of Attishoo

because they have the same rating and we know
rating determines hrly wage.

* Redundancy exists because of the existence
of integrity constraints (e.g., FD: R— W).
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BT .
What’s the problem, again

* Update anomaly: Can we change W 1n just
the 1st tuple of SNLRWH?

» Insertion anomaly: What if we want to
insert an employee and don’t know the
hourly wage for his rating?

o Deletion anomaly: If we delete all
employees with rating 5, we lose the
information about the wage for rating 5!
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What do we do?

 Since constraints, 1n particular functional
dependencies, cause problems, we need to study
them, and understand when and how they cause

redundancy.
* When redundancy exists, refinement 1s needed.

— Main refinement technique: decomposition (replacing
ABCD with, say, AB and BCD, or ACD and ABD).

* Decomposition should be used judiciously:
— Is there reason to decompose a relation?
—~ What problems (if any) does the decomposition cause?
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N
What do we do? Decomposition

S N L |[R |W |H
123-22-3666 |Attishoo |48 [8 [10 [40
231-31-5368 |Smiley 22 |8 |10 |30
131-24-3650 |Smethurst (35 |5 |7 |30
434-26-3751 |Guldu 35 |5 |7 |32
612-67-4134 |Madayan |35 [8 |10 |40
S N L [R[H
123-22-3666 |Attishoo |48 [8 |40 R |W
_[231-31-5368 |Smiley (22 |8 |30 | pgq 5|1
~ |131-24-3650 |Smethurst |35 |5 |30 > |7
434-26-3751 |Guldu 35 |5 (32
612-67-4134 |Madayan |35 |8 |40




Refining an ER Diagram

o 1st diagram translated: ~ 2efore:
Employees(S,N,L,D,S2) . dname

Departments(D,M,B) @ . Q

~ Lots associated with Emp|oyees @ Departments

employees.

* Suppose all employees in a
dept are assigned the same After:

lot: D— L .
e Can fine-tune this way: @ @ .
/

Employees2(S,N,D,S2) — . B
Departments(D,M,B,L) 2 @ Departments
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Functional Dependencies (FDs)

» A functional dependency (FD) has the form: X—Y,
where X and Y are two sets of attributes.

— Examples: rating—hrly wage, AB —=C
 The FD X—Y is satisfied by a relation instance r if:

— for each pair of tuples tl and t2 in r:
t1.X=1¢2.X implies t1.Y =t2.Y

~ 1.e., given any two tuples in r, if the X values agree, then the Y
values must also agree. (X and Y are sets of attributes.)

 Convention: X, Y, Z etc denote sets of attributes, and A,
B, C, etc denote attributes.



Functional Dependencies (FDs)

o The FD holds over relation name R 1f, for every
allowable 1nstance r of R, r satisfies the FD.

* An FD, as an integrity constraint, 1s a statement
about a/l allowable relation instances.
— Must be 1dentified based on semantics of application.

— (G1ven some instance »/ of R, we can check if it violates
some FD f or not

— But we cannot tell 1f f holds over R by looking at an
instance!
- Cannot prove non-existence (of violation) out of ignorance

— This 1s the same for all integrity constraints!
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Example: Constraints on Entity Set

e Consider relation obtained from Hourly Emps:

— Hourly Emps (ssn, name, lot, rating, hrly wage,
hrs worked)

* Notation: We will denote this relation schema by
listing the attributes: SNLRWH

— This 1s really the sef of attributes {S,N,L.R,W H}.

- Sometimes, we will refer to all attributes of a relation by
using the relation name. (e.g., Hourly Emps for SNLRWH)

 Some FDs on Hourly Emps:
~ ssn1s the key: S —= SNLRWH
— rating determines hrly wage: R — W
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One more example

[\)[\)r—r—:[>
D [W W I[N A

How many possible
FDs totally on this
relation instance?

FDs with A as | Satisfied by
the left side: the relation
instance?
A—A yes
A—B yes
A—C No
A—AB yes
A—AC No
A—BC No
A—ABC No
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Violation of FD by a relation

 The FD X—Y is NOT satisfied by a
relation instance r if:

— There exists a pair of tuples tl and t2 in r such
that
t1LX=1t2X buttl.Y =12.Y

- 1.e., we can find two tuples 1n 7, such that X
values agree, but Y values don' t.
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Some other FDs

FD Satisfied by
the relation
A |B |C instance?
1 ] 2 C—B yes
1 3 C—AB No
2 3 B—C No
2 2 B—B Yes
AC —B Yes [note! ]
13




EEEEmTTT oS
Relationship between FDs and Keys

 Given R(A, B, O).

— A—ABC means that A 1s a key.
* In general,

— X — R means X 1s a (super)key.
 How about key constraint?

— ssn — did G
“Te | T

Employees ‘@ Departments
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Reasoning About FDs

* (Given some FDs, we can usually infer
additional FDs:

— ssn—did, did — lot 1mplies ssn— lot
- A —=BCimplies4A — B

 An FD f1s logically implied by a set of FDs
F 1t / holds whenever all FDs in F hold.

—- F"=closure of F'1s the set of all FDs that are
implied by F.
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Armstrong’s axioms

« Armstrong s axioms are sound and
complete inference rules for FDs!
— Sound: all the derived FDs (by using the

axioms) are those logically implied by the
given set

— Complete: all the logically implied (by the
given set) FDs can be derived by using the
axioms.
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Reasoning about FDs

 How do we get all the FDs that are logically
implied by a given set of FDs?
« Armstrong s Axioms (X, Y, Z are sets of

attributes):

— Reflexivity:
- If X2Y, then X—=Y

— Augmentation:
- If X—=Y, then XZ — YZ foranyZ

— Transitivity:
cIf X—=Y and Y—=Z7, then X —=Z
17
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Example of using Armstrong’s
AXx10ms

* Couple of additional rules (that follow from
AA):
— Union: fX—=Y and X —= 7, then X —
YZ
— Decomposition: If X = YZ, then X — Y and
X—=7
» Derive the above two by using Armstrong’ s
axioms!
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Derive Union

« Show that

[fX—=Y and X —= 7, then X —=YZ
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Derive Decomposition

 Show that

[fX—=YZ thenX —=Yand X —=Z
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Another Useful Rule:
Accumulation Rule

e [f X—=YZand Z — W, then X = YZW

Proof:
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EEEEmTTT oS
Derivation Example

« R=(4, B, C G HI
F={4—B;A—>C,CG—H CG—1B—H)

« some members of /" (how to derive them?)
- A—H

— AG —=1

- CG—=HI
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Procedure for Computing F~*

« To compute the closure of a set of functional dependencies F:

F+=F
repeat
for each functional dependency fin F*
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F'*
for each pair of functional dependencies fiand f, in F' ™
if /, and f, can be combined using transitivity
then add the resulting functional dependency to £ *
until /" does not change any further

NOTE: We shall see an alternative procedure for this task later
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Example on Computing F+

« F={A—=B, B—=C, CD—=E}
Step 1: For each fin F, apply reflexivity rule
— We get: CD —=C; CD — D
— Add them to F:
+ F={A—=B,B—C, CD—E;CD—->C;CD—>D}
Step 2: For each f 1in F, apply augmentation rule

— From A — B we get: A — AB; AB — B; AC —= BC; AD
— BD; ABC —BC; ABD — BD; ACD —BCD

— From B — C we get: AB — AC; BC —= C; BD — CD;
ABC — AC; ABD — ACD, etc etc.

» Step 3: Apply transitivity on pairs of s
« Keep repeating... You get the 1dea -y
I



Reasoning About FDs (Contd.)

« Computing the closure of a set of FDs can be expensive.
(Size of closure 1s exponential in # of attrs!)

» Typically, we just want to check if a given FD X —Y is in
the closure of a set of FDs F. An efficient check:

— Compute attribute closure of X (denoted X*) wrt F:
« Set of all attributes Z such that X = Z 1sin F*
* There is a linear time algorithm to compute this.

— Checkif Y isin X*
e DoesF={A—=B, B—=C, CD—=E} imply A—=E?

- 1.e, 1s A — E inthe closure F*? Equivalently, is E in A*™?
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Computing X"

* Input F (a set of FDs), and X (a set of
attributes)

e QOutput: Result=X" (under F)

 Method:
— Step 1: Result :=X;
— Step 2: Take Y = Zin F, and Y i1s in Result, do:
Result := Result U Z

— Repeat step 2 until Result cannot be changed and
then output Result.
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Example of Attribute Closure X™

e DoessF={A—=B, B—=C, CD—=E} mply A—
E?

- 1.6, 1S A — E 1n the closure F™? Equivalently, 1s E in A™?

Step 1: Result=A
Step 2: Consider A — B, Result = AB
Consider B — C, Result = ABC
Consider CD — E, CD 1is not in ABC, so stop
Step 3: A" = {ABC}
EisNOTinA",so A —= Ei1sNOT in F* .



Example of computing X™

F={A —B, AC =D, AB -C}?

What 1s X™ for X = A? (1.e. what 1s the attribute
closure for A?)

Answer: A"= ABCD
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BT .
Example of Attribute Closure

R=(4,BC G H I
F={A—B'A—C; CG—H; CG—I;B— H

e (A4G)T ="
— Answer: ABCGHI
* Is AG a candidate key?

— This question involves two parts:

1. Is AG a super key?
—  Does AG— R? ==1Is (AG)" 2 R

2. Is any subset of AG a superkey?
—  Doesd —=R?==1Is(A)"2 R
—  Does G— R?==1Is(G)" 2 R 29



EEE
Uses of Attribute Closure

There are several uses of the attribute closure
algorithm:

» Testing for superkey:

— To test if X is a superkey, we compute X and check if
X" contains all attributes of R.

» Testing functional dependencies

— To check if a functlonal dependency X — Y holds (or,
in other words, is in F" ), just check if Y C X

— That is, we compute X" by using attribute closure, and
then check if it contains Y.

— Is a simple and cheap test, and very useful
e Computing closure of F
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BT .
Computing F*

 Given F={ A — B, B —= C}. Compute F" (with
attributes A, B, C) Step 2: Compute the attribute

Step 1: Construct an empty matrix, with all closures for all attribute/
Possible combinations of attributes in the rows  combination of attributes
And columns

A |B|CJAB |AC | BC | ABC Attribute closure

A AT=?

B

c B™=?

AB C=?

AC AB™=?
B¢ AC=?
Sl BC*=?

Step 3: Fill in the matrix using the results from Step 2 | ABC*=? 31



BT .
Computing F*

 Given F={ A — B, B —= C}. Compute F" (with
attributes A, B, C).

We’ll do an example on A™.

Step 1: Result=A

Step 2: Consider A — B, Result=A U B =AB
Consider B — C, Result=AB U C=ABC

Step 3: A" = {ABC}
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BT .
Computing F*

 Given F={ A — B, B —= C}. Compute F" (with
attributes A, B, C) Step 2: Compute the attribute

Step 1: Construct an empty matrix, with all closures for all attribute/
Possible combinations of attributes in the rows  combination of attributes
And columns

A |BICIAB JAC |BC | ABC Attribute closure

v Iy v v Y A—ABC

B B*=?

< Cr=2

AB™=?

Step 3: Fill in the matrix using the results from Step 2. ACH=?
We have A'=ABC. Now fill in the row for A. Consider BC =2
the first column. Is A part of A™? Yes, so check it. -
Is B part of A™? Yes, so check it... and so on. ABC™=? 33



 Given F={ A — B, B —= C}. Compute F" (with

Computing F*

attributes A, B, C).

Attribute closure

=ABC

B™=BC

C=C

AB™=ABC

AC™=ABC

BC=BC

A |B|C|AB |AC |BC|ABC
A VIviviy v v Iy
B v |V v
C v
as Vv Ivivly v v Iy
ac VIvivly v v Iy
Bc | [v]v v
asclv VIvlv v v v

ABC=ABC

e An entry with v means FD (the row) — (the column) 1s in F™,

ts v when (the column) is in (the row)™"

e An enti ﬁe i i i i 34



Computing F*

Step 4: Derive rules. / A—BC

A |[B|C|AB |AC |BC AB{ Attribute closure
A [V IVIVIY [V WY A"=ABC
B VIV v =BC
C 4 C=C
AB |V [V IV IV [V |V |V AB*=ABC
ac v Iiviviy v [v v AC*=ABC
BC YA Vv BC=BC
ABC |V [V |V |V [V |V |V ABC*=ABC

* An entry with v means FD (the row) — (the column) is in F*.
* An entry gets vV when (the column) 1s in (the row)* 35



Check 1f two sets of FDs are

equivalent

« Two sets of FDs are equivalent if they logically
imply the same set of FDs.

— 1.e,1f F,"=F,, then they are equivalent.
* For example, F,={A —B, A —=C} is equivalent to
F,={A — BC}
 How to test? Two steps:
— EveryFDInFismn F,"
— Every FDInF,1sin F*
* These two steps can use the algorithm (many
times) for X
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Summary

Constraints give rise to redundancy
— Three anomalies

e FDis a “popular” type of constraint
— Satisfaction & violation
— Logical implication
— Reasoning
* Armstrong’s Axioms
— FD inference/derivation

« Computing the closure of FD’ s (F")

o (Check for existence of an FD
— By computing the Attribute closure

37



Normal Forms

* The first question: Is any refinement needed?

* Normal forms:

— If a relation 1s 1n a certain normal form (BCNFE, 3NF etc.), it
1s known that certain kinds of problems are avoided/
minimized. This can be used to help us decide whether
decomposing the relation will help.

* Role of FDs 1n detecting redundancy:

— Consider a relation R with 3 attributes, ABC.
« No FDs hold: There 1s no redundancy here.

* Given A — B: Several tuples could have the same A value, and 1f
so, they’ll all have the same B value!
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Normal Forms

* First normal form (1NF)

— Every field must contain atomic values, 1.e. no sets or lists.
— Essentially all relations are in this normal form

* Second normal form (2NF)
— Any relation 1 2NF 1s also in INF

— All the non-key attributes must depend upon the WHOLE of
the candidate key rather than just a part of it.

« It is only relevant when the key 1s composite, 1.e., consists of several
fields.
— ¢.g. Consider a relation:
 Inventory(part, warechouse, quantity, warehouse address).
» Suppose {part, warechouse} is a candidate key.
« warechouse address depends upon warehouse alone - 2NF violation
* Solution: decompose 39



Normal Forms

* Boyce-Codd Normal Form (BCNF)
— Any relation in BCNF is also in 2NF

e Third normal form (3NF)
— Any relation in BCNF i1s also in 3NF

40



Boyce-Codd Normal Form (BCNF)

 Reln R with FDs F'1s in BCNF 1f for each non-trivial FD
X —= A in F, Xis a super key for R (1.e., X =R 1 F).
— An FD X — A is said to be “trivial” if A € X.
— However if not all XA are in R, then we don’t care.

 In other words, R 1s in BCNF 1if the only non-trivial FDs
that hold over R are key constraints.

« If BCNF:
~ No “data” in R can be predicted using FDs alone. Why:

— Because X 1s a (super)key, we can’t have two X Y |A

different tuples that agree on the X value

Suppose we know that this instance satisfies X — A. This situation x 9)
cannot arise if the relation is in BCNF. y




BT
BCNF

e Consider relation R with FDs F. If X — A in F
over R violates BCNF, 1t means
— XA are all im R, and
— A 1s not 1n X, and —
— X—=Risnotin F* — superkey

 In other words, for X — A in Fover R to satisfy
BCNF requirement, one of the followings must be
true:
— XAarenot all in R, or
— X —= A istrivial, 1.e. Ais in X, or
— X 1s a superkey, 1.e. X = R isin F* 42



Decomposition of a Relation Schema

 When a relation schema 1s not in BCNF: decompose.

e Suppose that relation R contains attributes A/ ... An. A
decomposition of R consists of replacing R by two or more
relations such that:

—  Each new relation scheme contains a subset of the attributes of R
(and no attributes that do not appear in R), and

— Every attribute of R appears as an attribute of at least one of the new
relations.

e Intuitively, decomposing R means we will store instances of
the relation schemes produced by the decomposition,
instead of instances of R.
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Decomposition example

S N L |[R |W |H
123-22-3666 |Attishoo (48 |8 (10 |40
231-31-5368 |Smiley 22 |8 |10 |30
131-24-3650 |Smethurst (35 |5 |7 |30
434-26-3751 |Guldu 35 |5 |7 |32
612-67-4134 |Madayan |35 |8 |10 |40
S N L |[R |H
123-22-3666 |Attishoo |48 |8 |40
. 231-31-5368 |Smiley 22 |8 (30
_ 131-24-3650 |Smethurst |35 |5 |30
434-26-3751 |Guldu 35 |5 |32
612-67-4134 |Madayan |35 |8 |40

Original relation
(not stored in DB!)

/

Decomposition
(in the DB)

—

>q |8 [10
517
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Problems with Decompositions

* There are three potential problems to consider:

@ Some queries become more expensive.
* ¢.g., How much did sailor Attishoo earn? (earn = W*H)

® Given instances of the decomposed relations, we may not be
able to reconstruct the corresponding instance of the original
relation!

 Fortunately, not in the SNLRWH example.

® Checking some dependencies may require joining the
instances of the decomposed relations.

 Fortunately, not in the SNLRWH example.
* Tradeoff: Must consider these 1ssues vs. redundancy.
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Example of problem 2

Student ID |Name Dcode [Cno Grade

123-22-3666 |Attishoo [INFS 501 A

231-31-5368 |Guldu CS 102 B £

131-24-3650 |Smethurst [INFS 614 B

434-26-3751 |Guldu INFS 614 A

434-26-3751 |Guldu INFS 612 C
Name Dcode |Cno Grade
Attishoo |INFS  |501  |A st 1D |
Guldu CS 102 B 123-22-3666 |Attishoo
Smethurst |INFS 614 B ><] 231-31-5368 | Guldu
Guldu INES 614 A 131-24-3650 |Smethurst
Guldu INFS 612 C 434-26-3751 |Guldu
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Lossless Join Decompositions

* Decomposition of R into R, and R, 1s [ossless-
join w.r.t. a set of FDs F 1f, for every instance r

that satisfies F, we have:
”Rl(r) MERZ(F) =T

* It 1s always true that
r gan(V) >, (7)

* In general, the other direction does not hold!
If 1t does, the decomposition 1s lossless-join.
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Example (lossy decomposition)

A B IC ‘TL’AB(’/)
r i1 |2 |3 A |B
4 ls g (BRI 7045 (1) DT (1)
7 |12 |8 45\ABC
7 (2 1 (2 |3
\ 4 |5 |6
7 12 |8
551128
JTBC(F)56 712 3
2 |8

48




Example (lossless join decomposition)

T ,5(7)
LA B [C AP
123‘AB
4 15 |6 L2 T 45 (1) DU o (1)
7 12 |3 4 |5
72\ABC
\ 1 2 |3
B [C 4 15 |6
» 13 lmmm== |7 |5 |3
EBC(F)56

Suppose (ABMN BC)— BC

49




Lossless Join Decomposition

* The decomposition of R into R, and R, 1s
lossless-join wrt F 1f and only 1f F™ contains:

_R,NR, = R,, or
_R,NR, =R,

 In particular, the decomposition of R into
(UV) and (R-V) 1s lossless-join1f U —=V
holds on R
—assume U and V do not share attributes.
— WHY?

50



EEEEmTTT oS
Decomposition

* Definition extended to decomposition into 3
or more relations in a straightforward way.

o [tis essential that all decompositions used to
deal with redundancy be lossless! (Avoids

Problem (2))
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Decomposition into BCNF

 Recall: Consider relation R with FDs F. I[f X — A
in F'over R violates BCNF, 1t means
— XA are all im R, and

— A 1s not 1n X, and —
— X—=Risnotin F* — superkey

* Recall that for X —= A in Fover R to satisty BCNF
requirement, one of the followings must be true:

— XA are not all in R, or
— X —= A istrivial, 1.e. Ais in X, or

— X i1s asuperkey,1.e. X = Ri1sin F"
52



Decomposition into BCNF

 Consider relation R with FDs F. If X — A in F
over R violates BCNEF, 1.e.,

— XA are all in R, and

— A is not in X, and
— X —=Risnotin F*

|

!

* Then: decompose R into R - A and XA.

» Repeated application of this idea will give us a
collection of relations that are in BCNF; lossless
join decomposition, and guaranteed to terminate.
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BCNF Decomposition Example

s R=(4, B, C)

F={4A— B/ B—C}

Key = {4}
* Risnotin BCNF (B — C but B 1s not a superkey)
* Decomposition

- R,=(B,C)

— R,=(4, B)

54
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BCNF Decomposition Example 2

* Assume relation schema CSJDPQV:
Contracts(contract id, supplier, project, dept, part, qty, value)
~ keyC, JP—C, SD—=P, J—S
e To deal with SD — P, decompose into SDP, CSIDQV.
 Todeal withJ — S, decompose CSJIDQYV into JS and CJIDQV

e A tree representation of the decomposition:

CSJDPQV

/ T CS]DQV

- / CJDQV

Using J — S "

Using SD — P
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BCNF Decomposition

* In general, several dependencies may cause
violation of BCNF. The order in which we
“deal with” them could lead to very
different sets of relations!
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How do we know R 1s in BCNF?

 If R has only two attributes, then 1t 1s 1n
BCNF

* If F only uses attributes in R, then:

— R 1s in BCNF if and only if for each X — Y in
F (not F*!), X 1s a superkey of R, 1.e., X = R 1s
in F™ (not F!).

57



Checking for BCNF Violations

e List all non-trivial FDs

 Ensure that left hand side of each FD 1s a
superkey

* We have to first find all the keys!
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Checking for BCNF Violations

* Is Courses(course num, dept name, course name,
classroom, enrollment, student name, address) in BCNF?

e FDs are:

— course_num, dept name — course_name
— course_num, dept name — classroom
— course_num, dept name — enrollment
 What is (course num, dept name)*?
— {course_num, dept name, course name, classroom, enrollment}

« Therefore, the key i1s

{course num, dept name, course name, classroom, enrollment,
student name, address}

* The relation is not in BCNF

59



