Schema Refinement &
Normalization Theory

Functional Dependencies

Week 13

What’s the Problem

* Consider relation obtained (call it SNLRHW)

Hourly Emps(ssn, name, lot, rating, hrly wage, hrs worked)

* What if we know rating determines hrly wage?

S N L R W H
123-22-3666 |Attishoo (48 |8 |10 |40
231-31-5368 |Smiley 22 '8 |10 |30
131-24-3650 ' Smethurst 35 |5 30
434-26-3751 |Guldu 35 |5 32
612-67-4134 |Madayan |35 |8 |10 |40

Redundancy

 When part of data can be derived from other

parts, we say redundancy exists.
— Example: the hrly wage of Smiley can be
derived from the hrly wage of Attishoo

because they have the same rating and we know
rating determines hrly wage.

* Redundancy exists because of the existence
of integrity constraints (e.g., FD: R— W).

3

BT .
What’s the problem, again

* Update anomaly: Can we change W 1n just
the 1st tuple of SNLRWH?

» Insertion anomaly: What if we want to
insert an employee and don’t know the
hourly wage for his rating?

o Deletion anomaly: If we delete all
employees with rating 5, we lose the
information about the wage for rating 5!

4

EEE S
What do we do?

 Since constraints, 1n particular functional
dependencies, cause problems, we need to study
them, and understand when and how they cause

redundancy.
* When redundancy exists, refinement 1s needed.

— Main refinement technique: decomposition (replacing
ABCD with, say, AB and BCD, or ACD and ABD).

* Decomposition should be used judiciously:
— Is there reason to decompose a relation?
—~ What problems (if any) does the decomposition cause?

5

N
What do we do? Decomposition

S N L |[R |W |H
123-22-3666 |Attishoo |48 [8 [10 [40
231-31-5368 |Smiley 22 |8 |10 |30
131-24-3650 |Smethurst (35 |5 |7 |30
434-26-3751 |Guldu 35 |5 |7 |32
612-67-4134 |Madayan |35 [8 |10 |40
S N L [R[H
123-22-3666 |Attishoo |48 [8 |40 R |W
_[231-31-5368 |Smiley (22 |8 |30 | pgq 5|1
~ |131-24-3650 |Smethurst |35 |5 |30 > |7
434-26-3751 |Guldu 35 |5 (32
612-67-4134 |Madayan |35 |8 |40

Refining an ER Diagram

o 1st diagram translated: ~ 2efore:
Employees(S,N,L,D,S2) . dname

Departments(D,M,B) @ . Q

~ Lots associated with Emp|oyees @ Departments

employees.

* Suppose all employees in a
dept are assigned the same After:

lot: D— L .
e Can fine-tune this way: @ @ .
/

Employees2(S,N,D,S2) — . B
Departments(D,M,B,L) 2 @ Departments

7

Functional Dependencies (FDs)

» A functional dependency (FD) has the form: X—Y,
where X and Y are two sets of attributes.

— Examples: rating—hrly wage, AB —=C
 The FD X—Y is satisfied by a relation instance r if:

— for each pair of tuples tl and t2 in r:
t1.X=1¢2.X implies t1.Y =t2.Y

~ 1.e., given any two tuples in r, if the X values agree, then the Y
values must also agree. (X and Y are sets of attributes.)

 Convention: X, Y, Z etc denote sets of attributes, and A,
B, C, etc denote attributes.

Functional Dependencies (FDs)

o The FD holds over relation name R 1f, for every
allowable 1nstance r of R, r satisfies the FD.

* An FD, as an integrity constraint, 1s a statement
about a/l allowable relation instances.
— Must be 1dentified based on semantics of application.

— (G1ven some instance »/ of R, we can check if it violates
some FD f or not

— But we cannot tell 1f f holds over R by looking at an
instance!
- Cannot prove non-existence (of violation) out of ignorance

— This 1s the same for all integrity constraints!

9

Example: Constraints on Entity Set

e Consider relation obtained from Hourly Emps:

— Hourly Emps (ssn, name, lot, rating, hrly wage,
hrs worked)

* Notation: We will denote this relation schema by
listing the attributes: SNLRWH

— This 1s really the sef of attributes {S,N,L.R,W H}.

- Sometimes, we will refer to all attributes of a relation by
using the relation name. (e.g., Hourly Emps for SNLRWH)

 Some FDs on Hourly Emps:
~ ssn1s the key: S —= SNLRWH
— rating determines hrly wage: R — W

10

One more example

[\)[\)r—r—:[>
D [W W I[N A

How many possible
FDs totally on this
relation instance?

FDs with A as | Satisfied by
the left side: the relation
instance?
A—A yes
A—B yes
A—C No
A—AB yes
A—AC No
A—BC No
A—ABC No

11

Violation of FD by a relation

 The FD X—Y is NOT satisfied by a
relation instance r if:

— There exists a pair of tuples tl and t2 in r such
that
t1LX=1t2X buttl.Y =12.Y

- 1.e., we can find two tuples 1n 7, such that X
values agree, but Y values don' t.

12

Some other FDs

FD Satisfied by
the relation
A |B |C instance?
1] 2 C—B yes
1 3 C—AB No
2 3 B—C No
2 2 B—B Yes
AC —B Yes [note!]
13

EEEEmTTT oS
Relationship between FDs and Keys

 Given R(A, B, O).

— A—ABC means that A 1s a key.
* In general,

— X — R means X 1s a (super)key.
 How about key constraint?

— ssn — did G
“Te | T

Employees ‘@ Departments

14

Reasoning About FDs

* (Given some FDs, we can usually infer
additional FDs:

— ssn—did, did — lot 1mplies ssn— lot
- A —=BCimplies4A — B

 An FD f1s logically implied by a set of FDs
F 1t / holds whenever all FDs in F hold.

—- F"=closure of F'1s the set of all FDs that are
implied by F.

15

Armstrong’s axioms

« Armstrong s axioms are sound and
complete inference rules for FDs!
— Sound: all the derived FDs (by using the

axioms) are those logically implied by the
given set

— Complete: all the logically implied (by the
given set) FDs can be derived by using the
axioms.

16

Reasoning about FDs

 How do we get all the FDs that are logically
implied by a given set of FDs?
« Armstrong s Axioms (X, Y, Z are sets of

attributes):

— Reflexivity:
- If X2Y, then X—=Y

— Augmentation:
- If X—=Y, then XZ — YZ foranyZ

— Transitivity:
cIf X—=Y and Y—=Z7, then X —=Z
17

A |B

D (W (W [N

1
2
2
1

Example of using Armstrong’s
AXx10ms

* Couple of additional rules (that follow from
AA):
— Union: fX—=Y and X —= 7, then X —
YZ
— Decomposition: If X = YZ, then X — Y and
X—=7
» Derive the above two by using Armstrong’ s
axioms!

18

Derive Union

« Show that

[fX—=Y and X —= 7, then X —=YZ

19

Derive Decomposition

 Show that

[fX—=YZ thenX —=Yand X —=Z

20

Another Useful Rule:
Accumulation Rule

e [f X—=YZand Z — W, then X = YZW

Proof:

21

EEEEmTTT oS
Derivation Example

« R=(4, B, C G HI
F={4—B;A—>C,CG—H CG—1B—H)

« some members of /" (how to derive them?)
- A—H

— AG —=1

- CG—=HI

22

EETT .,
Procedure for Computing F~*

« To compute the closure of a set of functional dependencies F:

F+=F
repeat
for each functional dependency fin F*
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F'*
for each pair of functional dependencies fiand f, in F' ™
if /, and f, can be combined using transitivity
then add the resulting functional dependency to £ *
until /" does not change any further

NOTE: We shall see an alternative procedure for this task later

23

Example on Computing F+

« F={A—=B, B—=C, CD—=E}
Step 1: For each fin F, apply reflexivity rule
— We get: CD —=C; CD — D
— Add them to F:
+ F={A—=B,B—C, CD—E;CD—->C;CD—>D}
Step 2: For each f 1in F, apply augmentation rule

— From A — B we get: A — AB; AB — B; AC —= BC; AD
— BD; ABC —BC; ABD — BD; ACD —BCD

— From B — C we get: AB — AC; BC —= C; BD — CD;
ABC — AC; ABD — ACD, etc etc.

» Step 3: Apply transitivity on pairs of s
« Keep repeating... You get the 1dea -y
I

Reasoning About FDs (Contd.)

« Computing the closure of a set of FDs can be expensive.
(Size of closure 1s exponential in # of attrs!)

» Typically, we just want to check if a given FD X —Y is in
the closure of a set of FDs F. An efficient check:

— Compute attribute closure of X (denoted X*) wrt F:
« Set of all attributes Z such that X = Z 1sin F*
* There is a linear time algorithm to compute this.

— Checkif Y isin X*
e DoesF={A—=B, B—=C, CD—=E} imply A—=E?

- 1.e, 1s A — E inthe closure F*? Equivalently, is E in A*™?

25

Computing X"

* Input F (a set of FDs), and X (a set of
attributes)

e QOutput: Result=X" (under F)

 Method:
— Step 1: Result :=X;
— Step 2: Take Y = Zin F, and Y i1s in Result, do:
Result := Result U Z

— Repeat step 2 until Result cannot be changed and
then output Result.

26

Example of Attribute Closure X™

e DoessF={A—=B, B—=C, CD—=E} mply A—
E?

- 1.6, 1S A — E 1n the closure F™? Equivalently, 1s E in A™?

Step 1: Result=A
Step 2: Consider A — B, Result = AB
Consider B — C, Result = ABC
Consider CD — E, CD 1is not in ABC, so stop
Step 3: A" = {ABC}
EisNOTinA",so A —= Ei1sNOT in F* .

Example of computing X™

F={A —B, AC =D, AB -C}?

What 1s X™ for X = A? (1.e. what 1s the attribute
closure for A?)

Answer: A"= ABCD

28

BT .
Example of Attribute Closure

R=(4,BC G H I
F={A—B'A—C; CG—H; CG—I;B— H

e (A4G)T ="
— Answer: ABCGHI
* Is AG a candidate key?

— This question involves two parts:

1. Is AG a super key?
— Does AG— R? ==1Is (AG)" 2 R

2. Is any subset of AG a superkey?
— Doesd —=R?==1Is(A)"2 R
— Does G— R?==1Is(G)" 2 R 29

EEE
Uses of Attribute Closure

There are several uses of the attribute closure
algorithm:

» Testing for superkey:

— To test if X is a superkey, we compute X and check if
X" contains all attributes of R.

» Testing functional dependencies

— To check if a functlonal dependency X — Y holds (or,
in other words, is in F"), just check if Y C X

— That is, we compute X" by using attribute closure, and
then check if it contains Y.

— Is a simple and cheap test, and very useful
e Computing closure of F

30

BT .
Computing F*

 Given F={ A — B, B —= C}. Compute F" (with
attributes A, B, C) Step 2: Compute the attribute

Step 1: Construct an empty matrix, with all closures for all attribute/
Possible combinations of attributes in the rows combination of attributes
And columns

A |B|CJAB |AC | BC | ABC Attribute closure

A AT=?

B

c B™=?

AB C=?

AC AB™=?
B¢ AC=?
Sl BC*=?

Step 3: Fill in the matrix using the results from Step 2 | ABC*=? 31

BT .
Computing F*

 Given F={ A — B, B —= C}. Compute F" (with
attributes A, B, C).

We’ll do an example on A™.

Step 1: Result=A

Step 2: Consider A — B, Result=A U B =AB
Consider B — C, Result=AB U C=ABC

Step 3: A" = {ABC}

32

BT .
Computing F*

 Given F={ A — B, B —= C}. Compute F" (with
attributes A, B, C) Step 2: Compute the attribute

Step 1: Construct an empty matrix, with all closures for all attribute/
Possible combinations of attributes in the rows combination of attributes
And columns

A |BICIAB JAC |BC | ABC Attribute closure

v Iy v v Y A—ABC

B B*=?

< Cr=2

AB™=?

Step 3: Fill in the matrix using the results from Step 2. ACH=?
We have A'=ABC. Now fill in the row for A. Consider BC =2
the first column. Is A part of A™? Yes, so check it. -
Is B part of A™? Yes, so check it... and so on. ABC™=? 33

 Given F={ A — B, B —= C}. Compute F" (with

Computing F*

attributes A, B, C).

Attribute closure

=ABC

B™=BC

C=C

AB™=ABC

AC™=ABC

BC=BC

A |B|C|AB |AC |BC|ABC
A VIviviy v v Iy
B v |V v
C v
as Vv Ivivly v v Iy
ac VIvivly v v Iy
Bc | [v]v v
asclv VIvlv v v v

ABC=ABC

e An entry with v means FD (the row) — (the column) 1s in F™,

ts v when (the column) is in (the row)™"

e An enti ﬁe i i i i 34

Computing F*

Step 4: Derive rules. / A—BC

A |[B|C|AB |AC |BC AB{ Attribute closure
A [V IVIVIY [V WY A"=ABC
B VIV v =BC
C 4 C=C
AB |V [V IV IV [V |V |V AB*=ABC
ac v Iiviviy v [v v AC*=ABC
BC YA Vv BC=BC
ABC |V [V |V |V [V |V |V ABC*=ABC

* An entry with v means FD (the row) — (the column) is in F*.
* An entry gets vV when (the column) 1s in (the row)* 35

Check 1f two sets of FDs are

equivalent

« Two sets of FDs are equivalent if they logically
imply the same set of FDs.

— 1.e,1f F,"=F,, then they are equivalent.
* For example, F,={A —B, A —=C} is equivalent to
F,={A — BC}
 How to test? Two steps:
— EveryFDInFismn F,"
— Every FDInF,1sin F*
* These two steps can use the algorithm (many
times) for X

36

Summary

Constraints give rise to redundancy
— Three anomalies

e FDis a “popular” type of constraint
— Satisfaction & violation
— Logical implication
— Reasoning
* Armstrong’s Axioms
— FD inference/derivation

« Computing the closure of FD’ s (F")

o (Check for existence of an FD
— By computing the Attribute closure

37

Normal Forms

* The first question: Is any refinement needed?

* Normal forms:

— If a relation 1s 1n a certain normal form (BCNFE, 3NF etc.), it
1s known that certain kinds of problems are avoided/
minimized. This can be used to help us decide whether
decomposing the relation will help.

* Role of FDs 1n detecting redundancy:

— Consider a relation R with 3 attributes, ABC.
« No FDs hold: There 1s no redundancy here.

* Given A — B: Several tuples could have the same A value, and 1f
so, they’ll all have the same B value!

38

Normal Forms

* First normal form (1NF)

— Every field must contain atomic values, 1.e. no sets or lists.
— Essentially all relations are in this normal form

* Second normal form (2NF)
— Any relation 1 2NF 1s also in INF

— All the non-key attributes must depend upon the WHOLE of
the candidate key rather than just a part of it.

« It is only relevant when the key 1s composite, 1.e., consists of several
fields.
— ¢.g. Consider a relation:
 Inventory(part, warechouse, quantity, warehouse address).
» Suppose {part, warechouse} is a candidate key.
« warechouse address depends upon warehouse alone - 2NF violation
* Solution: decompose 39

Normal Forms

* Boyce-Codd Normal Form (BCNF)
— Any relation in BCNF is also in 2NF

e Third normal form (3NF)
— Any relation in BCNF i1s also in 3NF

40

Boyce-Codd Normal Form (BCNF)

 Reln R with FDs F'1s in BCNF 1f for each non-trivial FD
X —= A in F, Xis a super key for R (1.e., X =R 1 F).
— An FD X — A is said to be “trivial” if A € X.
— However if not all XA are in R, then we don’t care.

 In other words, R 1s in BCNF 1if the only non-trivial FDs
that hold over R are key constraints.

« If BCNF:
~ No “data” in R can be predicted using FDs alone. Why:

— Because X 1s a (super)key, we can’t have two X Y |A

different tuples that agree on the X value

Suppose we know that this instance satisfies X — A. This situation x 9)
cannot arise if the relation is in BCNF. y

BT
BCNF

e Consider relation R with FDs F. If X — A in F
over R violates BCNF, 1t means
— XA are all im R, and
— A 1s not 1n X, and —
— X—=Risnotin F* — superkey

 In other words, for X — A in Fover R to satisfy
BCNF requirement, one of the followings must be
true:
— XAarenot all in R, or
— X —= A istrivial, 1.e. Ais in X, or
— X 1s a superkey, 1.e. X = R isin F* 42

Decomposition of a Relation Schema

 When a relation schema 1s not in BCNF: decompose.

e Suppose that relation R contains attributes A/ ... An. A
decomposition of R consists of replacing R by two or more
relations such that:

— Each new relation scheme contains a subset of the attributes of R
(and no attributes that do not appear in R), and

— Every attribute of R appears as an attribute of at least one of the new
relations.

e Intuitively, decomposing R means we will store instances of
the relation schemes produced by the decomposition,
instead of instances of R.

43

Decomposition example

S N L |[R |W |H
123-22-3666 |Attishoo (48 |8 (10 |40
231-31-5368 |Smiley 22 |8 |10 |30
131-24-3650 |Smethurst (35 |5 |7 |30
434-26-3751 |Guldu 35 |5 |7 |32
612-67-4134 |Madayan |35 |8 |10 |40
S N L |[R |H
123-22-3666 |Attishoo |48 |8 |40
. 231-31-5368 |Smiley 22 |8 (30
_ 131-24-3650 |Smethurst |35 |5 |30
434-26-3751 |Guldu 35 |5 |32
612-67-4134 |Madayan |35 |8 |40

Original relation
(not stored in DB!)

/

Decomposition
(in the DB)

—

>q |8 [10
517

44

Problems with Decompositions

* There are three potential problems to consider:

@ Some queries become more expensive.
* ¢.g., How much did sailor Attishoo earn? (earn = W*H)

® Given instances of the decomposed relations, we may not be
able to reconstruct the corresponding instance of the original
relation!

 Fortunately, not in the SNLRWH example.

® Checking some dependencies may require joining the
instances of the decomposed relations.

 Fortunately, not in the SNLRWH example.
* Tradeoff: Must consider these 1ssues vs. redundancy.

45

Example of problem 2

Student ID |Name Dcode [Cno Grade

123-22-3666 |Attishoo [INFS 501 A

231-31-5368 |Guldu CS 102 B £

131-24-3650 |Smethurst [INFS 614 B

434-26-3751 |Guldu INFS 614 A

434-26-3751 |Guldu INFS 612 C
Name Dcode |Cno Grade
Attishoo |INFS |501 |A st 1D |
Guldu CS 102 B 123-22-3666 |Attishoo
Smethurst |INFS 614 B ><] 231-31-5368 | Guldu
Guldu INES 614 A 131-24-3650 |Smethurst
Guldu INFS 612 C 434-26-3751 |Guldu

46

Lossless Join Decompositions

* Decomposition of R into R, and R, 1s [ossless-
join w.r.t. a set of FDs F 1f, for every instance r

that satisfies F, we have:
”Rl(r) MERZ(F) =T

* It 1s always true that
r gan(V) >, (7)

* In general, the other direction does not hold!
If 1t does, the decomposition 1s lossless-join.

47

Example (lossy decomposition)

A B IC ‘TL’AB(’/)
r i1 |2 |3 A |B
4 ls g (BRI 7045 (1) DT (1)
7 |12 |8 45\ABC
7 (2 1 (2 |3
\ 4 |5 |6
7 12 |8
551128
JTBC(F)56 712 3
2 |8

48

Example (lossless join decomposition)

T ,5(7)
LA B [C AP
123‘AB
4 15 |6 L2 T 45 (1) DU o (1)
7 12 |3 4 |5
72\ABC
\ 1 2 |3
B [C 4 15 |6
» 13 lmmm== |7 |5 |3
EBC(F)56

Suppose (ABMN BC)— BC

49

Lossless Join Decomposition

* The decomposition of R into R, and R, 1s
lossless-join wrt F 1f and only 1f F™ contains:

_R,NR, = R,, or
_R,NR, =R,

 In particular, the decomposition of R into
(UV) and (R-V) 1s lossless-join1f U —=V
holds on R
—assume U and V do not share attributes.
— WHY?

50

EEEEmTTT oS
Decomposition

* Definition extended to decomposition into 3
or more relations in a straightforward way.

o [tis essential that all decompositions used to
deal with redundancy be lossless! (Avoids

Problem (2))

51

Decomposition into BCNF

 Recall: Consider relation R with FDs F. I[f X — A
in F'over R violates BCNF, 1t means
— XA are all im R, and

— A 1s not 1n X, and —
— X—=Risnotin F* — superkey

* Recall that for X —= A in Fover R to satisty BCNF
requirement, one of the followings must be true:

— XA are not all in R, or
— X —= A istrivial, 1.e. Ais in X, or

— X i1s asuperkey,1.e. X = Ri1sin F"
52

Decomposition into BCNF

 Consider relation R with FDs F. If X — A in F
over R violates BCNEF, 1.e.,

— XA are all in R, and

— A is not in X, and
— X —=Risnotin F*

|

!

* Then: decompose R into R - A and XA.

» Repeated application of this idea will give us a
collection of relations that are in BCNF; lossless
join decomposition, and guaranteed to terminate.

53

BCNF Decomposition Example

s R=(4, B, C)

F={4A— B/ B—C}

Key = {4}
* Risnotin BCNF (B — C but B 1s not a superkey)
* Decomposition

- R,=(B,C)

— R,=(4, B)

54

B .
BCNF Decomposition Example 2

* Assume relation schema CSJDPQV:
Contracts(contract id, supplier, project, dept, part, qty, value)
~ keyC, JP—C, SD—=P, J—S
e To deal with SD — P, decompose into SDP, CSIDQV.
 Todeal withJ — S, decompose CSJIDQYV into JS and CJIDQV

e A tree representation of the decomposition:

CSJDPQV

/ T CS]DQV

- / CJDQV

Using J — S "

Using SD — P

55

BCNF Decomposition

* In general, several dependencies may cause
violation of BCNF. The order in which we
“deal with” them could lead to very
different sets of relations!

56

How do we know R 1s in BCNF?

 If R has only two attributes, then 1t 1s 1n
BCNF

* If F only uses attributes in R, then:

— R 1s in BCNF if and only if for each X — Y in
F (not F*!), X 1s a superkey of R, 1.e., X = R 1s
in F™ (not F!).

57

Checking for BCNF Violations

e List all non-trivial FDs

 Ensure that left hand side of each FD 1s a
superkey

* We have to first find all the keys!

58

Checking for BCNF Violations

* Is Courses(course num, dept name, course name,
classroom, enrollment, student name, address) in BCNF?

e FDs are:

— course_num, dept name — course_name
— course_num, dept name — classroom
— course_num, dept name — enrollment
 What is (course num, dept name)*?
— {course_num, dept name, course name, classroom, enrollment}

« Therefore, the key i1s

{course num, dept name, course name, classroom, enrollment,
student name, address}

* The relation is not in BCNF

59

