
Database Programming

Week 9

*Some of the slides in this lecture are created by Prof. Ian Horrocks from University of Oxford

2

SQL in Real Programs

•  We have seen only how SQL is used at the
generic query interface --- an environment
where we sit at a terminal and ask queries of
a database.

•  Reality is almost always different.
– Programs in a conventional language like C are

written to access a database by “calls” to SQL
statements.

3

Database Programming

Database

SQL

Code in
Programming
Language

Sequence of tuples

4

SQL in Application Code

•  SQL commands can be called from within a host
language (e.g., C++ or Java) program.
–  SQL statements can refer to host variables (including

special variables used to return status).
–  Must include a statement to connect to the right

database.
•  Two main integration approaches:

–  Embed SQL in the host language (embedded SQL,
SQLJ)

–  Create special API to call SQL commands (JDBC)

5

SQL in Application Code
(Con’t)

•  Impedance mismatch
–  SQL relations are (multi-) sets of records, with no a

priori bound on the number of records. Typically, no
such data structure in programming languages such as C/
C++ (Though now: STL).

–  SQL supports a mechanism called a cursor to handle
this.

6

Embedded SQL
•  Approach: Embed SQL in the host language.

–  A preprocessor converts/translates the SQL statements
into special API calls.

–  Then a regular compiler is used to compile the code.

7

Embedded SQL

•  Language constructs:
– Connecting to a database
!EXEC SQL CONNECT :usr_pwd;!
!// the host variable usr_pwd contains your user
name and password separated by ‘/’!

– Declaring variables
!EXEC SQL BEGIN DECLARE SECTION!

!EXEC SQL END DECLARE SECTION!
– Statements !!
!EXEC SQL Statements;!

8

Variable Declaration

•  Can use host-language variables in SQL
statements
– Must be prefixed by a colon (:)
– Must be declared between
 EXEC SQL BEGIN DECLARE SECTION!
!! ! !.!
 ! !.!
!! ! !.!
 EXEC SQL END DECLARE SECTION!

9

Variable Declaration in C

EXEC SQL BEGIN DECLARE SECTION!
char c_sname[20];!
long c_sid;!
short c_rating;!
float c_age;!
EXEC SQL END DECLARE SECTION!
!

Variables	

in	
 host	

program	

Embedded SQL: “Error” Variables
Two	
 special	
 variables	
 for	
 repor0ng	
 errors:	

•  SQLCODE	
 	
 	
 (older)	

–  A	
 nega0ve	
 value	
 to	
 indicate	
 a	
 par0cular	
 error	
 condi0on	

–  The	
 appropriate	
 C	
 type	
 is	
 long	

•  SQLSTATE	
 	
 	
 (SQL-­‐92	
 standard)	

–  Predefined	
 codes	
 for	
 common	
 errors	

–  Appropriate	
 C	
 type	
 is	
 char[6]	
 (a	
 character	
 string	
 of	
 five	

leNers	
 long	
 with	
 a	
 null	
 character	
 at	
 the	
 end	
 to	
 terminate	

the	
 string)	

•  One	
 of	
 these	
 two	
 variables	
 must	
 be	
 declared.	
 	
 We	

assume	
 SQLSTATE	

11

Embedded SQL
•  All SQL statements embedded within a host

program must be clearly marked.
•  In C, SQL statements must be prefixed by EXEC

SQL:
 EXEC SQL!
!INSERT INTO Sailors ! !
VALUES(:c_sname,:c_sid,:c_rating,:c_age);!

•  Java embedding (SQLJ) uses # SQL { …. };

12

SELECT - Retrieving Single Row

 EXEC SQL SELECT S.sname, S.age !
 INTO :c_sname, :c_age!
! ! ! FROM Sailors S!
 WHERE S.sid = :c_sid;!

13

SELECT - Retrieving Multiple Rows

•  What if we want to embed the following
query?

 SELECT S.sname, S.age
 FROM Sailors
 WHERE S.rating > :c_minrating

•  Potentially, multiple rows will be retrieved
•  How do we store the set of rows?

– No equivalent data type in host languages like C

14

Cursors

•  Can declare a cursor on a relation or query statement
(which generates a relation).

•  Can open a cursor, and repeatedly fetch a tuple then move
the cursor, until all tuples have been retrieved.
–  Can use a special clause, called ORDER BY, in queries that are

accessed through a cursor, to control the order in which tuples
are returned.

•  Fields in ORDER BY clause must also appear in SELECT clause.

–  The ORDER BY clause, which orders answer tuples, is only
allowed in the context of a cursor.

•  Can also modify/delete tuple pointed to by a cursor.

15

Declaring a Cursor

•  Cursor that gets names and ages of sailors whose
ratings are greater than “minrating”, in alphabetical
order

 EXEC SQL DECLARE sinfo CURSOR FOR!
! SELECT S.sname, S.age!
! FROM Sailors S ! !

! ! WHERE S.rating > :c_minrating!
! ORDER BY S.sname!

16

Opening/Fetching a Cursor

•  To open the cursor (executed at run-time):
–  OPEN sinfo;!
–  The cursor is initially positioned just before the first

row
•  To read the current row that the cursor is pointing

to:
–  FETCH sinfo INTO :c_sname, :c_age

•  When FETCH is executed, the cursor is positioned
to point at the next row
–  Can put the FETCH statement in a loop to retrieve

multiple rows, one row at a time

17

Closing a Cursor

•  When we’re done with the cursor, we can
close it:
– CLOSE sinfo;!

•  We can re-open the cursor again. However,
the rows retrieved might be different
(depending on the value(s) of the associated
variable(s) when cursor is opened)
– Ex. If :c_minrating is now set to a different

value, then the rows retrieved will be different

18

Embedding SQL in C: An
Example

char SQLSTATE[6];
EXEC SQL BEGIN DECLARE SECTION
 char c_sname[20]; short c_minrating; float c_age;
EXEC SQL END DECLARE SECTION
c_minrating = random();
EXEC SQL DECLARE sinfo CURSOR FOR // declare cursor
 SELECT S.sname, S.age

 FROM Sailors S
 WHERE S.rating > :c_minrating
 ORDER BY S.sname;

EXEC SQL OPEN sinfo; // open cursor
do {
 EXEC SQL FETCH sinfo INTO :c_sname, :c_age;
 printf(“%s is %d years old\n”, c_sname, c_age);

} while (SQLSTATE != ‘02000’); // end of file
EXEC SQL CLOSE sinfo; // close cursor

Update/Delete Commands

•  Modify the rating value of the row currently
pointed to by cursor sinfo

 UPDATE Sailors S
 SET S.rating = S.rating + 1
 WHERE CURRENT of sinfo;

•  Delete the row currently pointed to by cursor
sinfo

 DELETE Sailors S
 FROM CURRENT of sinfo;

20

Dynamic SQL
•  SQL query strings are not always known at compile time

–  Such application must accept commands from the user; and based
on what the user needs, generate appropriate SQL statements

–  The SQL statements are constructed on-the-fly

•  Dynamic SQL allows programs to construct and submit
SQL queries at run time.

•  Example of the use of dynamic SQL from within a C
program.

21

Dynamic SQL - Example

 char c_sqlstring[] = {“DELETE FROM Sailor WHERE rating > 5”};  

EXEC SQL PREPARE readytogo FROM :c_sqlstring;  
EXEC SQL EXECUTE readytogo"

Instruct	
 SQL	
 system	
 to	

execute	
 the	
 query	

Inform	
 SQL	
 system	
 to	

take	
 the	
 string	
 as	
 query	
 	

Limitation of Embedded SQL
•  DBMS-specific preprocessor transform the Embedded SQL

statements into function calls in the host language

•  This translation varies across DBMSs (API calls vary among
different DBMSs)

•  Even if the source code can be compiled to work with different
DBMS’s, the final executable works only with one specific
DBMS.
 → DBMS-independent only at the source code level

EXEC	
 	
 SQL	
 	
 …	

	
 	
 	
 	
 	
 SELECT	
 …	

	
 	
 	
 	
 	
 FROM	
 …	

	
 	
 	
 	
 	
 WHERE	
 …	

Preprocessor	

API	
 CALL	
 …	
 NaJve	
 API	
 	

DBMS	

Database	

specific	

Slide from Kien Hua from University of Central Florida

Database API: Alternative to Embedding

•  Both are API (application-program
interface) for a program to interact with a
database server

•  Application makes calls to
–  Connect with the database server
–  Send SQL commands to the database server
–  Fetch tuples of result one-by-one into

program variables
•  ODBC (Open Database Connectivity)

works with C, C++, C#, and Visual Basic
•  JDBC (Java Database Connectivity)

works with Java

ODBC = Open DataBase Connectivity
JDBC = Java DataBase Connectivity

Java	

ApplicaJon	

JDBC	
 API	

JDBC	

Driver	
 	

DBMS	

java.sql	

24

JDBC
•  JDBC is a collection of Java classes and interface that

enables database access

•  JDBC contains methods for
–  connecting to a remote data source,
–  executing SQL statements,
–  receiving SQL results
–  transaction management, and
–  exception handling

•  The classes and interfaces are part of the java.sql package

JDBC: Architecture
Four architectural components:

–  Application (initiates and
terminates connections, submits
SQL statements)

–  Driver manager (loads JDBC driver
and passes function calls)

–  Driver (connects to data source,
transmits requests and returns/
translates results and error codes)

–  Data source (processes SQL
statements)

Java	

ApplicaJon	

JDBC	
 API	

JDBC	
 Driver	

Manager	

JDBC	

Driver	
 2	
 	

JDBC	

Driver	
 1	

SQL	

Server	

Oracle	

Slide from Kien Hua from University of Central Florida

Steps to Submit a Database Query

1.  Load the JDBC driver
2.  Connect to the data source
3.  Execute SQL statements

JDBC Driver Management

•  Two ways of loading a JDBC driver:

1.  In the Java code:
 Class.forName(<driver name>)

 e.g., Class.forName(“oracle.jdbc.driver.OracleDriver”);
 // This method loads an instance of the driver class

 Or DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());
2.  Enter at command line when starting the Java application:

 -Djdbc.drivers=oracle/jdbc.driver

•  DriverManager class:
§  Maintains a list of currently loaded drivers
§  The driver we need depends on which

DBMS is available to us

Java	

ApplicaJon	

JDBC	
 API	

JDBC	
 Driver	

Manager	

	
 JDBC	

Driver	
 2	

JDBC	

Driver	
 1	

DBMS1	
 DBMS2	

28

JDBC Steps: More Details

1. Importing Packages
2. Registering the JDBC Drivers
3. Opening a Connection to a Database
4. Creating a Statement Object
5. Executing a Query and Returning a Result Set

Object
6. Processing the Result Set
7. Closing the Result Set and Statement Objects
8. Closing the Connection

29

1: Importing Packages

//Import packages
import java.sql.*; //JDBC packages
import java.math.*;
import java.io.*;
import oracle.jdbc.driver.*;

30

2. Registering JDBC Drivers
class MyExample {

public static void main (String args []) throws

SQLException
{

 // Load Oracle driver
 Class.forName("oracle.jdbc.driver.OracleDriver")

// Or:

 // DriverManager.registerDriver (new
 // oracle.jdbc.driver.OracleDriver());

31

3. Opening Connection to a Database
//Prompt user for username and password
String user;
String password;
user = readEntry("username: ");
password = readEntry("password: ");

// Connect to the database
Connection conn = DriverManager.getConnection
(“jdbc:oracle:thin:@apollo.ite.gmu.edu:
1521:ite10g”, user, password);

format: Connection connection = DriverManager.getConnection("jdbc:oracle:thin:
@<hostname>:<port>:<sid>","<username>","<password>");

http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.html#02_01

32

4. Creating a Statement Object
// Suppose Books has attributes isbn, title, author,
// quantity, price, year. Initial quantity is always
// zero; ?’s are placeholders
String sql = “INSERT INTO Books VALUES(?,?,?,0,?,?)”;
PreparedStatement pstmt = conn.prepareStatement(sql);

// now instantiate the parameters with values.
// Assume that isbn, title, etc. are Java variables
// that contain the values to be inserted.
pstmt.clearParameters();
pstmt.setString(1, isbn);
pstmt.setString(2, title);
pstmt.setString(3, author);
pstmt.setString(4, price);
pstmt.setString(5, year);

33

5. Executing a Query, Returning
Result Set &

6. Processing the Result Set

// The executeUpdate command is used if the SQL

// stmt does not return any records (e.g. UPDATE,
// INSERT, ALTER, and DELETE stmts).

// Returns an integer indicating the number of rows

// the SQL stmt modified.

int numRows = pstmt.executeUpdate();

34

Step 5/6, Con’t
// If the SQL statement returns data, such as in
// a SELECT query, we use executeQuery method
String sqlQuery = “SELECT title, price FROM Books

WHERE author=?”;
PreparedStatement pstmt2 =

conn.prepareStatement(sqlQuery);
pstmt2.setString(1, author);

ResultSet rset = pstmt2.executeQuery ();

// Print query results
// the (1) in getString refers to the title value,
// and the (2) refers to the price value
while (rset.next ())

 System.out.println (rset.getString (1)+ " ” +
 rset.getFloat(2));

35

7. Closing the Result Set and
Statement Objects

8. Closing the Connection
 // close the result set, statement,
 // and the connection
 rset.close();
 pstmt.close();
 pstmt2.close();
 conn.close();

}

ResultSet Example
•  PreparedStatement.executeUpdate() only returns the

number of affected records

•  PreparedStatement.executeQuery() returns data,
encapsulated in a ResultSet object
–  ResultSet is similar to a cursor
–  Allows us to read one row at a time
–  Intially, the ResultSet is positioned before the first row
–  Use next() to read the next row
–  next() returns false if there are no more rows

Common ResultSet Methods (1)

POSITIONING	
 THE	
 CURSOR	

next()	
 Move	
 to	
 next	
 row	

previous()	
 Moves	
 back	
 one	
 row	

absolute(int	
 num)	
 	

Moves	
 to	
 the	
 row	
 with	
 the	

specified	
 number	

rela0ve(int	
 num)	
 	

Moves	
 forward	
 or	
 backward	
 (if	

nega0ve)	

first()	
 	
 Moves	
 to	
 the	
 first	
 row	

last()	
 Moves	
 to	
 the	
 last	
 row	

Common ResultSet Methods (2)

RETRIEVE	
 VALUES	
 FROM	
 COLUMNS	

getString(string	

columnName):	
 	

Retrieves	
 the	
 value	
 of	
 designated	

column	
 in	
 current	
 row	

getString(int	

columnIndex)	
 	

Retrieves	
 the	
 value	
 of	
 designated	

column	
 in	
 current	
 row	

getFloat	
 (string	

columnName)	
 	

Retrieves	
 the	
 value	
 of	
 designated	

column	
 in	
 current	
 row	

39

Mapping Data Types
•  There are data types specified to SQL that need to be

mapped to Java data types if the user expects Java to be
able to handle them.

•  Conversion falls into three categories:
–  SQL type to Java direct equivalents
 SQL INTEGER direct equivalent of Java int data type.
–  SQL type can be converted to a Java equivalent.
 SQL CHAR, VARCHAR, and LONGVARCHAR can all be

converted to the Java String data type.
–  SQL data type is unique and requires a special Java data class

object to be created specifically for their SQL equivalent.
 SQL DATE converted to the Java Date object that is defined in

java.Date especially for this purpose.

40

SQLJ

•  Embedded SQL for Java
•  SQLJ is similar to existing extensions for SQL

that are provided for C, FORTRAN, and other
programming languages.

•  IBM, Oracle, and several other companies have
proposed SQLJ as a standard and as a simpler and
easier-to-use alternative to JDBC.

41

SQLJ

#sql { … } ;

•  SQL can span multiple lines
•  Java host expressions in SQL statement

42

SQLJ Example
String title; Float price; String author(“Lee”);
// declare iterator class
#sql iterator Books(String title, Float price);
Books books;

// initialize the iterator object books; sets the
// author, execute query and open the cursor
#sql books =
{SELECT title, price INTO :title, :price
 FROM Books WHERE author=:author };
// retrieve results
while(books.next()){
System.out.println(books.title()+”,”+books.price());
books.close();

43

JDBC Equivalent

String sqlQuery = “SELECT title, price FROM Books

WHERE author=?”;
PreparedStatement pstmt2 =

conn.prepareStatement(sqlQuery);
pstmt2.setString(1, author);

ResultSet rset = pstmt2.executeQuery ();

// Print query results. The (1) in getString refers
// to the title value, and the (2) refers to the
// price value
while (rset.next ())

 System.out.println (rset.getString (1)+ " ” +
 rset.getFloat(2));

44

Use SQLJ to write your program
when…

•  you want to be able to check your program for
errors at translation-time rather than at run-time.

•  you want to write an application that you can
deploy to another database. Using SQLJ, you can
customize the static SQL for that database at
deployment-time.

•  you are working with a database that contains
compiled SQL. You will want to use SQLJ
because you cannot compile SQL statements in a
JDBC program.

45

Use JDBC to write your program
when…

•  your program uses dynamic SQL. For example,
you have a program that builds queries on-the-fly
or has an interactive component.

•  you do not want to have a SQLJ layer during
deployment or development.

Useful JDBC Tutorials

•  http://java.sun.com/docs/books/tutorial/
jdbc/basics/

•  http://infolab.stanford.edu/~ullman/fcdb/
oracle/or-jdbc.html

46

