CS780 Data Mining for Multimedia Data

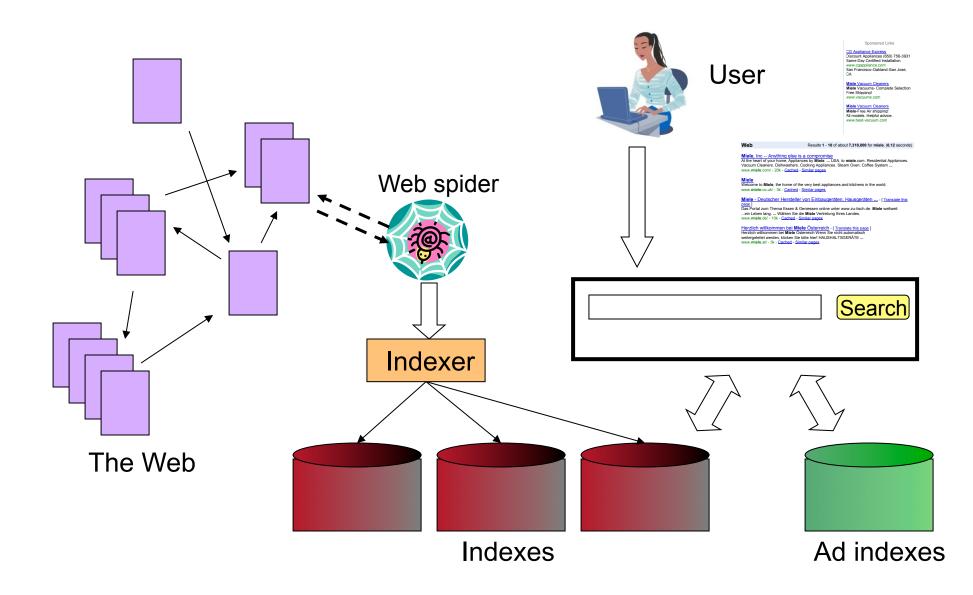
Web Search and Mining

Dr. Jessica Lin

The slides are from Christopher Manning and Prabhakar Raghavan from Stanford University

Brief (non-technical) history

- Early keyword-based engines ca. 1995-1997
 - ★ Altavista, Excite, Infoseek, Inktomi, Lycos
- <u>Paid search</u> ranking: Goto (morphed into Overture.com → Yahoo!)
 - \star Your search ranking depended on how much you paid
 - ★ Auction for keywords: *casino* was expensive!


Brief (non-technical) history

1998+: Link-based ranking pioneered by Google

- \star Blew away all early engines
- Meanwhile Goto/Overture's annual revenues were nearing \$1 billion
- Result: Google added paid search "ads" to the side, independent of search results
 - ★ Yahoo followed suit, acquiring Overture (for paid placement) and Inktomi (for search)
- 2005+: Google gains search share, dominating in Europe and very strong in North America
 - ★ 2009: Yahoo! and Microsoft propose combined paid search offering

🕹 nigritude ultramarine - Google Search - Mozilla Firefox	
<u>File Edit View Go Bookmarks Yahoo! Tools Help</u>	O
The second seco	✓ Ø ∞ G.
n Getting Started 🔂 Latest Headlines	
Y 🗸 🗸 🗸 🔽 Search Web 🛛 🖶 🖂 Mail 🗸 🐼 My Yahoo! 📥 Games 🛪 🎬 Movies 🛪 🖏 Music 🗸 🔯 Answers 🛪 💜 Personals 🛪 📴 Sign In 🛪	
pragh60@gmail.com <u>My Account Sign out</u> Web <u>Images Groups News Froogle Local more »</u> inigritude ultramarine Search <u>Preferences</u>	
Web Results 1 - 10 of about 185,000 for	r nigritude <u>ultramarine</u> . (0.35 seconds)
Anil Dash: Nigritude Ultramarine Do me a favor: Link to this post with the phrase Nigritude Ultramarine Just placed a link to your Nigritude Ultramarine article on my weblog. Cheers! www.dashes.com/anil/2004/06/04/nigritude_ultra - 101k - Mar 1, 2006 - Cached - Similar pages Nigritude Ultramarine FAQ Nigritude Ultramarine FAQ - frequently asked questions about nigritude ultramarine and the realted SEO contest. www.nigritudeultramarines.com/ - 59k - Cached - Similar pages SEO contest - Wikipedia, the free encyclopedia The nigritude ultramarine competition by SearchGuild is widely acclaimed as comparison of search results for nigritude ultramarine during and after the en.wikipedia.org/wiki/Nigritude_ultramarine - 37k - Cached - Similar pages Slashdot How To Get Googled, By Hook Or By Crook The current 3rd result showcases the "Nigritude Ultramarine Fighting Force" who When discussing nigritude ultramarine [slashdot.org] it is important to slashdot.org/article.pl?sid=04/05/09/1840217 - 110k - Cached - Similar pages	Sponsored Links Piness Blogging Seminar g to L.A. March 16 Top bloggers reveal key techniques www.blogbusinesssummit.com Los Angeles, CA Full-Time SEO & SEM Jobs Find companies big & small hiring full-time SEO & SEM pros right now CareerBuilder.com SEO Contests Information on SEO Contests like the Nigritude Ultramarine contest. www.seo-contests.com/ The SEO Book Nigritude Ultramarine & SEO secrets
The Nigritude Ultramarine Search Engine Optimization Contest It's sweeping the web or at least search engine optimizers a new contest to rank tops for the term nigritude ultramarine on Google. searchenginewatch.com/sereport/article.php/3360231 - 57k - <u>Cached</u> - <u>Similar pages</u>	Fun, free, raw, & different.
Done	

Web search basics

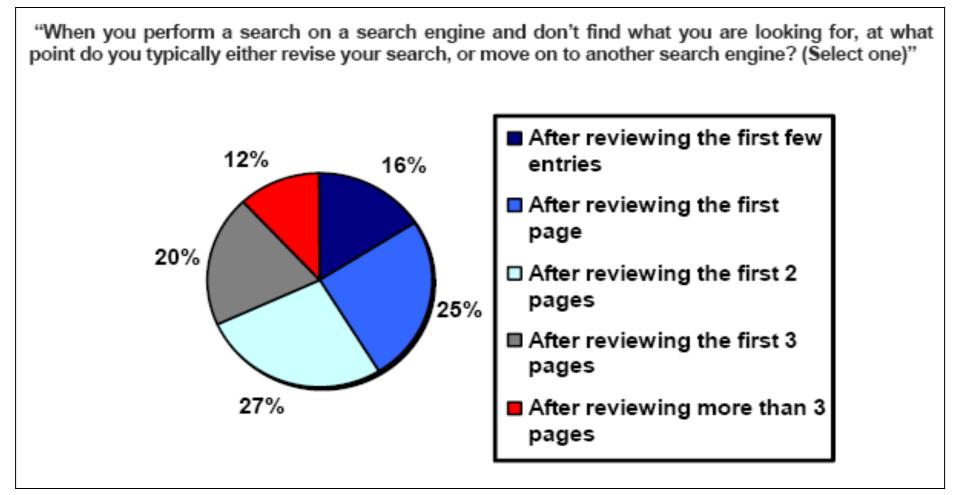
User Needs

User needs:

★ Informational – want to learn about something (~40% / 65%)

High blood pressure

★ Navigational – want to go to that page (~25% / 15%)


United Airlines

★ Transactional – want to do something (web-mediated) (~35% / 20%)

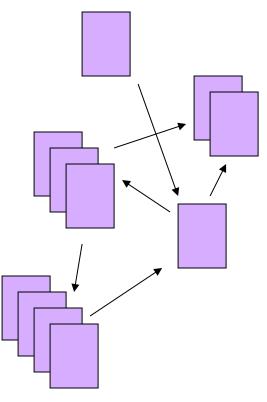
✓ Exploratory search "see what's there"

How far do people look for results?

(Source: iprospect.com WhitePaper_2006_SearchEngineUserBehavior.pdf)

Users' empirical evaluation of results

Quality of pages varies widely


- \star Relevance is not enough
- ★ Other desirable qualities (non IR!!)
 - Content: Trustworthy, diverse, non-duplicated, well maintained
 - ✓ Web readability: display correctly & fast
 - ✓ No annoyances: pop-ups, etc
- Precision vs. recall
 - \star On the web, recall seldom matters
- What matters
 - \star Precision at 1? Precision above the fold?
 - Comprehensiveness must be able to deal with obscure queries
 - Recall matters when the number of matches is very small

User perceptions may be unscientific, but are significant over a large aggregate

Users' empirical evaluation of engines

- Relevance and validity of results
- UI Simple, no clutter, error tolerant
- Trust Results are objective
- Coverage of topics for polysemic queries
- Pre/Post process tools provided
 - ★ Mitigate user errors (auto spell check, search assist,...)
 - \star Explicit: Search within results, more like this, refine ...
 - ★ Anticipative: related searches
 - Deal with idiosyncrasies
 - ★ Web specific vocabulary
 - ✓ Impact on stemming, spell-check, etc
 - \star Web addresses typed in the search box

The Web document collection

The Web

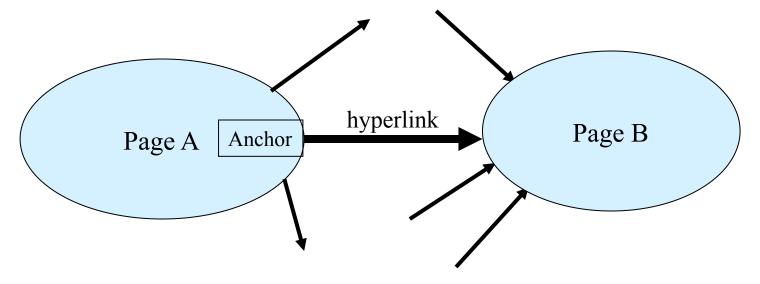
- No design/coordination
- Distributed content creation, linking, democratization of publishing
- Content includes truth, lies, obsolete information, contradictions ...
- Unstructured (text, html, ...), semi-structured (XML, annotated photos), structured (Databases)...
- Scale much larger than previous text collections ... but corporate records are catching up
- Growth slowed down from initial "volume doubling every few months" but still expanding
- Content can be *dynamically generated*

Ranking web pages

Web pages are not equally "important"

★ www.joe-schmoe.com v www.stanford.edu

Inlinks as votes

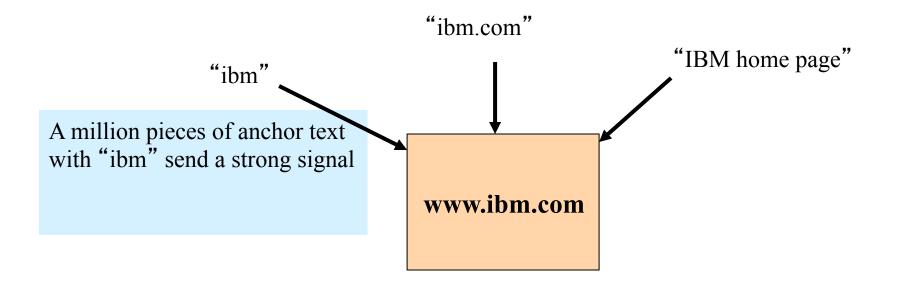

★ <u>www.stanford.edu</u> has 23,400 inlinks

★ <u>www.joe-schmoe.com</u> has 1 inlink

Are all inlinks equal?

★ Recursive question!

The Web as a Directed Graph


Assumption 1: A hyperlink between pages denotes author perceived relevance (quality signal)

Assumption 2: The text in the anchor of the hyperlink describes the target page (textual context)

Anchor Text WWW Worm - McBryan [Mcbr94]

For *ibm* how to distinguish between:

- ★ IBM's home page (mostly graphical)
- ★ IBM's copyright page (high term freq. for 'ibm')
- ★ Rival's spam page (arbitrarily high term freq.)

WEB IMAGES VIDEOS MAPS NEWS MORE

bing

search engines

ALSO TRY: Best Search Engines · Video Search Engines · Image Search Engines

126,000,000 RESULTS Any time -

Dogpile Web Search

www.dogpile.com

Official site

InfoSpace metasearch engine offering search of the general web, or images, audio, video and news. Also offers search of Yellow Pages and White Pages.

Images

Images. Dogpile.com makes searching the Web easy, because ...

Video

Video. Dogpile.com makes searching the Web easy, because it has all ...

<u>News</u>

News. Dogpile.com makes searching the Web easy, because it has all ...

See results only from dogpile.com

Ixquick Search Engine

https://www.ixquick.com Ixquick search engine provides search results from over ten best search engines in full privacy. Search anonymously with Ixquick Search Engine!

WebCrawler Web Search

Yellow Pages

Yellow Pages. Dogpile.com makes searching the Web easy, because ...

White Pages

White Pages. Dogpile.com makes searching the Web easy, because ...

Contact

Find out how to contact Dogpile. ... Contact Us. We welcome your ...

RELATED SEARCHES

ρ

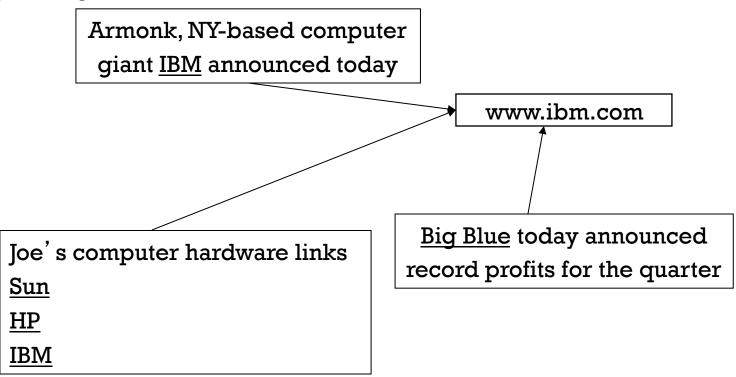
Search Engine Optimization Bing Search Engine Job Search Engines Effective Search Engine Optimization Top Internet Search Engines Popular Free Search Engines Free People Search Engines Torrent Search Engine

G Connect with Facebook

See what your friends know. Learn more

Blogs & opinions

Which search engine will create an option to search for events? www.quora.com


http://zvents.com already did it MSN had integrated the index...

Where is Google? Not on the first page. It appears on the 3rd page!

3 of 5 🕈 Sign in 🗖 👸

Indexing anchor text

When indexing a document D, include anchor text from links pointing to D.

Consider a window of text surrounding the anchor text too.

For more information on Big Blue, click <u>here</u>.

www.ibm.com

Indexing anchor text

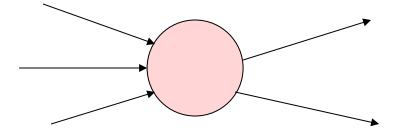
- Can sometimes have unexpected side effects *e.g.*, *evil empire*.
- Can score anchor text with weight depending on the authority of the anchor page's website
 - ★ e.g., if we were to assume that content from cnn.com or yahoo.com is authoritative, then trust the anchor text from them

Anchor Text

Other applications

★ Weighting/filtering links in the graph

★ Generating page descriptions from anchor text


Citation Analysis

Citation frequency

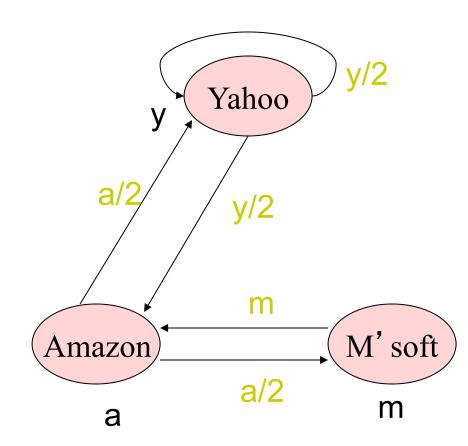
- Co-citation coupling frequency
 - ★ Cocitations with a given author measures "impact"
 - \star Cocitation analysis
- Bibliographic coupling frequency
 - \star Articles that co-cite the same articles are related
- Citation indexing
 - ★ Who is this author cited by? (Garfield 1972)

Query-independent ordering

- First generation: using link counts as simple measures of popularity.
 - Two basic suggestions:
 - ★ <u>Undirected popularity:</u>
 - ✓ Each page gets a score = the number of in-links plus the number of out-links (3+2=5).
 - ★ Directed popularity:
 - ✓ Score of a page = number of its in-links (3).

Query processing

- First retrieve all pages meeting the text query (say venture capital).
- Order these by their link popularity (either variant on the previous slide).
- More nuanced use link counts as a measure of static goodness, combined with text match score


Spamming simple popularity

- Exercise: How do you spam each of the following heuristics so your page gets a high score?
 - ★ Each page gets a static score = the number of in-links plus the number of out-links.
 - \star Static score of a page = number of its in-links.

Simple recursive formulation

- Each link's vote is proportional to the importance of its source page
- If page P with importance x has n outlinks, each link gets x/n votes

Simple "flow" model

$$y = y/2 + a/2$$

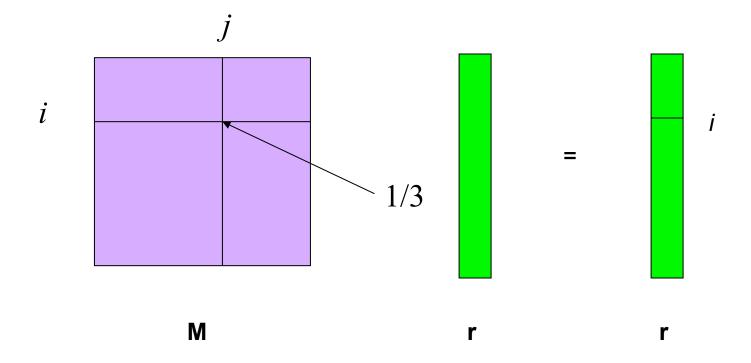
 $a = y/2 + m$
 $m = a/2$

Solving the flow equations

3 equations, 3 unknowns, no constants

- \star No unique solution
- ★ All solutions equivalent modulo scale factor
- Additional constraint forces uniqueness
 - ★ y+a+m = 1
 - ★ Then y = 2/5, a = 2/5, m = 1/5
- Gaussian elimination method works for small examples, but we need a better method for large graphs

Matrix formulation


- Matrix M has one row and one column for each web page
- Suppose page j has n outlinks
 - \star If i is one of j's outlinks, then M_{ii}=1/n

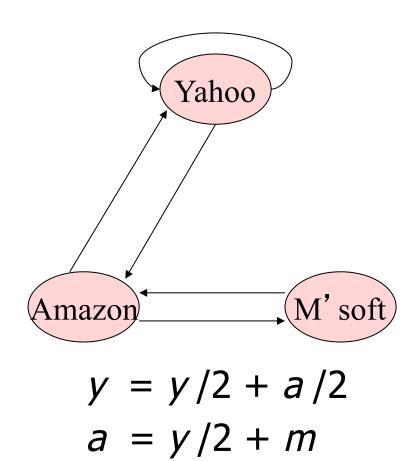
 \star Else M_{ij}=0

- M is a column stochastic matrix
 - ★ Columns sum to 1
- Suppose **r** is a vector with one entry per web page
 - \star r_i is the importance score of page i
 - ★ Call it the rank vector

Example

Suppose page *j* links to 3 pages, including *i*

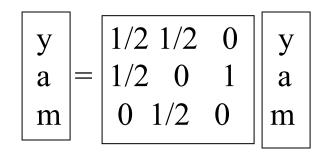
Eigenvector formulation


The flow equations can be written

 $\mathbf{r} = \mathbf{M}\mathbf{r}$

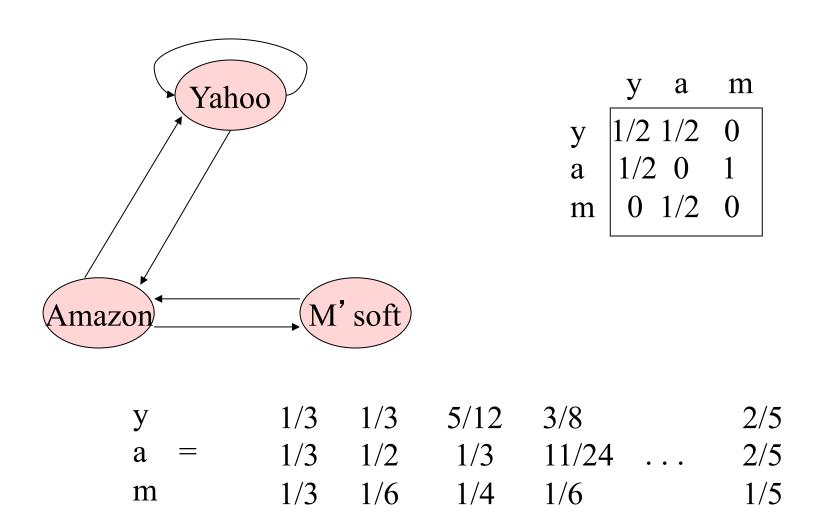
So the rank vector is an eigenvector of the stochastic web matrix

★ In fact, its first or principal eigenvector, with corresponding eigenvalue 1


Example

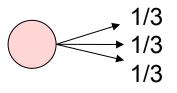
m = a/2

$$\begin{array}{cccccc} y & a & m \\ y & 1/2 & 1/2 & 0 \\ a & 1/2 & 0 & 1 \\ m & 0 & 1/2 & 0 \end{array}$$


r = Mr

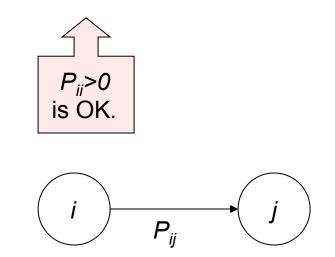
Power Iteration method

- Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- Initialize: $\mathbf{r}^0 = [1/N, \dots, 1/N]^T$
- Iterate: $\mathbf{r}^{k+1} = \mathbf{M}\mathbf{r}^k$
- Stop when $|\mathbf{r}^{k+1} \mathbf{r}^k|_1 < \varepsilon$
 - ★ $|\mathbf{x}|_1 = \sum_{1 \cdot i \cdot N} |\mathbf{x}_i|$ is the L₁ norm
 - \star Can use any other vector norm e.g., Euclidean


Power Iteration Example

Random Walk Interpretation

Imagine a random web surfer


★ At any time t, surfer is on some page P

- \star At time t+1, the surfer follows an outlink from P uniformly at random
- ★ Ends up on some page Q linked from P
- ★ Process repeats indefinitely
- Let p(t) be a vector whose ith component is the probability that the surfer is at page i at time t
 - \star **p**(t) is a probability distribution on pages
- "In the steady state" each page has a long-term visit rate use this as the page's score.

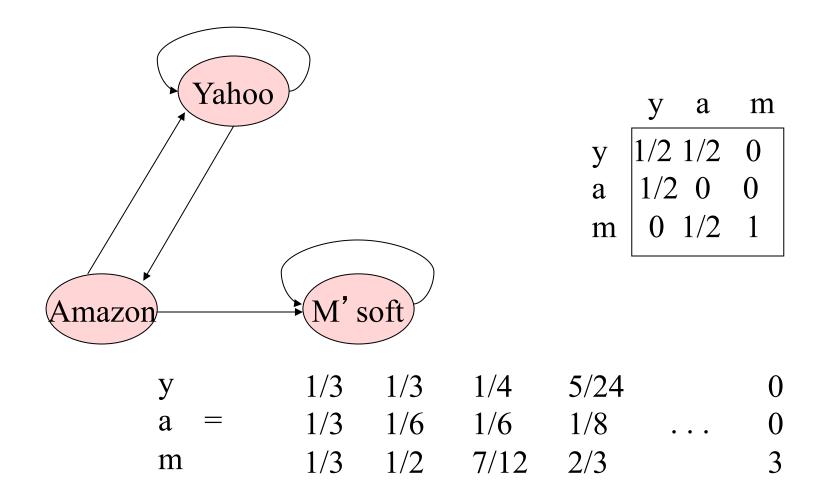
Markov chains

- Markov Chains are abstractions of random walk
- A Markov chain consists of n states, plus an n×n transition probability matrix P.
- At each step, we are in exactly one of the states.
- For $1 \le i,j \le n$, the matrix entry P_{ij} tells us the probability of *j* being the next state, given we are currently in state *i*.

The stationary distribution

- Where is the surfer at time t+1?
 - \star Follows a link uniformly at random
 - \star **p**(t+1) = **Mp**(t)
- Suppose the random walk reaches a state such that p(t+1) = Mp(t) = p(t)
 - \star Then **p**(t) is called a stationary distribution for the random walk
- Our rank vector r satisfies r = Mr
 - \star So it is a stationary distribution for the random surfer

Existence and Uniqueness


A central result from the theory of random walks (aka Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t = 0.

Spider traps

- A group of pages is a spider trap if there are no links from within the group to outside the group
 - ★ Random surfer gets trapped
- Spider traps violate the conditions needed for the random walk theorem

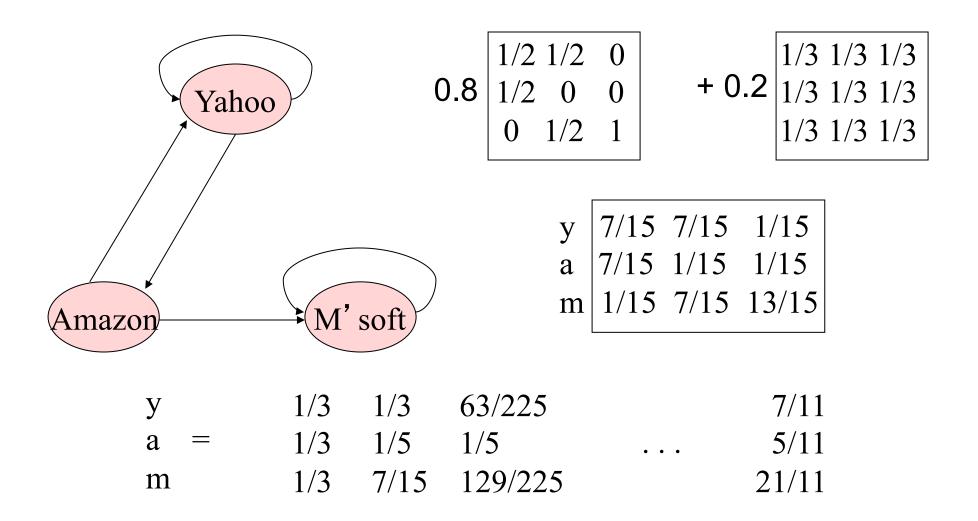
Microsoft becomes a spider trap

Random teleports

- The Google solution for spider traps
 - At each time step, the random surfer has two options:
 - **\star** With probability β , follow a link at random
 - **\star** With probability 1- β , jump to some page uniformly at random
 - **\star** Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Matrix formulation

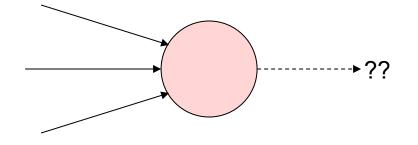
- Suppose there are N pages
 - ★ Consider a page j, with set of outlinks Out(j)
 - **★** We have $M_{ij} = 1/IOut(j)I$ when i is in Out(j) and $M_{ij} = 0$ otherwise
 - \star The random teleport is equivalent to
 - adding a teleport link from j to every other page with probability (1-β)/N
 - reducing the probability of following each outlink from 1/IO(j)I to β/IO(j)I
 - Equivalent: tax each page a fraction (1-β) of its score and redistribute evenly

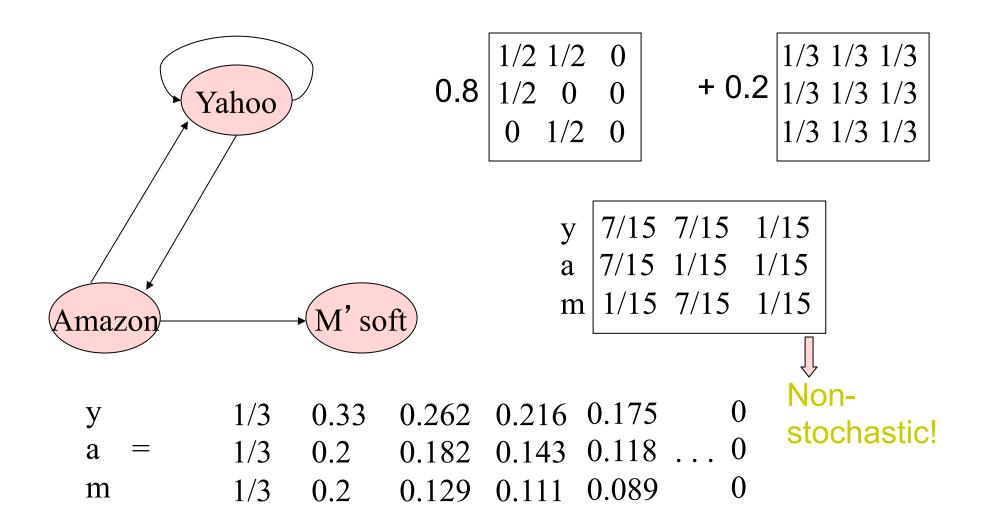

Page Rank

Construct the NxN matrix A as follows

 \star A_{ij} = β M_{ij} + (1- β)/N

- Verify that A is a stochastic matrix
- The page rank vector r is the principal eigenvector of this matrix
 - \star satisfying $\mathbf{r} = \mathbf{A}\mathbf{r}$
- Equivalently, r is the stationary distribution of the random walk with teleports


Previous example with \beta=0.8


Dead ends

Pages with no outlinks are "dead ends" for the random surfer

- \star The web is full of dead-ends.
- \star Nowhere to go on next step; random surfer gets stuck

Microsoft becomes a dead end

Dealing with dead-ends

Teleport

- ★ Follow random teleport links with probability 1.0 from dead-ends
- ★ Adjust matrix accordingly
- Prune and propagate
 - ★ Preprocess the graph to eliminate dead-ends
 - ★ Might require multiple passes
 - ★ Compute page rank on reduced graph
 - ★ Approximate values for deadends by propagating values from reduced graph

Pagerank summary

Preprocessing:

- ★ Given graph of links, build matrix **P**.
- \star From it compute **r**.
- **\star** The entry r_i is a number between 0 and 1: the pagerank of page *i*.

Query processing:

- ★ Retrieve pages meeting query.
- \star Rank them by their pagerank.
- ★ Order is query-*independent*.

The reality

Pagerank is used in google, but is hardly the full story of ranking

- \star Many sophisticated features are used
- ★ Some address specific query classes
- ★ Machine learned ranking heavily used
- Pagerank still very useful for things like crawl policy

Pagerank: Issues and Variants

- How realistic is the random surfer model?
 - ★ What if we modeled the back button?
 - ★ Surfer behavior sharply skewed towards short paths
 - ★ Search engines, bookmarks & directories make jumps non-random.
- Biased Surfer Models
 - Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection)
 - Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)

Topic Specific Pagerank

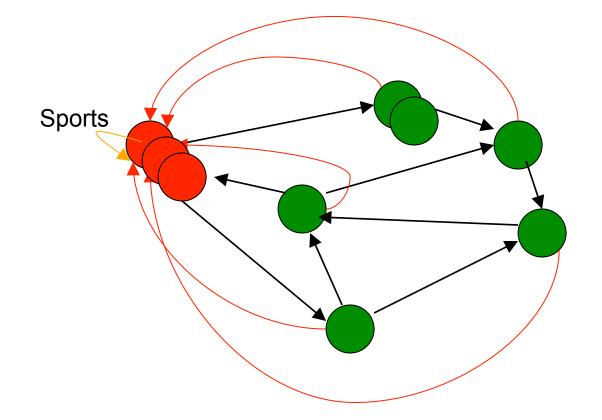
- Goal pagerank values that depend on query *topic*
- Conceptually, we use a random surfer who teleports, with say 10% probability, using the following rule:
 - Selects a topic (say, one of the 16 top level ODP categories)
 based on a query & user -specific distribution over the categories
 - ✓ Teleport to a page uniformly at random within the chosen topic
 - Sounds hard to implement: can't compute PageRank at query time!

Topic Specific Pagerank

Offline:Compute pagerank for *individual* topics

- \star Query independent as before
- ★ Each page has multiple pagerank scores one for each ODP category, with teleportation only to that category
- **Online**: Query context classified into (distribution of weights over) topics
 - ★ Generate a dynamic pagerank score for each page weighted sum of topic-specific pageranks

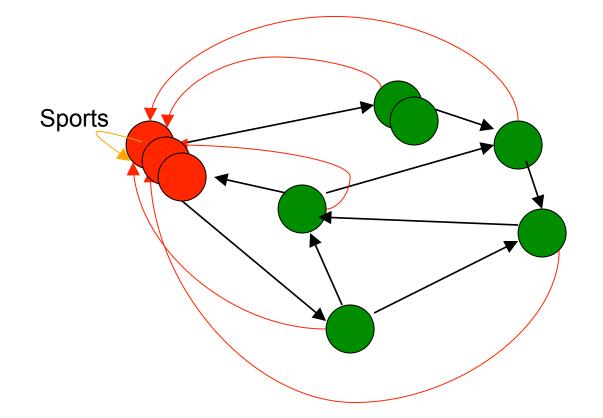
Influencing PageRank ("Personalization")


Input:

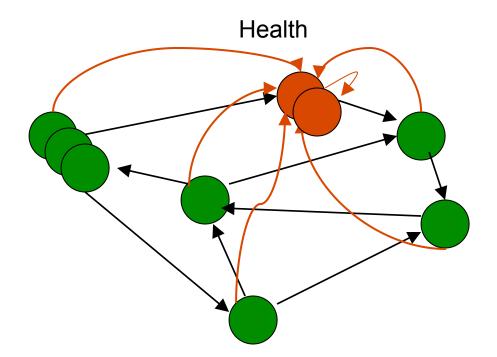
- ★ Web graph W
- ★ Influence vector **v** over topics
 - \mathbf{v} : (page \rightarrow degree of influence)
- Output:
 - **\star** Rank vector **r**: (page \rightarrow page importance wrt **v**)
- $\blacksquare \mathbf{r} = \mathsf{PR}(W, \mathbf{v})$

Vector has one component for each topic

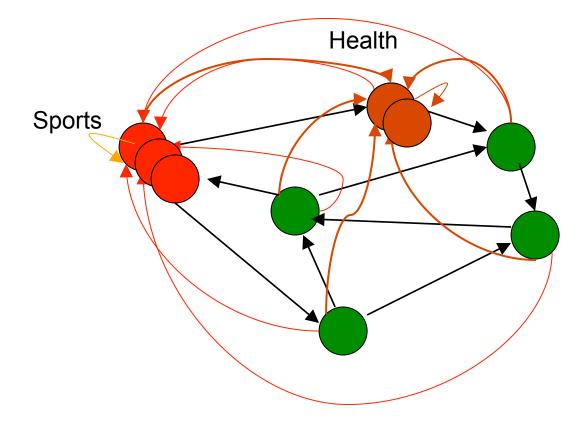
Sec. 21.2.3


Non-uniform Teleportation

Teleport with 10% probability to a Sports page


Sec. 21.2.3

Interpretation


10% Sports teleportation

Interpretation

10% Health teleportation

Interpretation

pr = (0.9 PR_{sports} + 0.1 PR_{health}) gives you: 9% sports teleportation, 1% health teleportation

Kleinberg's Algorithm (HITS)

Suppose we are given a collection of documents on some broad topic

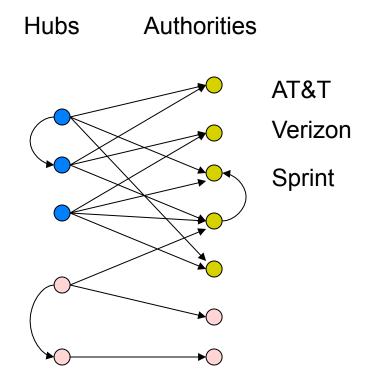
- \star e.g., stanford, evolution, iraq
- \star perhaps obtained through a text search
- Can we organize these documents in some manner?
 - \star Page rank offers one solution
 - ★ HITS (Hypertext-Induced Topic Selection) is another
 - ✓ proposed at approx the same time

Kleinberg's Algorithm (HITS)

Main idea: In many cases, when you search the web using some terms, the most relevant pages may not contain this term (or contain the term only a few times)

- ★ Harvard: www.harvard.edu
- ★ Search Engines: yahoo, google, altavista
- ★ Automobile manufacturers: Honda, Toyota...

Authorities and hubs


Hyperlink-Induced Topic Search (HITS)

- In response to a query, instead of an ordered list of pages each meeting the query, find <u>two</u> sets of inter-related pages:
 - \star Hub pages are good lists of links on a subject.
 - ✓ e.g., "Bob's list of cancer-related links."
 - ★ Authority pages occur recurrently on good hubs for the subject.
- Best suited for "broad topic" queries rather than for page-finding queries.
- Gets at a broader slice of common *opinion*.

HITS Model

- Interesting documents fall into two classes
- 1. Authorities are pages containing useful information
 - ★ course home pages
 - ★ home pages of auto manufacturers
- 2. Hubs are pages that link to authorities
 - ★ course bulletin
 - ★ list of US auto manufacturers

Idealized view

High-level scheme

- Extract from the web a <u>base set</u> of pages that *could* be good hubs or authorities.
- From these, identify a small set of top hub and authority pages;

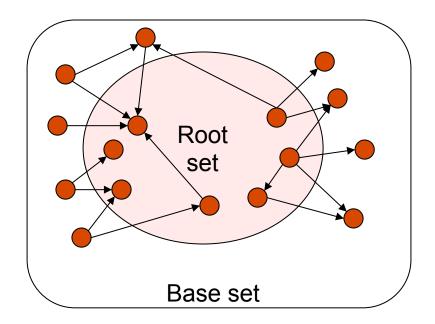
→ iterative algorithm

Base set

Given text query (say *browser*), use a text index to get all pages containing *browser*.

 \star Call this the <u>root set</u> of pages.

Add in any page that either


 \star points to a page in the root set, or

 \star is pointed to by a page in the root set.

Call this the <u>base set</u>.

Sec. 21.3

Visualization

Assembling the base set

- Root set typically 200-1000 nodes.
- Base set may have thousands of nodes
 - ★ Topic-dependent
- How do you find the base set nodes?
 - \star Follow out-links by parsing root set pages.
 - ★ Get in-links (and out-links) from a connectivity server

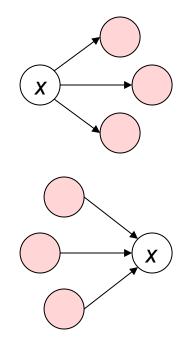
Mutually recursive definition

A good hub links to many good authorities
 A good authority is linked from many good hubs
 Model using two scores for each node

 ★ Hub score and Authority score
 ★ Represented as vectors h and a

Distilling hubs and authorities

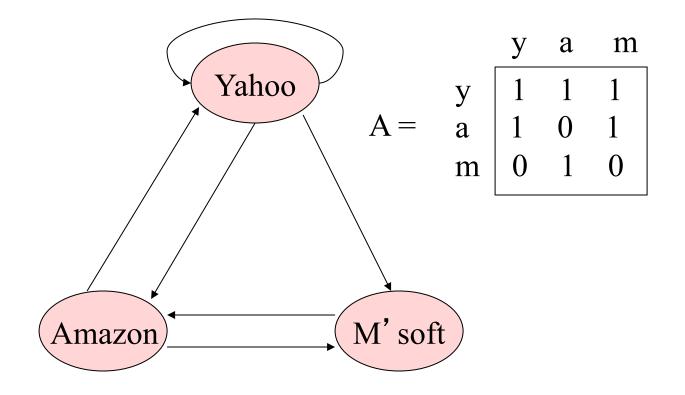
- Compute, for each page x in the base set, a <u>hub score</u> h(x) and an <u>authority score</u> a(x).
- Initialize: for all x, $h(x) \leftarrow 1$; $a(x) \leftarrow 1$;
- Iteratively update all h(x), a(x);
- After iterations


- \star output pages with highest *h()* scores as top hubs
- \star highest *a*(*)* scores as top authorities.

Iterative update

Repeat the following updates, for all *x*:

 $h(x) \leftarrow \sum_{x \mapsto y} a(y)$


 $a(x) \leftarrow \sum_{y \mapsto x} h(y)$

Transition Matrix A

- HITS uses a matrix A[i, j] = 1 if page *i* links to page *j*, 0 if not
- A^{T} , the transpose of A, is similar to the PageRank matrix M, but A^{T} has 1's where M has fractions

Example

Scaling

- To prevent the h() and a() values from getting too big, can scale down after each iteration.
- Scaling factor doesn't really matter:
 - \star we only care about the *relative* values of the scores.

Hub and Authority Equations

The hub score of page P is proportional to the sum of the authority scores of the pages it links to

\star h = λAa

- \star Constant λ is a scale factor
- The authority score of page P is proportional to the sum of the hub scores of the pages it is linked from

 \star **a** = μA^T **h**

 \star Constant μ is scale factor

Iterative algorithm

- Initialize **h**, **a** to all 1's
- h = Aa
- Scale **h** so that its max entry is 1.0
- a = A^Th
- Scale **a** so that its max entry is 1.0
- Continue until **h**, **a** converge

Example

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Existence and Uniqueness

- h = λAa a = μA^T h h = λ μAA^T h
- $\mathbf{a} = \lambda \mu A^T A \mathbf{a}$

Under reasonable assumptions about **A**, the dual iterative algorithm converges to vectors \mathbf{h}^* and \mathbf{a}^* such that:

- h^* is the principal eigenvector of the matrix AA^T
- a^* is the principal eigenvector of the matrix $A^T A$

How many iterations?

- Claim: relative values of scores will converge after a few iterations:
 - \star In fact, suitably scaled, h() and a() scores settle into a steady state!
- We only require the <u>relative orders</u> of the h() and a() scores not their absolute values.
- In practice, ~5 iterations get you close to stability.

Japan Elementary Schools

Hubs

- schools
- LINK Page-13
- "ú–{,ÌŠw Z
- a‰, ¬Šw Zfz [f fy [fW
- 100 Schools Home Pages (English)
- K-12 from Japan 10/...rnet and Education)
- http://www...iglobe.ne.jp/~IKESAN
- ,I,f,j ¬Šw Z,U"N,P 'g•¨Œê
- ÒŠ—'¬—§ ÒŠ—"Œ ¬Šw Z
- Koulutus ja oppilaitokset
- TOYODA HOMEPAGE
- Education
- Cay's Homepage(Japanese)
- -y"ì ¬Šw Z,Ìfz [f fy [fW]
- UNIVERSITY
- ‰J—³ ¬Šw Z DRAGON97-TOP
- ‰ª ¬Šw Z,T"N,P'gfz [f fy [fW
- ¶µ°é¼ÂÁ©¥á¥Ë¥åi¼¥á¥Ë¥åi¼

Authorities

- The American School in Japan
- The Link Page
- ‰^a è s—§^ä"c ¬Šw Zfz [f fy [fW
- Kids' Space
- ^À é s—§^À é ¼•" ¬Šw Z
- <{ é<³^ç'åŠw• '® ¬Šw Z
- KEIMEI GAKUEN Home Page (Japanese)
- Shiranuma Home Page
- fuzoku-es.fukui-u.ac.jp
- welcome to Miasa E&J school
- _"Þ ìŒ§ E‰j•l s—§'† ì ¼ ¬Šw Z,Ìfy
- http://www...p/~m_maru/index.html
- fukui haruyama-es HomePage
- Torisu primary school
- goo goo
- Yakumo Elementary,Hokkaido,Japan
- FUZOKU Home Page
- Kamishibun Elementary School...

Things to note

Pulled together good pages regardless of language of page content.

Use *only* link analysis <u>after</u> base set assembled

 \star iterative scoring is query-independent.

Iterative computation <u>after</u> text index retrieval - significant overhead.

Kleinberg's algorithm - results

Eg., for the query 'java':

0.328 www.gamelan.com

0.251 java.sun.com

0.190 www.digitalfocus.com ("the java developer")

Kleinberg's algorithm - discussion

• 'authority' score can be used to find 'similar pages' to page p

closely related to 'citation analysis', social networks / 'small world' phenomena

Page Rank and HITS

Page Rank and HITS are two solutions to the same problem

- \star What is the value of an inlink from S to D?
- In the page rank model, the value of the link depends on the links into S
- In the HITS model, it depends on the value of the other links out of S
- The destinies of Page Rank and HITS post-1998 were very different

Web Spam

- Search has become the default gateway to the web
 - Very high premium to appear on the first page of search results
 - \star e.g., e-commerce sites
 - \star advertising-driven sites

The trouble with paid search ads ...

It costs money. What's the alternative?

Search Engine Optimization:

- * "Tuning" your web page to rank highly in the algorithmic search results for select keywords
- ★ Alternative to paying for placement
- \star Thus, intrinsically a marketing function
- Performed by companies, webmasters and consultants ("Search engine optimizers" or SEO) for their clients
 - Some perfectly legitimate, some very shady

Most Expensive Keywords

http://www.wordstream.com/download/docs/most-expensivekeywords.pdf

What is web spam?

- Spamming = any deliberate action solely in order to boost a web page's position in search engine results, incommensurate with page's real value
- Spam = web pages that are the result of spamming
- This is a very broad definition

★ SEO industry might disagree!

Some estimated that 60% of all web pages are spam

Search engine optimization (Spam)

Motives

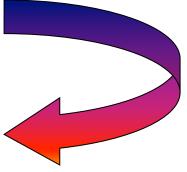
★ Commercial, political, religious, lobbies

★ Promotion funded by advertising budget

Operators

★ Contractors (Search Engine Optimizers) for lobbies, companies

- ★ Web masters
- ★ Hosting services

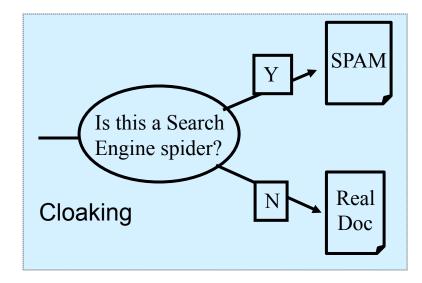

Forums

- ★ E.g., Web master world (<u>www.webmasterworld.com</u>)
 - ✓ Search engine specific tricks
 - ✓ Discussions about academic papers ☺

Simplest forms

- First generation engines relied heavily on tf/idf
 - The top-ranked pages for the query maui resort were the ones containing the most maui's and resort's
- SEOs responded with dense repetitions of chosen terms
 - ★ e.g., maui resort maui resort maui resort
 - ★ Often, the repetitions would be in the same color as the background of the web page
 - Repeated terms got indexed by crawlers
 - ✓ But not visible to humans on browsers

Pure word density cannot be trusted as an IR signal


Variants of keyword stuffing

Misleading meta-tags, excessive repetition
 Hidden text with colors, style sheet tricks, etc.

Meta-Tags = "... London hotels, hotel, holiday inn, hilton, discount, booking, reservation, sex, mp3, britney spears, viagra, ..."

Cloaking

Serve fake content to search engine spider

More Spamming Techniques

Term Spamming

★ Repetition

✓ of one or a few specific terms e.g., free, cheap, viagra

✓ Goal is to subvert TF.IDF ranking schemes

★ Dumping

✓ of a large number of unrelated terms

✓ e.g., copy entire dictionaries

★ Weaving

 Copy legitimate pages and insert spam terms at random positions

★ Phrase Stitching

Glue together sentences and phrases from different sources

Link Spamming

Term spam targets

- Body of web page
- Title
- URL
- HTML meta tags
- Anchor text

More on spam

- Web search engines have policies on SEO practices they tolerate/block
 - ★ <u>http://help.yahoo.com/kb/index?</u> page=answers&startover=y&y=PROD&source=content.landi ng_search&locale=en_US&question_box=SEO
 - ★ <u>http://www.google.com/intl/en/webmasters/</u>
- Adversarial IR: the unending (technical) battle between SEO's and web search engines
- Research <u>http://airweb.cse.lehigh.edu/</u>

Web Spam Taxonomy

- We follow the treatment by Gyongyi and Garcia-Molina [2004]
- Boosting techniques
 - ★ Techniques for achieving high relevance/importance for a web page
- Hiding techniques
 - \star Techniques to hide the use of boosting
 - ✓ From humans and web crawlers

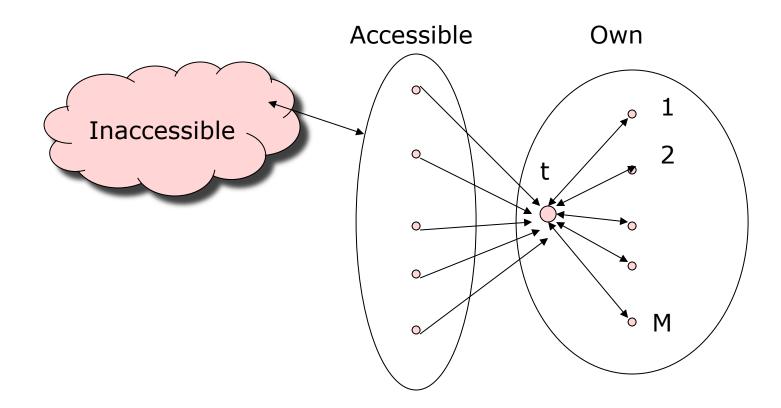
Boosting techniques

Term spamming

- ★ We have already seen term spamming earlier
- ★ Manipulating the text of web pages in order to appear relevant to queries

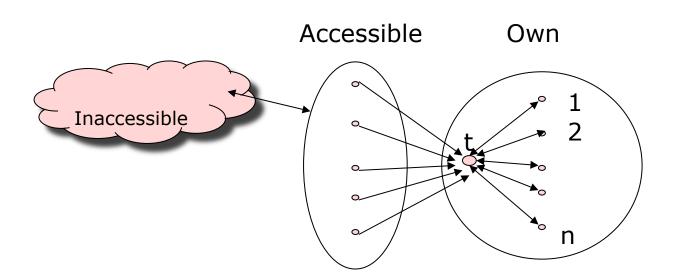
Link spamming

★ Creating link structures that boost page rank or hubs and authorities scores

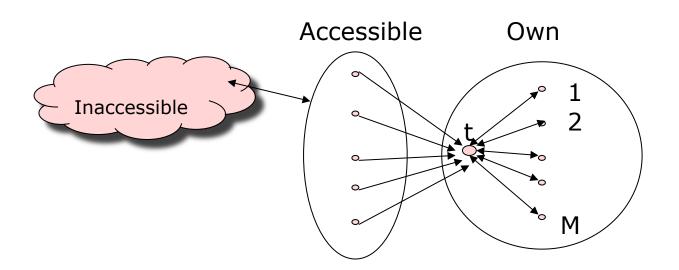

Link spam

- Three kinds of web pages from a spammer's point of view
 - ★ Inaccessible pages
 - ★ Accessible pages
 - ✓ e.g., web log comments pages
 - ✓ spammer can post links to his pages
 - ★ Own pages
 - Completely controlled by spammer
 - ✓ May span multiple domain names

Link Farms


- Spammer's goal
 - ★ Maximize the page rank of target page t
- Technique
 - Get as many links from accessible pages as possible to target page t
 - ★ Construct "link farm" to get page rank multiplier effect

Link Farms


One of the most common and effective organizations for a link farm

Analysis

Suppose rank contributed by accessible pages = x Let page rank of target page = y Rank of each "farm" page = by/n + (1-b)/N $y = x + \beta(n[by/n + (1-b)/N]) + (1-b)/N$ Very small; ignore $= x + b^2y + b(1-b)n/N + (1-b)/N$ $y = x/(1-b^2) + cn/N$ where $c = \beta/(1+\beta)$

Analysis

y =
$$x/(1-b^2) + cM/N$$
 where $c = \beta/(1+\beta)$

For b = 0.85, $1/(1-b^2) = 3.6$

★ Multiplier effect for "acquired" page rank

 \star By making M large, we can make y as large as we want

Hiding techniques

Content hiding

★ Use same color for text and page background

Cloaking

★ Return different page to crawlers and browsers

- Redirection
 - \star Alternative to cloaking
 - ★ Redirects are followed by browsers but not crawlers

Detecting Spam

Term spamming

- ★ Analyze text using statistical methods e.g., Naïve Bayes classifiers
- ★ Similar to email spam filtering
- ★ Also useful: detecting approximate duplicate pages

Link spamming

- ★ Open research area
- ★ One approach: TrustRank

TrustRank idea

- Basic principle: approximate isolation
 - ★ It is rare for a "good" page to point to a "bad" (spam) page
- Sample a set of "seed pages" from the web
- Have an oracle (human) identify the good pages and the spam pages in the seed set
 - ★ Expensive task, so must make seed set as small as possible

Trust Propagation

- Call the subset of seed pages that are identified as "good" the "trusted pages"
- Set trust of each trusted page to 1
- Propagate trust through links
 - ★ Each page gets a trust value between 0 and 1
 - ★ Use a threshold value and mark all pages below the trust threshold as spam

Rules for trust propagation

Trust attenuation

★ The degree of trust conferred by a trusted page decreases with distance

Trust splitting

- ★ The larger the number of outlinks from a page, the less scrutiny the page author gives each outlink
- ★ Trust is "split" across outlinks

Simple model

- Suppose trust of page p is t(p)
 - ★ Set of outlinks O(p)
- For each q in O(p), p confers the trust
 - **★** $\beta t(p)/IO(p)I$ for 0< β <1
- Trust is additive
 - ★ Trust of p is the sum of the trust conferred on p by all its inlinked pages
- Note similarity to Topic-Specific Page Rank
 - Within a scaling factor, trust rank = biased page rank with trusted pages as teleport set

Picking the seed set

Two conflicting considerations

- ★ Human has to inspect each seed page, so seed set must be as small as possible
- ★ Must ensure every "good page" gets adequate trust rank, so need make all good pages reachable from seed set by short paths

Approaches to picking seed set

- Suppose we want to pick a seed set of k pages
 - PageRank
 - \star Pick the top k pages by page rank
 - ★ Assume high page rank pages are close to other highly ranked pages
 - ★ We care more about high page rank "good" pages

Inverse page rank

- Pick the pages with the maximum number of outlinks
 - Can make it recursive
 - ★ Pick pages that link to pages with many outlinks
- Formalize as "inverse page rank"
 - ★ Construct graph G' by reversing each edge in web graph G
 - ★ Page Rank in G' is inverse page rank in G
- Pick top k pages by inverse page rank

Spam Mass

- In the TrustRank model, we start with good pages and propagate trust
- Complementary view: what fraction of a page's page rank comes from "spam" pages?
- In practice, we don't know all the spam pages, so we need to estimate

Spam mass estimation

r(p) = page rank of page p $r^+(p) = page rank of p with teleport into "good" pages only$ $r^-(p) = r(p) - r^+(p)$ Spam mass of $p = r^-(p)/r(p)$

Good pages

- For spam mass, we need a large set of "good" pages
 - Need not be as careful about quality of individual pages as with TrustRank
- One reasonable approach
 - \star .edu sites
 - ★ .gov sites
 - \star .mil sites

Reading

Ch. 21 Link Analysis from Information Retrieval: <u>http://nlp.stanford.edu/IR-book/pdf/21link.pdf</u>

(Optional) Original papers if you are interested:

- Brin, S. and L. Page (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.
- Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. J. ACM 46, 5.
- Gyongyi, Z., Berkhin, P., Garcia-Molina, H., and Pedersen, J. 2006. Link spam detection based on mass estimation. In *Proceedings of the 32nd international Conference on Very Large Data Bases*