Mining Time Series Data 3

Acknowledgements: Eamonn Keogh, Mueen Abdullah

Similarity Search On Large Datasets

- High I/O costs a challenge
- Utilize an index to speed up similarity search
- High dimensionality of time series makes indexing a challenge
- Generic framework
- Map the data to a reduced representation
- Obtain a candidate set in the reduced space
- Verify results in the native representation
- Efficiency and effectiveness affected by characteristics of the reduced representation

Classic SAX

- Symbolic Aggregate approXimation (SAX)
- (1) Represent a time series T of length \boldsymbol{n} in \boldsymbol{w}-dimensional space using Piecewise Aggregate Approximation (PAA)
- T typically normalized to $\mu=0, \sigma=1$
- $\operatorname{PAA}(T, w)=\bar{T}=\bar{t}_{1}, \ldots, \bar{t}_{w}$ where

$$
\bar{t}_{i}=\frac{w}{n} \sum_{j=\frac{w}{w}}^{\frac{n_{i}}{w_{i}}} T_{j}
$$

- (2) Discretize into a vector of symbols
- Breakpoints map to a small alphabet a of symbols

CIASSIC A (cont.)

> SAX lower bounds Euclidean distance
> Why not just index using SAX?
> Example: index 1,000,000 time series using SAX
> Choose SAX parameters
> Symbol cardinality $=8$, wordlength $=4$
$>8^{4}=4,096$ possible SAX word labels
> Place time series which map to the same label in the same file on disk
> Compute label for query and retrieve matching file
> Time series in file likely to be good approximate matches
> Average label occupancy $1,000,000 / 4,096=\sim 244$ (reasonable)

Classic SAX (cont.)

- In practice, the distribution of time series to SAX word labels is not uniform and is highly skewed!
- Empty
- Disproportionate percentage of the dataset
- Ideal condition: We want to give a threshold th, and have the number of entries n mapped to a label to be $1 \leq n \leq t h$
- Favor larger n
- How can we achieve this? We need to make SAX more flexible

iSAX Representation

- SAX uses a single hard-coded cardinality
- Unable to differentiate only on dimensions of interest
- The indexing problem can be solved if we extend SAX to allow:
- Different cardinalities within a single word - Comparison of words with different cardinalities
- This extension is called indexable SAX (iSAX)

iSAX Representation (cont.)

- Multi-resolution property allows conversion to any lower resolution that differs by a power of two

- Lower bounding distance between iSAX words enforced through examination of both sets of breakpoints
- iSAX offers a bit aware, quantized, multi-resolution representation with variable granularity

Comparing Different Cardinality

- $\operatorname{iSAX}(T, 4,8)=T^{8}=\{110,110,011,000\}$
- $\operatorname{iSAX}(\mathrm{S}, 4,2)=\mathrm{S}^{2}=\{0,0,1,1\}$
- How do we compare T and S?
- Promoting S^{2} word as $S^{8}=\left\{0^{* *}, 0^{* *}, 1^{* *}, 1^{* *}\right\}$
- For each unknown bit S^{k},

IF $\mathrm{S}^{\mathrm{k} i}$ forms a prefix for $\mathrm{T}^{8 i}$ THEN, ${ }^{*} \mathrm{i}=\mathrm{T}^{8} \mathrm{i}$ for all unknown bits
ELSE IF ${ }^{k_{i}}$ is lexicographically smaller than corresponding bits in $\mathrm{T}^{8} \mathrm{i}$, THEN,
*i = 1 for all unknown bits
ELSE
*i $=0$ for all unknown bits

Indexing with iSAX

- Split a set of time series represented by a common iSAX word into mutually exclusive subsets (multiresolution property / examining more bits):
- Increase cardinality along dimensions d, word length $\boldsymbol{w}, 1 \leq \boldsymbol{d} \leq \boldsymbol{w}$
- Fan-out rate bound by 2^{d}
- Iterative doubling
- Alignment of breakpoints overlap
- Allows for index structures which are hierarchical, with non-overlapping regions, and a controlled fan-out rate

Indexing with iSAX (cont.)

- Demonstrate using simple tree-based index
- (base cardinality \boldsymbol{b} (optional), word length \boldsymbol{w}, threshold $\boldsymbol{t h}$)
- Hierarchically subdivides SAX space until num. entries $\leq \boldsymbol{t h}$
- Approximate Search
- Match iSAX representation at each level
- Exact Search
- Leverage approximate search
- Prune search space
- Lower bounding distance

Indexing with iSAX (cont.)

- MinDist function for query time series T
- Let $T_{\text {PAA }}$ be the PAA representation of time series $T, S_{i S A X}$ be the iSAX representation of time series S
- Recall the $j^{\text {th }}$ cardinal value of $\mathrm{S}_{\text {iSAX }}$ derives from a PAA value, v between two breakpoints $\beta_{L,} \beta_{U,} \beta_{L}<v \leq \beta_{U}, 1 \leq j \leq w$
MINDIST_PAA_iSAX $\left(T_{\text {PAA }}, S_{i S A X}\right)=\sqrt{\frac{n}{w}} \sqrt{\sum_{i=1}^{w}\left\{\begin{array}{c}\left(\beta_{L i}-T_{P_{A A i} i}\right)^{2} \text { if } \beta_{L i}>T_{P_{\text {PAi }}} \\ \left(\beta_{U i}-T_{P A 4 i} i f\right. \\ 0 \text { if } \beta_{U i}<T_{P_{A A i}} \\ 0 \text { otherwise }\end{array}\right.}$

Tightness of Lower Bounds

$$
T L B=\frac{\text { LowerBoundDist }\left(T^{\prime}, S^{\prime}\right)}{\operatorname{EuclideanDist}(T, S)}
$$

- For a given dataset
- Time series length [480, 960, 1440, 1920]
- Bytes available for representation [16, 24, 32, 40]
- Results similar across thirty datasets

Tightness of Lower Bounds (cont.)

- Competitive even if naïvely encoded to precision of real-valued counterparts

Indexing Performance

- Indexed random walk datasets of [1, 2, 4, 8] million time series of length $256(b=4, w=8, t h=100)$
- Approximate Search (1000 queries):

- Exact Search (100 queries):

Avg. Time/Query (min)					
	$\mathbf{1 M}$	$\mathbf{2 M}$	$\mathbf{4 M}$	$\mathbf{8 M}$	
Exact Search	3.8	5.8	9.0	14.1	
Sequential Scan	71.5	104.8	168.8	297.6	

Avg. Disk Accesses/Query				
	$\mathbf{1 M}$	$\mathbf{2 M}$	$\mathbf{4 M}$	$\mathbf{8 M}$
Exact Search	2115.3	3172.5	4925.3	7719.1
Sequential Scan	39255	57365	92209	162340

Approximate Search Quality

- To evaluate the quality of approximate search
- Indexed ~10M time series of length 256
- 100 random queries
- Given: Query Q, True Nearest Neighbor T, Approximate Result A
- Distance Ratio = EuclideanDist(Q,T) / EuclideanDist(Q,A)

Approximate Search Quality (cont.)

- Visually examine the lower median of distance ratios (0.907)

Classification in Time Series

Which class does

belong to?

Classification in Time Series

- 1-Nearest Neighbor classification is one of the most common
- It's frequently used to compare the quality of time series representations or distance measures

Dynamic Time Warping (DTW)

Euclidean Distance
One-to-one alignments

© Chotirat "Ann" Ratanamahatana
Eamonn Keogh

Global Constraints (I)

© Chotirat "Ann" Sakoe-Chiba Band Eamonn Keoah

Global Constraints (II)

A Global Constraint for a sequence of size m is defined by R , where $R_{i}=d \quad 0 \leq d \leq m, l \leq i \leq m$.
R_{i} defines a freedom of warping above and to the right of the diagonal at any given point i in the sequence.

© Chotirat "Ann" Ratanamahatana
Eamonn Keogh

Is Wider the Band, the Better?

Euclidean distance $=2.4836$

© Chotirat "Ann" Ratanamahatana Eamonn Keogh

DTW dist $=1.0204$

DTW dist $=1.0204$

Wider Isn’t Always Better

Most accuracies peak at smaller window size

Larger warping window is not always a good thing.
© Chotirat "Ann" Ratanamahatana
Eamonn Keogh

Ratanamahatana-Keogh Band (R-K Band)

Solution: Create an arbitrary shape and size of the band that is appropriate for the data we want to classify.
© Chotirat "Ann" Ratanamahatana
Eamonn Keogh

How Many Bands Do We Need?

- Of course, we could use ONE same band to classify all the classes, as almost all of the researchers do.
- But...the width of the band does depend on the characteristic of the data within each class. Having one single band for classification is unlikely to generalize.
- Proposed solution:

Create an arbitrary band ($R-K$ band) for each class and use it accordingly for classification.

How Do We Create an R-K Band?

First Attempt: We could look at the data and manually create the shape of the bands.
(then we need to adjust the width of each band as well until we get a good result)

Learning an R-K Band Automatically

Our heuristic search algorithm automatically learns the bands from the data. (sometimes, we can even get an unintuitive shape that give a good result.)

R-K Band Learning With Heuristic Search

Clustering on Time Series

- Similarly, a lot of work are about:
- Choosing the right representation, and/or
- Choosing the right distance measure
- Then use existing clustering algorithms such as k-means or hierarchical clustering algorithms
- Some ad-hoc time series clustering algorithms have been proposed

Time Series Clustering

Whole Clustering: The notion of clustering here is similar to that of conventional clustering of discrete objects. Given a set of individual time series data, the objective is to group similar time series into the same cluster.

Subsequence Clustering: Given a single time series, individual time series (subsequences) are extracted with a sliding window. Clustering is then performed on the extracted time series.

Whole Clustering

Whole Clustering: The notion of clustering here is similar to that of conventional clustering of discrete objects. Given a set of individual time series data, the objective is to group similar time series into the same cluster.

Whole Clustering

Clustering Data:

Final centers found by K-Means

Subsequence Clustering (STS)

Subsequence Clustering: Given a single time series, individual time series (subsequences) are extracted with a sliding window. Clustering is then performed on the extracted time series.

Note: There may be other ways to define subsequence clustering, we are making no claim about any such definitions.

Why do Subsequence Clustering?

- Finding association rules in time series
- Anomaly detection in time series
- Indexing of time series
- Classifying time series
- Clustering of streaming time series has also been proposed as a knowledge discovery tool in its own right.

However..

Subsequence clustering is meaningless!

What Does it Mean to be Meaningless?

- An algorithm is meaningless if its output is independent of its input.
- With the exception of random number generators, meaningless algorithms are useless.

Example of Meaningful Clustering

Example of Meaningless Clustering

Let's take a look at the cluster centers created by subsequence clustering:

For subsequence clustering, no matter what the input, the output is a set of (out of phase) sine waves!

Whole Clustering:

Subsequence Clustering:

Cluster Centers

Cluster Centers

Why Sine Waves?

Slutsky' s Theorem (informally stated)
Any time series will converge to a sine wave after repeated applications of moving window smoothing

What If We Increase the Step Size?

What If We Increase the Step Size?

A Hidden Constraint

Fact: For any dataset, the weighted (by cluster membership) average of k clusters must sum up to the global mean.

Trivial Matches

- Trivial Match: Given a subsequence C beginning at position p, a matching subsequence M beginning at q, and a distance R, we say that M is a trivial match to C of order R, if either $p=$ q or there does not exist a subsequence M^{\prime} beginning at q^{\prime} such that $D\left(C, M^{\prime}\right)>R$, and either $q<q^{\prime}<p$ or $p<q^{\prime}<q$.

Trivial Matches

- Different subsequences have different numbers of trivial matches

Necessary Conditions

- For a STS clustering algorithm to discover k patterns:
- The weighted mean of the patterns must sum to a horizontal line
- Each of the k patterns must have approximately equal numbers of trivial matches

(Not) Finding rules in time series

The basic idea:

- Do STS clustering on a single time series.
- Give the cluster centers discrete labels (pattern 1, pattern 2 etc).
- Run a classic association rule algorithm on the discrete labels, with some temporal constraints.

> "if we see pattern 17, then we can expect to see within 20 time units, pattern $27 . "$

Das et. al.
Rule discovery from time series. (1998). In Proc. of the $4^{\text {th }}$ KDD

(Not) Finding rules in time series

G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery from time series. (1998). In Proc. of the $4^{\text {th }}$ KDD

Extended by:

- Mori, T. \& Uehara, K. (2001). Extraction of Primitive Motion and Discovery of Association Rules from Human Motion.
- Cotofrei, P. \& Stoffel, K (2002). Classification Rules + Time = Temporal Rules.
- Fu, T. C., Chung, F. L., Ng, V. \& Luk, R. (2001). Pattern Discovery from Stock Time Series Using Self-Organizing Maps.
- Harms, S. K., Deogun, J. \& Tadesse, T. (2002). Discovering Sequential Association Rules with Constraints and Time Lags in Multiple Sequences.
- Hetland, M. L. \& Sætrom, P. (2002). Temporal Rules Discovery Using Genetic Programming and Specialized Hardware.
- Jin, X., Lu, Y. \& Shi, C. (2002). Distribution Discovery: Local Analysis of Temporal Rules.
- Yairi, T., Kato, Y. \& Hori, K. (2001). Fault Detection by Mining Association Rules in Housekeeping Data.
- Tino, P., Schittenkopf, C. \& Dorffner, G. (2000). Temporal Pattern Recognition in Noisy Nonstationary Time Series Based on Quantization into Symbolic Streams.
- and many more

A Simple Experiment...

(a)

(b)

w	d	Rule	Sup \%	Conf \%	J-Mea.	Fig
20	5.5	$7 \Rightarrow^{15} 8$	8.3	73.0	0.0036	(a)
30	5.5	$18 \Rightarrow^{20} 21$	1.3	62.7	0.0039	(b)

"if stock rises then falls greatly, follow a smaller rise, then we can expect to see within 20 time units, a pattern of rapid decrease followed by a leveling out."

(a)

(b)

w	d	Rule	Sup \%	Conf \%	J-Mea	Fig
20	5.5	$11 \Rightarrow^{15} 3$	6.9	71.2	0.0042	(a)
30	5.5	$24 \Rightarrow^{20} 19$	2.1	74.7	0.0035	(b)

Our reimplementation
The punch line is...

Finding order in randomness?!

What we are NOT Claiming

- Clustering of time series is meaningless
- Sliding windows is always a bad thing
- Clustering of discrete sequences with sliding windows is flawed
- People are deliberately publishing results that they know are meaningless

Is There Another Way?

- The problem with STS clustering is that every subsequence is considered.
- If we want to find true patterns, we need to consider only the subsequences that matter.
- Chicken \& Egg problem?!

A Tentative Solution: Motif-based Clustering

- Time Series Motifs!!
- Frequently re-occurring patterns.
- Find m-motifs ($\mathrm{m} \gg \mathrm{k}$)

Lin, J., Keogh, E., Patel, P. \& Lonardi, S. (2002). Finding Motifs in Time Series. In the 2nd Workshop on Temporal Data Mining, at the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Alberta, Canada. July 23-26, 2002.

Chiu, B. Keogh, E., \& Lonardi, S. (2003). Probabilistic Discovery of Time Series Motifs. In the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 24-27, 2003. Washington, DC, USA.

Time Series Motif Discovery

Time Series Motif Discovery (finding repeated patterns)

Are there any repeated patterns, of about this length - in the above time series?

Time Series Motif Discovery (finding repeated patterns)

Time Series Motif Discovery (finding repeated patterns)

To find these 3 motifs would require about 6,250,000 calls to the Euclidean Distance function!

Why Find Motifs?

- Mining association rules in time series requires the discovery of motifs. These are referred to as primitive shapes and frequent patterns.
- Several time series classification algorithms work by constructing typical prototypes of each class. These prototypes may be considered motifs.
- Many time series anomaly/interestingness detection algorithms essentially consist of modeling normal behavior with a set of typical shapes (which we see as motifs), and detecting future patterns that are dissimilar to all typical shapes.
- In robotics, Oates et al., have introduced a method to allow an autonomous agent to generalize from a set of qualitatively different experiences gleaned from sensors. We see these "experiences" as motifs.
- In medical data mining, Caraca-Valente and Lopez-Chavarrias have introduced a method for characterizing a physiotherapy patient's recovery based of the discovery of similar patterns. Once again, we see these "similar patterns" as motifs.
- Animation and video capture... (Tanaka and Uehara, Zordan and Celly)

Definition 1. Match: Given a positive real number R (called range) and a time series T containing a subsequence C beginning at position p and a subsequence M beginning at q, if $D(C, M) \leq R$, then M is called a matching subsequence of C.

Definition 2. Trivial Match: Given a time series T, containing a subsequence C beginning at position p and a matching subsequence M beginning at q, we say that M is a trivial match to C if either $p=q$ or there does not exist a subsequence M^{\prime} beginning at q^{\prime} such that $D\left(C, M^{\prime}\right)$ $>R$, and either $q<q^{\prime}<p$ or $p<q^{\prime}<q$.

Definition 3. K-Motif(n, R): Given a time series T, a subsequence length n and a range R, the most significant motif in T (hereafter called the $1-\operatorname{Motif}(n, R)$) is the subsequence C_{1} that has highest count of non-trivial matches (ties are broken by choosing the motif whose matches have the lower variance). The $K^{\text {th }}$ most significant motif in T (hereafter called the K $\operatorname{Motif}(n, R))$ is the subsequence C_{K} that has the highest count of non-trivial matches, and satisfies $D\left(C_{K}, C_{i}\right)>2 R$, for all $1 \leq i<K$.

A simple worked example of the motif discovery algorithm

Assume that we have a time series T of length 1,000, and a motif of length 16, which occurs twice, at time T_{1} and time T_{58}.

We can build a hash table, keyed on the SAX words

A mask $\{1,2\}$ was randomly chosen, so the values in columns $\{1,2\}$ were used to project matrix into buckets.

Collisions are recorded by incrementing the appropriate location in the collision matrix

A mask $\{2,4\}$ was randomly chosen, so the values in columns $\{2,4\}$ were used to project matrix into buckets

Once again, collisions are recorded by incrementing the appropriate location in the collision matrix

A Simple Experiment

Let us imbed two motifs into a random walk time series, and see if we can recover them

Planted Motifs

Some Examples of Real Motifs

Astrophysics (Photon Count)

Finding Time Series Motifs on Disk-Resident Data

Abdullah Mueen, Dr. Eamonn Keogh

UC Riverside

Nima Bigdely-Shamlo
Swartz Center for Computational
Neuroscience, UCSD

Motif Discovery in Disk-Resident Datasets

- Large datasets
- Light Curves of Stars.
- Performance Counters of Data Centers.
- Pseudo time series dataset
- "80 million Tiny Images"
- Database of normalized subsequences
- An hour long trace of EEG generates over one million normalized subsequences.

11 comparisons are made instead of 9*16=144

Speedup

Memory	Disk	Algorithm	Largest Dataset Tested (thousands)	Time for the Largest Dataset	Estimated Time for 4.0 million
V	X	CompletelyInMemory	100	$\begin{gathered} 35 \\ \text { minutes } \end{gathered}$	$\begin{aligned} & 37.8 \\ & \text { days } \end{aligned}$
X	V	CompletelyInDisk	200	$\begin{aligned} & 1.50 \\ & \text { days } \end{aligned}$	$\begin{aligned} & 1.65 \\ & \text { years } \end{aligned}$
V	V	DAME	4,000	$\begin{array}{r} 1.35 \\ \text { days } \\ \hline \end{array}$	$\begin{array}{r} 1.35 \\ \text { days } \end{array}$
V	X	NoAdditionalStorage (normalization done in memory)	200	$\begin{aligned} & 4.82 \\ & \text { days } \\ & \hline \end{aligned}$	$\begin{gathered} 5.28 \\ \text { years } \end{gathered}$

Performance Evaluation

Case Study: Image Motifs

- Concatenated color histogram is considered as pseudo time series.
- Each time series is of length 256*3 $=768$.
- 80 million tiny images of 32X32 resolution.

80 million tiny images : collected by Antonio Torralba, Rob Fergus, William T. Freeman at MIT.

Case Study: Image Motifs

- DAME worked on the first 40 million time series in ~ 6.5 days
- DAME found 3,836,902 images which have at least one duplicate.
- 1,719,443 unique images.
- 542,603 images have near duplicates with distance less than 0.1.

Conclusion

- DAME: The first exact-motif discovery algorithm that finds motif in disk-resident data.
- DAME is scalable to massive datasets of the order of millions of time series.
- DAME successfully finds motif in EEG traces and image databases.

VizTree - Motivation

010110010111100110100100001000 101001101101011100001010101110 1111100011011011011111101001100 100100011010001111001101101000 101111000101101001101100110100 000010011000100111000001110100 1100101100001010010

10001000101001000101010100001 010100010101110111101011010010 111010010101001110101010100101 00101010111010101001010101011 010101001011001011101111010001 110000101000010011101010001110 0001010101100101110101

VizTree

010110010111100110100100001000101 001101101011100001010101110111110 001101101101111110100110010010001 101000111100110110100010111100010 110100110110011010000001001100010 011100000111010011001011000010100 10

10001000101001000101010100001010 100010101110111101011010010111010 010101001110101010100101001010101 110101010010101010110101010010110 010111011110100011100001010000100 111010100011100001010101100101110 101

Lets put the sequences into a depth limited suffix tree, such that the frequencies of all triplets are encoded in the thickness of
branches. ."humans usually try to fake randomness by alternating patterns"

VizTree

(http://www.cs.gmu.edu/~jessica/viztree.htm)

VizTree/ DiffTree

DiffTree

- Convert the two time series to SAX
- Push the data in a depth-limited suffix tree
- Encode the frequencies as the line thickness
- Encode the difference of
frequencies as the line color

Blue lines - pattern is more common in A Green lines - pattern is more common in B Red lines - pattern is equi-frequent in A and B

Grammar-Based Motif Discovery

Grammar Induction

- Most algorithms still suffer a limitation: the length of motif needs to be given.
- Grammar $=$ repeated patterns, repeated structure

Simple example of grammar from a string: Input string:

$$
11221112211122111221
$$

(Desired) Output Grammar:

$$
\begin{aligned}
& \mathrm{R} 0 \rightarrow \mathrm{R} 1 \mathrm{R} 1 \\
& \mathrm{R} 1 \rightarrow \mathrm{R} 2 \mathrm{R} 2 \\
& \mathrm{R} 2 \rightarrow 11221
\end{aligned}
$$

SEQUITUR

What is SEQUITUR?

- Introduced by Nevill-Manning and Witten, 1996
- Online, linear-time, grammar-based compression algorithm
- Infers a context-free grammar from a sequence of symbols
- Works by compressing repeated patterns of input string

Policies of SEQUITUR

- Digram uniqueness
- Rule utility

Example

Input string: abcdabc

Grammar
 $S \rightarrow a$

Digrams

Example

Input string: abcdabc

Grammar
 $S \rightarrow a b$

Digrams
ab

Example

Input string: abcdabc

Grammar
 $S \rightarrow$ abc

Digrams
ab
bc

Example

Input string: abcdabc

Grammar
$S \rightarrow$ abcd

Digrams
ab
bc
cd

Example

Input string: abcdabc

Grammar
$S \rightarrow$ abcda

Digrams
ab
bc
cd
da

Example

Input string: abcdabc

Grammar

$S \rightarrow$ abcdab

Enforcing digram uniqueness
ab occurs twice
Creating new rule $\mathrm{A} \rightarrow \mathrm{ab}$

Digrams
ab bc cd da

Example

Input string: abcdabc

Grammar

$S \rightarrow$ AcdA

$A \rightarrow a b$

Enforcing digram uniqueness
ab occurs twice
Creating new rule $\mathrm{A} \rightarrow \mathrm{ab}$

Digrams
ab
Ac
cd
dA

Example

Input string: abcdabc

Grammar

$S \rightarrow$ AcdAc
$A \rightarrow a b$

Enforcing digram uniqueness
Ac occurs twice
Creating new rule $B \rightarrow A c$

Digrams

ab
Ac
cd
dA

Example

Input string: abcdabc

Grammar
 $S \rightarrow B d B$
 $\mathrm{A} \rightarrow \mathrm{ab}$
 $B \rightarrow A c$

Enforcing digram uniqueness
Ac occurs twice
Creating new rule $B \rightarrow A c$

Example

Input string: abcdabc

Grammar
 $S \rightarrow B d B$
 $B \rightarrow$ abc

Digrams
ab
Ac
Bd
dB

Enforcing rule utility
A occurs only once
Removing $\mathrm{A} \rightarrow \mathrm{ab}$

There is a problem, however: time series are real-valued!

Solution: SAXify the data!

$$
\begin{aligned}
S & =\text { caa caa cab cac ccc caa caa caa cab... } \\
& =\text { caa }_{1} \operatorname{cab}_{3} \operatorname{cac}_{4} \operatorname{ccc}_{5} \operatorname{caa}_{6} \operatorname{cab}_{9}
\end{aligned}
$$

GrammarViz: Variable-Length Motif Discovery

Yuan Li, Jessica Lin, and Tim Oates. 2012. Visualizing variable-length time series motifs. In
Proceedings of the 2012 SIAM International Conference on Data Mining. Anaheim, CA. Apr 26-28.
Donoc Qan_ona

GrammarViz: Variable-Length Motif Discovery

Multivariate Motifs

Limitations

- Greedy algorithm
- Grammar found is not minimal!

Input string: (11112131131)4

Grammar Rule	Expanded Grammar Rule
R0 -> R1 R1 R2 R2 R2 R3 31	$\begin{aligned} & 1111213113111112131131111 \\ & 1213113111112131131 \end{aligned}$
R1-> 11	11
R2 \rightarrow R 3 R4 R1 1	21311311111
R3-> 21 R 4	21311
R4 $->3$ R1	311

Tree Search for Grammar Induction

- Trigrams: any three adjacent symbols
- A trigram is made of 2 digrams (e.g., "abc" can be parsed as a(bc) or (ab)c
- Keep track of all digrams, and (selectively) substitute repeating digrams with new symbols

11112131131

Tree Search for Grammar Induction

Input string: (11112131131)4

Grammar Rule	Expanded Grammar Rule
R0 \rightarrow R1 R1	1111213113111112131131
	1111213113111112131131
R1 \rightarrow R2 R2	1111213113111112131131
R2 \rightarrow R3 R3 213 R4	11112131131
R3 \rightarrow 1 1	11
R4 \rightarrow R3 3 1	1131

Motifs Discovery Challenges

How can we find motifs...

- Without having to specify the length/other parameters
- In massive datasets
- In streaming data
- While ignoring "background" motifs (ECG example)
- Under time warping, or uniform scaling
- While assessing their significance

:inding these 3 motifs requires about 6,250,000 calls to the Euclidean distance function

Anomaly (interestingness) detection

We would like to be able to discover surprising (unusual, interesting, anomalous) patterns in time series.

Note that we don' t know in advance in what way the time series might be surprising

Also note that "surprising" is very context dependent, application dependent, subjective etc.

Simple Approaches I

Simple Approaches II

Discrepancy Checking: Example

Early statistical detection of anthrax outbreaks by tracking over-thecounter medication sales

Goldenberg, Shmueli,
Caruana, and Fienberg

Actual value

Predicted value

The actual value is greater than the predicted value, but still less than the threshold, so no alarm is sounded.

Time Series Discord

(Keogh and Lin, 2005)

- Discord: subsequence that is least similar to other subsequences
- Applications:
- Anomaly detection
- Clustering
- Data cleaning

Image Discords

Image Discords

Shape Discord: Given a collection of shapes S, the shape D is the discord of S if D has the largest distance to its nearest match. That is, \forall shape C in S, the nearest match M_{C} of C and the nearest match M_{D} of $D, \operatorname{Dist}\left(D, M_{D}\right)>\operatorname{Dist}\left(C, M_{C}\right)$.

Discord Example

Cluster2

Background - Sliding Windows

- Use a sliding window to extract subsequences

Time Series Discords

- Subsequence C of length n is said to be the discord if C has the largest distance to its nearest non-self match.
- $\mathrm{K}^{\text {th }}$ Time Series Discord

Finding Discords: Brute-force

- [outer loop] For each subsequence in the time series, [inner loop] find the distance to its nearest match
- The subsequence that has the greatest such value is the discord (i.e. discord is the subsequence with the farthest nearestneighbor)
- $\mathrm{O}\left(\mathrm{m}^{2}\right)$

Finding Discords

```
Function [ dist, loc ] = Discord_Search(S)
best_so_far_dist = 0
best_so_far_loc = NaN
for p = 1 to size (S) // begin outer loop
    nearest_neighbor_dist = infinity
    for q = 1 to size (S) // begin inner loop
        if p!= q // Don't compare to self
            if RD(C
                nearest_neighbor_dist = RD(Cp, Cq}
            end
        end
    end // end inner loop
    if nearest_neighbor_dist > best_so_far_dist
        best_so_far_dist = nearest_neighbor_dist
        best_so_far_loc = p
    end
end // end outer loop
return [ best_so_far_dist, best_so_far_loc ]
```

0	2	4.2	1.1	2.3	8.5
2	0	3	3.2	3.5	8.2
4.2	3	0	1.2	9.2	9.7
1.1	3.2	1.2	0	0.1	7.5
2.3	3.5	9.2	0.1	0	7.6
8.5	8.8	9.7	7.5	7.6	0
1.1	2	1.2	0.1	0.1	7.5

The code says.. Find the smallest (non diagonal) value in each column, the largest of these is the discord

Finding Discords, Fast

```
Function [ dist, loc ] = Heuristic_Search(S, Outer, Inner )
best_so_far_dist = 0
best_so_far_loc = NaN
for each index p given by heuristic Outer // begin outer loop
    nearest_neighbor_dist = infinity
    for each index q given by heuristic Inner // begin inner loop
        if \(p!=q\)
        if \(\operatorname{RD}\left(\mathrm{C}_{\mathrm{p}}, \mathrm{C}_{\mathrm{q}}\right)\) < best_so_far_dist
            break // break out of inner loop
        end
        if \(R D\left(C_{p}, C_{q}\right)\) < nearest_neighbor_dist
            nearest_neighbor_dist \(=R D\left(C_{p}, C_{q}\right)\)
        end
        end
    end
                // end inner loop
    if nearest_neighbor_dist > best_so_far_dist
        best_so_far_dist = nearest_neighbor_dist
        best_so_far_loc = p
    end
end // end outer loop
return [ best_so_far_dist, best_so_far_loc ]
```

0	2	4.2	1.1	2.3	8.5
2	0	3	3.2	3.5	8.2
4.2	3	0	1.2	9.2	9.7
$\mathbf{1 . 1}$	3.2	$\mathbf{1 . 2}$	0	0.1	7.5
2.3	3.5	9.2	$\mathbf{0 . 1}$	0	7.6
8.5	8.8	9.7	7.5	7.6	0

The code now says... If while searching a given column, you find a distance less than nearest_neighbor_dist then that column cannot have the discord.

The code also uses heuristics to order the search...

Example

best-so-far = 5

Example

Example - Optimal Ordering

Example - Optimal Ordering

\longrightarrow best-so-far $=10$

The Magic Heuristics

- In the outer loop, visit the columns in order of the Discord score
- In the inner loop, visit the row cells in order of nearest neighbor first

0	$\mathbf{2}$	4.2	1.1	2.3	8.5
2	0	3	3.2	3.5	8.2
4.2	3	0	1.2	9.2	9.7
$\mathbf{1 . 1}$	3.2	$\mathbf{1 . 2}$	0	$\mathbf{0 . 1}$	7.5
2.3	3.5	9.2	$\mathbf{0 . 1}$	0	7.6
8.5	8.8	9.7	7.5	7.6	0

The Magic
Heuristics would reduce the time complexity from
$O\left(n^{2}\right)$ algorithm to
just $O(n)$!

The Magic Heuristics

- In the outer loop, visit the columns in order of the Discord score
- In the inner loop, visit the row cells in order of nearest neighbor first

0	2	4.2	1.1	2.3	8.5
2	0	3	3.2	3.5	8.2
4.2	3	0	1.2	9.2	9.7
1.1	3.2	1.2	0	0.1	7.5
2.3	3.5	9.2	0.1	0	7.6
8.5	8.8	9.7	7.5	7.6	0

Observations

- Visiting the columns in approximately order of the Discord score is still very helpful
- For the inner loop, we don't really need visit the rows in order of nearest neighbor first, so long as we find a "near enough" neighbor early on

> We can try to approximate Magic

Approximately Magic Heuristics

0	2	4.2	1.1	2.3	8.5
2	0	3	3.2	3.5	8.2
4.2	3	0	1.2	9.2	9.7
1.1	3.2	1.2	0	0.1	7.5
2.3	3.5	9.2	0.1	0	7.6
8.5	8.8	9.7	7.5	7.6	0

Rotation invariance

 ignored here

Time Series Discords

Power Demand

Sleep Cycles

Stage II sleep
Eyes closed, awake or stage I slee Eyes open, awake
500
1000
1500
2000

A time series showing a patients respiration (measured by thorax extension), as they wake up. A medical expert, Dr. J. Rittweger, manually segmented the data. The 1-discord is a very obvious deep breath taken as the patient opened their eyes. The 2-discord is much more subtle and impossible to see at this scale. A zoom-in suggests that Dr. J. Rittweger noticed a few shallow breaths that indicated the transition of sleeping stages.

[^0]
Discords in Medical Data

A cardiologist noted subtle anomalies in this dataset. Let us see if the discord algorithm can find them.

Discords in Space Shuttle Marotta Valve Series

Example One

Example Two

This discord is subtle, lets zoom in to see why it is a discord.

The time series is record mitdb/x_mitdb/x_108 from the PhysioNet Web Server (The local copy in the UCR archive is called mitdbx_mitdbx_108.txt). It is a two feature time series, here we are looking at just the MLII column.
Cardiologists from MIT have annotated the time series, here we have added colored makers to draw attention to those annotations.
Here we show the results of finding the top 3 discords on this dataset. We chose a length of 600 , because this a little longer than the average length of a single heartbeat.

Anomaly (interestingness) detection

In spite of the nice example in the previous slide, the anomaly detection problem is wide open.

How can we find interesting patterns...

- Without (or with very few) false positives...
- In truly massive datasets...
- In the face of concept drift...
- With human input/feedback...
- With annotated data...

Contrast-Set Mining

A motivating example: What differentiates German and Italian consumer electrical power demands?

[^0]: Institute for Physiology. Free University of Berlin. Data shows respiration (thorax extension), sampling rate 10 Hz .

