
Mining Time Series Data 3

Acknowledgements: Eamonn Keogh, Mueen Abdullah

Similarity Search On Large Datasets

•  High I/O costs a challenge
•  Utilize an index to speed up similarity search

–  High dimensionality of time series makes indexing a
challenge

•  Generic framework
–  Map the data to a reduced representation
–  Obtain a candidate set in the reduced space
–  Verify results in the native representation

•  Efficiency and effectiveness affected by

characteristics of the reduced representation

-3
-2
-1

0
1
2
3

4 8 12 16 0

00

01

10

11

iSAX(T,4,4)

-3
-2
-1

0
1
2
3

4 8 12 16 0 4 8 12 16 0

A time series T PAA(T,4)

-3
-2
-1

0
1
2
3

Classic SAX
•  Symbolic Aggregate approXimation (SAX)

–  (1) Represent a time series T of length n in w-dimensional space
using Piecewise Aggregate Approximation (PAA)

•  T typically normalized to µ = 0, σ = 1
•  PAA(T,w) = where

–  (2) Discretize into a vector of symbols
•  Breakpoints map to a small alphabet a of symbols

wttT ,,1 …=

∑
+−=

=
i

ij
jn

w
i

w
n

w
n

Tt
1)1(

Classic SAX (cont.)
"   SAX lower bounds Euclidean distance

"   Why not just index using SAX?

"   Example: index 1,000,000 time series using SAX

"   Choose SAX parameters
"   Symbol cardinality = 8, wordlength = 4
"   84 = 4,096 possible SAX word labels

"   Place time series which map to the same label in the same file
on disk

"   Compute label for query and retrieve matching file
"   Time series in file likely to be good approximate matches

"   Average label occupancy 1,000,000/4,096 = ~244 (reasonable)

Classic SAX (cont.)
•  In practice, the distribution of time series to SAX

word labels is not uniform and is highly skewed!
–  Empty
–  Disproportionate percentage of the dataset

•  Ideal condition: We want to give a threshold th, and
have the number of entries n mapped to a label to
be 1 ≤ n ≤ th
–  Favor larger n

•  How can we achieve this? We need to make SAX
more flexible

iSAX Representation

•  SAX uses a single hard-coded cardinality
– Unable to differentiate only on dimensions of

interest
•  The indexing problem can be solved if we

extend SAX to allow:
– Different cardinalities within a single word
– Comparison of words with different

cardinalities
•  This extension is called indexable SAX

(iSAX)

iSAX Representation (cont.)
•  Multi-resolution property allows conversion to any lower

resolution that differs by a power of two

•  Lower bounding distance between iSAX words enforced
through examination of both sets of breakpoints

•  iSAX offers a bit aware, quantized, multi-resolution
representation with variable granularity

= { 6, 6, 3, 0} = {110 ,110 ,011 ,000}

= { 3, 3, 1, 0} = {11 ,11 ,01 ,00 }

= { 1, 1, 0, 0} = {1 ,1 ,0 ,0 }

Comparing Different Cardinality
•  iSAX(T, 4, 8) = T8 = {110, 110, 011, 000}
•  iSAX(S, 4, 2) = S2 = {0 , 0 , 1 , 1 }
•  How do we compare T and S?

– Promoting S2 word as S8 = {0**, 0**, 1**, 1**}
– For each unknown bit Ski,

 IF Ski forms a prefix for T8i THEN,
 *i = T8i for all unknown bits

 ELSE IF Ski is lexicographically smaller than
corresponding bits in T8i, THEN,

 *i = 1 for all unknown bits
 ELSE

 *i = 0 for all unknown bits

Indexing with iSAX
•  Split a set of time series represented by a common

iSAX word into mutually exclusive subsets (multi-
resolution property / examining more bits):

–  Increase cardinality along dimensions d, word length

w, 1 ≤ d ≤ w
–  Fan-out rate bound by 2d

•  Iterative doubling

–  Alignment of breakpoints overlap

•  Allows for index structures which are hierarchical, with
non-overlapping regions, and a controlled fan-out rate

Indexing with iSAX (cont.)
•  Demonstrate using simple tree-based index

–  (base cardinality b (optional), word length w, threshold th)
–  Hierarchically subdivides SAX space until num. entries ≤ th

•  Approximate Search

–  Match iSAX representation at each level

•  Exact Search
–  Leverage approximate search
–  Prune search space

•  Lower bounding distance

11

Indexing with iSAX (cont.)
•  MinDist function for query time series T

–  Let TPAA be the PAA representation of time series T, SiSAX be
the iSAX representation of time series S

–  Recall the jth cardinal value of SiSAX derives from a PAA
value, v between two breakpoints βL, βU, βL < v ≤ βU, 1 ≤ j ≤ w

 MINDIST_PAA_iSAX(TPAA, SiSAX) =

-3
-2
-1

0
1
2
3

4 8 12 16 0
T

SiSAX

TPAA

()
()∑ =
⎪
⎩

⎪
⎨

⎧

<−

>−
w

i PAAiUiPAAiUi

PAAiLiPAAiLi

w
n

otherwise
TifT
TifT

1
2

2

0
ββ

ββ

Tightness of Lower Bounds

•  For a given dataset
–  Time series length [480, 960, 1440, 1920]
–  Bytes available for representation [16, 24, 32, 40]
–  Results similar across thirty datasets

– 

),(
)','(

STistEuclideanD
STDistLowerBoundTLB =

Tightness of Lower Bounds (cont.)

•  Competitive even if naïvely encoded to
precision of real-valued counterparts

Indexing Performance
•  Indexed random walk datasets of [1, 2, 4, 8] million time series

of length 256 (b = 4, w = 8, th = 100)

•  Approximate Search (1000 queries):

•  Exact Search (100 queries):

At least 1 from top 100

1m 2m 4m 8m 0

20

40

60

80

100

At least 1 from top 10

1 from top 1 (true nearest neighbor) Outside top 1000

Size of Random Walk Database Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

 Avg. Time/Query (min)

1M 2M 4M 8M

Exact Search 3.8 5.8 9.0 14.1

Sequential Scan 71.5 104.8 168.8 297.6

 Avg. Disk Accesses/Query

1M 2M 4M 8M

Exact Search 2115.3 3172.5 4925.3 7719.1

Sequential Scan 39255 57365 92209 162340

Approximate Search Quality
•  To evaluate the quality of approximate search

–  Indexed ~10M time series of length 256
–  100 random queries
–  Given: Query Q, True Nearest Neighbor T, Approximate Result

A
–  Distance Ratio = EuclideanDist(Q,T) / EuclideanDist(Q,A)

0 10 20 30 40 50 60 70 80 90 100 0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Query

D
(Q
,T

) /
 D

(Q
,A

)"

Approximate Search Quality (cont.)

•  Visually examine the lower median of
distance ratios (0.907)

0 50 100 150 200 250 300 -2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

Query
Approximate Result
Nearest Neighbor

Classification in Time Series

Class B

Class A

Which class does

belong to?

Classification in Time Series

•  1-Nearest Neighbor classification is one of
the most common

•  It’s frequently used to compare the quality
of time series representations or distance
measures

Dynamic Time Warping (DTW)

Euclidean Distance
One-to-one alignments

Time Warping Distance
Non-linear alignments are allowed

© Chotirat “Ann” Ratanamahatana
Eamonn Keogh

Global Constraints (I)

C

Q

C

Q

C

Q

C

Q

Sakoe-Chiba Band Itakura Parallelogram

Prevent any
unreasonable

warping

© Chotirat “Ann” Ratanamahatana
Eamonn Keogh

Global Constraints (II)

Ri

Sakoe-Chiba Band Itakura Parallelogram

A Global Constraint for a sequence of size m is defined by R, where
Ri = d 0 ≤ d ≤ m, 1 ≤ i ≤ m.

Ri defines a freedom of warping above and to the right of the diagonal
at any given point i in the sequence.

© Chotirat “Ann” Ratanamahatana
Eamonn Keogh

Is Wider the Band, the Better?
DTW dist = 1.6389

R = 1
DTW dist = 1.0204

R = 25
DTW dist = 1.0204

R = 10

Euclidean distance = 2.4836

identical

© Chotirat “Ann” Ratanamahatana
Eamonn Keogh

Wider Isn’t Always Better

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 104

Warping Window Size

CP
U

Ti
m

e
(m

se
c)

auslan
gun
digit
trace
wordspotting

auslan
gun
digit
trace
wordspotting

Larger warping window is not always a good thing.

0 10 20 30 40 50 60 70
60

65

70

75

80

85

90

95

100

Warping Window Size

Ac
cu

ra
cy

 (%
) auslan

gun
digit
trace
wordspotting

auslan
gun
digit
trace
wordspotting

Euclidean
0 10 20 30 40 50 60 70

60

65

70

75

80

85

90

95

100

Warping Window Size

Ac
cu

ra
cy

 (%
) auslan

gun
digit
trace
wordspotting

auslan
gun
digit
trace
wordspotting

Euclidean
0 10 20 30 40 50 60 70

60

65

70

75

80

85

90

95

100

Warping Window Size

Ac
cu

ra
cy

 (%
) auslan

gun
digit
trace
wordspotting

auslan
gun
digit
trace
wordspotting

Euclidean
0 10 20 30 40 50 60 70

60

65

70

75

80

85

90

95

100

Warping Window Size

Ac
cu

ra
cy

 (%
) auslan

gun
digit
trace
wordspotting

auslan
gun
digit
trace
wordspotting

Euclidean

Recall this
example

Most accuracies peak at smaller window size

© Chotirat “Ann” Ratanamahatana
Eamonn Keogh

Ratanamahatana-Keogh Band
(R-K Band)

Solution: Create an arbitrary shape and size of the band that is
 appropriate for the data we want to classify.

© Chotirat “Ann” Ratanamahatana
Eamonn Keogh

How Many Bands Do We Need?
•  Of course, we could use ONE same band to classify

all the classes, as almost all of the researchers do.

•  But…the width of the band does depend on the

characteristic of the data within each class. Having
one single band for classification is unlikely to
generalize.

•  Proposed solution:
 Create an arbitrary band (R-K band) for each class
and use it accordingly for classification.

© Chotirat “Ann” Ratanamahatana
Eamonn Keogh

How Do We Create an R-K Band?
First Attempt: We could look at the data and manually create the shape of the bands.

 (then we need to adjust the width of each band as well until we get a good result)

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

0 50 100 150 200 250
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 50 100 150 200 250
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

100 % Accuracy!

© Chotirat “Ann” Ratanamahatana
Eamonn Keogh

Learning an R-K Band Automatically

50 100 150 200 250

50

100

150

200

250

0 50 100 150 200 250
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 50 100 150 200 250
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

50 100 150 200 250

50

100

150

200

250

Our heuristic search algorithm automatically learns the bands from the data.
(sometimes, we can even get an unintuitive shape that give a good result.)

100 % Accuracy as well!

© Chotirat “Ann” Ratanamahatana
Eamonn Keogh

Calculate h(1)

Calculate h(2)

h(2) > h(1) ?
Yes No

Calculate h(1)

Calculate h(2)

h(2) > h(1) ?
Yes No

R-K Band Learning With Heuristic Search

© Chotirat “Ann” Ratanamahatana
Eamonn Keogh

Clustering on Time Series

•  Similarly, a lot of work are about:
– Choosing the right representation, and/or
– Choosing the right distance measure
– Then use existing clustering algorithms such

as k-means or hierarchical clustering
algorithms

•  Some ad-hoc time series clustering
algorithms have been proposed

30

Time Series Clustering
Whole Clustering: The notion of clustering
here is similar to that of conventional clustering
of discrete objects. Given a set of individual
time series data, the objective is to group
similar time series into the same cluster.

Subsequence Clustering: Given a single time
series, individual time series (subsequences)
are extracted with a sliding window. Clustering
is then performed on the extracted time series.

31

Whole Clustering
Whole Clustering: The notion of clustering here is similar to that of
conventional clustering of discrete objects. Given a set of individual time
series data, the objective is to group similar time series into the same
cluster.

32

Whole Clustering

0

20 40 60 80 100 120 140

Final centers found by K-Means
Cylinder Bell Funnel

Clustering
Algorithm

Clustering Data:

33

Subsequence Clustering (STS)
Subsequence Clustering: Given a single time series, individual time series
(subsequences) are extracted with a sliding window. Clustering is then
performed on the extracted time series.

0 20 40 60 80 100 120

Note: There may be other ways
to define subsequence
clustering, we are making no
claim about any such
definitions.

34

Why do Subsequence Clustering?

•  Finding association rules in time series
•  Anomaly detection in time series
•  Indexing of time series
•  Classifying time series
•  Clustering of streaming time series has also been
proposed as a knowledge discovery tool in its own right.

However..

Subsequence clustering is meaningless!

Keogh, E. and Lin, J. 2005. Clustering of time-series subsequences is meaningless: implications for
previous and future research. Knowl. Inf. Syst. 8, 2 (Aug. 2005), 154-177.

35

What Does it Mean to be
Meaningless?

•  An algorithm is meaningless if its output
is independent of its input.

•  With the exception of random number
generators, meaningless algorithms are
useless.

36

Example of Meaningful Clustering

-1 -0.5 0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

Example of Meaningless Clustering

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

38

0 20 40 60 80 100 120 140

For subsequence
clustering, no matter
what the input, the
output is a set of

(out of phase) sine
waves!

Let’s take a look at the cluster
centers created by subsequence
clustering:

39

Cylinder Bell Funnel

0

20 40 60 80 100 120 140

Whole Clustering:

Subsequence Clustering:

0 20 40 60 80 100 120 140

Cluster centers found by K-
Means

40

0 200 400 600 800 1000 1200
-5

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Cluster Centers

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

41

0 200 400 600 800 1000 1200
-5

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Cluster Centers

42

Why Sine Waves?

Evgeny Slutsky
 (1880-1948)

Slutsky’s Theorem (informally stated)
Any time series will converge to a sine wave after repeated
applications of moving window smoothing

0 20 40 60 80 100 120

43
0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

What If We Increase the Step Size?

0 200 400 600 800 1000 1200
-5

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

44
0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

What If We Increase the Step Size?

45

A Hidden Constraint

0 200 400 600 800 1000 1200
-10

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Fact: For any dataset, the weighted (by cluster membership) average of k
clusters must sum up to the global mean.

46

Trivial Matches

•  Trivial Match: Given a subsequence C beginning at position
p, a matching subsequence M beginning at q, and a distance
R, we say that M is a trivial match to C of order R, if either p =
q or there does not exist a subsequence M’ beginning at q’
such that D(C, M’) > R, and either q < q’< p or p < q’< q.

0
 20 40 60 80 100 120

T

C68

C66

C67

47

Trivial Matches

•  Different subsequences have different
numbers of trivial matches

0

50 100

150 200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450 0
10

20

30

w

= 64

A)

B)

48

Necessary Conditions

•  For a STS clustering algorithm to discover
k patterns:
– The weighted mean of the patterns must sum

to a horizontal line
– Each of the k patterns must have

approximately equal numbers of trivial
matches

50

(Not) Finding rules in time series

Das et. al.
Rule discovery from time series. (1998). In Proc. of the 4th KDD

The basic idea:

•  Do STS clustering on a single time series.
•  Give the cluster centers discrete labels (pattern 1, pattern 2 etc).
•  Run a classic association rule algorithm on the discrete labels, with some temporal
constraints.

0 5 10 15 20 25 30 -2
-1.5

-1
-0.5

0
0.5

1
1.5

2
“if we see pattern 17, then we
can expect to see within 20 time
units, pattern 27.”

51

(Not) Finding rules in time series

•  Mori, T. & Uehara, K. (2001). Extraction of Primitive Motion and Discovery of Association
Rules from Human Motion.
•  Cotofrei, P. & Stoffel, K (2002). Classification Rules + Time = Temporal Rules.
•  Fu, T. C., Chung, F. L., Ng, V. & Luk, R. (2001). Pattern Discovery from Stock Time Series
Using Self-Organizing Maps.
•  Harms, S. K., Deogun, J. & Tadesse, T. (2002). Discovering Sequential Association Rules
with Constraints and Time Lags in Multiple Sequences.
•  Hetland, M. L. & Sætrom, P. (2002). Temporal Rules Discovery Using Genetic Programming
and Specialized Hardware.
•  Jin, X., Lu, Y. & Shi, C. (2002). Distribution Discovery: Local Analysis of Temporal Rules.
•  Yairi, T., Kato, Y. & Hori, K. (2001). Fault Detection by Mining Association Rules in House-
keeping Data.
•  Tino, P., Schittenkopf, C. & Dorffner, G. (2000). Temporal Pattern Recognition in Noisy Non-
stationary Time Series Based on Quantization into Symbolic Streams.
•  and many more

G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery
from time series. (1998). In Proc. of the 4th KDD

Extended by:

52

 “if stock rises then falls greatly,
follow a smaller rise, then we can
expect to see within 20 time units,
a pattern of rapid decrease
followed by a leveling out.”

A Simple Experiment...

Our reimplementation
The punch line is…

Finding order in randomness?!

54

What we are NOT Claiming

•  Clustering of time series is meaningless
•  Sliding windows is always a bad thing
•  Clustering of discrete sequences with
sliding windows is flawed
•  People are deliberately publishing
results that they know are meaningless

55

Is There Another Way?

•  The problem with STS clustering is that
every subsequence is considered.

•  If we want to find true patterns, we need to
consider only the subsequences that
matter.
– Chicken & Egg problem?!

56

A Tentative Solution:
Motif-based Clustering

•  Time Series Motifs!!
–  Frequently re-occurring patterns.
–  Find m-motifs (m >> k)

50 100 150 200 250 300 350 - 2
- 1
0
1

Lin, J., Keogh, E., Patel, P. & Lonardi, S. (2002). Finding Motifs in Time Series. In the 2nd
Workshop on Temporal Data Mining, at the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Edmonton, Alberta, Canada. July 23-26, 2002.

Chiu, B. Keogh, E., & Lonardi, S. (2003). Probabilistic Discovery of Time Series Motifs. In the
9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
August 24 - 27, 2003. Washington, DC, USA.

Time Series Motif Discovery

Time Series Motif Discovery
(finding repeated patterns)

Winding Dataset
(The angular speed of reel 2)

0 50 0 1000 150 0 2000 2500

Are there any repeated
patterns, of about this
length in the above
time series?

Winding Dataset
(The angular speed of reel 2)

0 50 0 1000 150 0 2000 2500

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

A B C

A B C

Time Series Motif Discovery
(finding repeated patterns)

Winding Dataset
(The angular speed of reel 2)

0 50 0 1000 150 0 2000 2500

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

A B C

A B C

Time Series Motif Discovery
(finding repeated patterns)

To find these 3 motifs would require about 6,250,000
calls to the Euclidean Distance function!

· Mining association rules in time series requires the discovery of motifs.
These are referred to as primitive shapes and frequent patterns.

· Several time series classification algorithms work by constructing typical
prototypes of each class. These prototypes may be considered motifs.

· Many time series anomaly/interestingness detection algorithms
essentially consist of modeling normal behavior with a set of typical shapes
(which we see as motifs), and detecting future patterns that are dissimilar to
all typical shapes.

· In robotics, Oates et al., have introduced a method to allow an
autonomous agent to generalize from a set of qualitatively different
experiences gleaned from sensors. We see these “experiences” as motifs.

· In medical data mining, Caraca-Valente and Lopez-Chavarrias have
introduced a method for characterizing a physiotherapy patient’s recovery
based of the discovery of similar patterns. Once again, we see these
“similar patterns” as motifs.

•  Animation and video capture… (Tanaka and Uehara, Zordan and Celly)

Why Find Motifs?

Definition 1. Match: Given a positive real number R (called range) and a time series T
containing a subsequence C beginning at position p and a subsequence M beginning at q, if
D(C, M) ≤ R, then M is called a matching subsequence of C.

Definition 2. Trivial Match: Given a time series T, containing a subsequence C beginning at
position p and a matching subsequence M beginning at q, we say that M is a trivial match to
C if either p = q or there does not exist a subsequence M’ beginning at q’ such that D(C, M’)
> R, and either q < q’< p or p < q’< q.

Definition 3. K-Motif(n,R): Given a time series T, a subsequence length n and a range R,
the most significant motif in T (hereafter called the 1-Motif(n,R)) is the subsequence C1 that
has highest count of non-trivial matches (ties are broken by choosing the motif whose
matches have the lower variance). The Kth most significant motif in T (hereafter called the K-
Motif(n,R)) is the subsequence CK that has the highest count of non-trivial matches, and
satisfies D(CK, Ci) > 2R, for all 1 ≤ i < K.

0 100 200 3 00 400 500 600 70 0 800 900 100 0

T

Space Shuttle STS - 57 Telemetry
(Inertial Sensor)

Trivial
Matches

C

a
b
:
:
a
:
b

c
c
:
:
c
:
c

b
a
:
:
c
:
c

a
b
:
:
a
:
c

1
2
:
:

58
:

985

0 500 1000

a c b a

T (m= 1000)

a = 3 { a , b , c }
n = 16
w = 4

S ^

C 1

C 1 ^
Assume that we have a time
series T of length 1,000, and a
motif of length 16, which occurs
twice, at time T1 and time T58.

We can build a hash table, keyed
on the SAX words

A simple worked example of the motif discovery algorithm

 A mask {1,2} was randomly
chosen, so the values in columns
{1,2} were used to project matrix
into buckets.

Collisions are recorded by
incrementing the appropriate
location in the collision matrix

A mask {2,4} was randomly
chosen, so the values in columns
{2,4} were used to project matrix
into buckets.

Once again, collisions are
recorded by incrementing the
appropriate location in the
collision matrix

0 200 400 600 800 1000 1200

0 20 40 60 80 100 120

A
B

0 20 40 60 80 100 120

C

D

A Simple Experiment
Let us imbed two motifs into a random walk time series, and see if
we can recover them

A

C

B D

Planted Motifs

0 20 40 60 80 100 120

0 20 40 60 80 100 120

“Real” Motifs

Some Examples of Real
Motifs

250
0

350
0

450
0

550
0

650
0

Astrophysics (Photon Count)

0 500 1000 1500 2000

Motor 1 (DC Current)

Finding	
 Time	
 Series	
 Mo/fs	
 on	

Disk-­‐Resident	
 Data	

Abdullah	
 Mueen,	
 Dr.	

Eamonn	
 Keogh	
 	

UC	
 Riverside	

	

Nima	
 Bigdely-­‐Shamlo	
 	

Swartz	
 Center	
 for	
 Computa/onal	

Neuroscience,	
 UCSD	

Motif Discovery in Disk-Resident
Datasets

•  Large	
 datasets	

–  Light	
 Curves	
 of	
 Stars.	

–  Performance	
 Counters	
 of	
 Data	
 Centers.	

•  Pseudo	
 /me	
 series	
 dataset	

–  “80	
 million	
 Tiny	
 Images”	

•  Database	
 of	
 normalized	
 subsequences	

– An	
 hour	
 long	
 trace	
 of	
 EEG	
 generates	
 over	
 one	

million	
 normalized	
 subsequences.	

D
A
M
E

1	

2	

3	

7	

8	

9	

13	

14	

15	

10	

11	

12	

4	

5	

6	

16	

17	

18	

19	

20	

21	

22	

23	

24	

1	

5	

3	

7	
 16	

10	

12	

20	

11	

6	

24	

21	

18	

2	

22	
 17	

15	

23	

13	

14	

8	

4	

9	

19	

Geometric	
 View	
 Disk	
 View	

Set	
 of	
 2D	
 points	

Blocks	

1	

5	

3	

7	

10	

12	

20	

11	

6	

21	

18	

2	

22	
 17	

15	

23	

13	

14	

8	

4	

9	

19	

0	

24	

16	

1	

5	

14	

8	

10	

22	

9	

7	

24	

11	

4	

12	

3	

15	

17	

6	

2	

13	

20	

21	

23	

16	

18
19	

Geometric	
 View	
 Disk	
 View	
 Projected	
 View	

Linear	
 Representa/on	

	
 in	
 sorted	
 order	
 0	
 is	
 the	
 reference	
 point	

D
A
M
E

1	

5	

18	

19	

Blocks	

1	

5	

14	

8	

10	

22	

9	

7	

24	

11	

4	

12	

3	

15	

17	

6	

2	

13	

20	

21	

23	

16	

18
19	

Geometric	
 View	
 Disk	
 View	
 	

1	

5	

3	

7	
 16	

10	

12	

20	

11	

6	

24	

21	

18	

2	

22	
 17	

15	

23	

13	

14	

8	

4	

9	

19	

0	

Best 1

Projected	
 View	

Divide	
 the	
 point-­‐set	
 into	
 two	
 par66on	

and	
 solve	
 the	
 subproblem	

D
A
M
E

Projected	
 View	

1	

5	

18	

19	

Blocks	

Best 2

1	

5	

14	

8	

10	

22	

9	

7	

24	

11	

4	

12	

3	

15	

17	

6	

2	

13	

20	

21	

23	

16	

18
19	

Geometric	
 View	
 Disk	
 View	

Blocks	
 of	
 Interest	

1	

5	

3	

7	
 16	

10	

12	

20	

11	

6	

24	

21	

18	

2	

22	
 17	

15	

23	

13	

14	

8	

4	

9	

19	

0	

The inner ring is the region for blocks 5 and 6
The outer ring is the region for blocks 3 and 4

1	

5	

18	

19	

D
A
M
E

Projected	
 View	
 Projected	
 View	

Blocks	

Bsf

Block 3 and
block 6 do not

overlap. No
comparison.

Loaded	

Blocks	

bsf

No
Comparison

1 Comparison 9 comparisons 1 comparison

Block-­‐Pair	
 (3,5)	
 Block-­‐Pair	
 (3,6)	
 Block-­‐Pair	
 (4,5)	
 Block-­‐Pair	
 (4,6)	

11	
 comparisons	
 are	
 made	
 instead	
 of	
 9*16=144	

D
A
M
E

1	

2	

3	

4	

5	

6	

7	

8	

1	

2	

3	

4	

5	

6	

7	

8	

1	

2	

3	

4	

5	

6	

7	

8	

1	

2	

3	

4	

5	

6	

7	

8	

Speedup	

Algorithm
Largest
Dataset
Tested

(thousands)

Time for
the

Largest
Dataset

Estimated
Time for

4.0
 million

CompletelyInMemory 100 35
minutes

37.8
days

CompletelyInDisk 200 1.50
days

1.65
years

DAME 4,000 1.35
days

1.35
days

NoAdditionalStorage
(normalization done in memory)

200 4.82
days

5.28
years

√	
 X

X √	

√	
 √	

√	
 X

Memory	
 Disk	

Performance	
 Evalua/on	

10,000 20,000 30,000 40,000 50,000
2
3
4
5
6
7
8
9
10
11
12

of time series

Se
co

nd
s i

n
D

AM
E_

M
ot

if

Total

CPU

I/O

x 103

1,000 500 34 25 20

of blocks

0 200 400 600 800 1000 1200
3

4

5

6

7

8

9

10

Motif Length

Se
co

nd
s i

n
D

AM
E_

M
ot

if

x 103

Case	
 Study:	
 Image	
 Mo/fs	

•  Concatenated color
histogram is considered as
pseudo time series.

•  Each time series is of
length 256*3 = 768.

•  80 million tiny images of
32X32 resolution.

0 100 200 300 400 500 600 700 -2
0
2
4
6
8

10
12

80	
 million	
)ny	
 images	
 :	
 collected	
 by	
 Antonio	
 Torralba,	
 Rob	
 Fergus,	
 William	
 T.	
 Freeman	
 at	
 MIT.	

2495 "
21298

2477"
21280

3305"
22166

3245"
21891

2553"
21371

32751032 "
17012103

15513839 "
15513780

31391181"
6791228

23277616"
23277667 38468056"

11896606

Case	
 Study:	
 Image	
 Mo/fs	

•  DAME	
 worked	
 on	
 the	
 first	
 40	
 million	
 /me	
 series	
 in	
 ~6.5	
 days	
 	

•  DAME	
 found	
 3,836,902	
 images	
 which	
 have	
 at	
 least	
 one	
 duplicate.	

–  1,719,443	
 unique	
 images.	

•  542,603	
 images	
 have	
 near	
 duplicates	
 with	
 distance	
 less	
 than	
 0.1.	

Duplicate	
 Image	
 Near	
 Duplicate	
 Image	

Conclusion	

•  DAME:	
 The	
 first	
 exact-­‐mo/f	
 discovery	

algorithm	
 that	
 finds	
 mo/f	
 in	
 disk-­‐resident	

data.	

•  DAME	
 is	
 scalable	
 to	
 massive	
 datasets	
 of	
 the	

order	
 of	
 millions	
 of	
 /me	
 series.	

•  DAME	
 successfully	
 finds	
 mo/f	
 in	
 EEG	
 traces	

and	
 image	
 databases.	

	

10001000101001000101010100001
010100010101110111101011010010
111010010101001110101010100101
00101010111010101001010101011
010101001011001011101111010001
110000101000010011101010001110
0001010101100101110101

010110010111100110100100001000
101001101101011100001010101110
1111100011011011011111101001100
100100011010001111001101101000
101111000101101001101100110100
000010011000100111000001110100
1100101100001010010

Here are two sets of bit strings. Which set is
generated by a human and which one is
generated by a computer?

84

VizTree	
 -­‐	
 Mo6va6on	

10001000101001000101010100001010
100010101110111101011010010111010
010101001110101010100101001010101
110101010010101010110101010010110
010111011110100011100001010000100
111010100011100001010101100101110
101

010110010111100110100100001000101
001101101011100001010101110111110
001101101101111110100110010010001
101000111100110110100010111100010
110100110110011010000001001100010
011100000111010011001011000010100
10

 “humans usually try to fake randomness by alternating patterns”

Lets put the sequences into a depth limited
suffix tree, such that the frequencies of all
triplets are encoded in the thickness of
branches… 85

VizTree	

86

0 500 1000 1500 2000 2500

C
1

c a a

c

c

b

a

c

c
b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C
1

^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b(m – n) +1

a(m – n)

c(m – n) -1

::::

::::

c3

c2

c1

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b() +1

a(–

c(–) -1

::::

::::

c3

c2

c1

0 500 1000 1500 2000 2500

C
1

c a a

c

c

b

a

c

c
b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C
1

^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

0 500 1000 1500 2000 2500

C
1

c a a

c

c

b

a

c

c
b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

c

c

b

a

c

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C
1

^
C
1

^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b(m – n) +1

a(m – n)

c(m – n) -1

::::

::::

c3

c2

c1

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b() +1

a(–

c(–) -1

::::

::::

c3

c2

c1 Insert into augmented trie

a

c

b
c c

VizTree	
 	

(hFp://www.cs.gmu.edu/~jessica/viztree.htm)	

	

a

c

b
a

b

Zoom

a

c

b
a

b

Zoom

Details 2

Overview

Details 1

87	

VizTree/ DiffTree

DiffTree
•  Convert the two time
series to SAX
•  Push the data in a
depth-limited suffix tree
•  Encode the frequencies
as the line thickness

•  Encode the
difference of
frequencies as the line
color

Blue lines - pattern is more common in A
Green lines - pattern is more common in B
Red lines - pattern is equi-frequent in A and B

89	

•  Most algorithms still suffer a limitation: the length of
motif needs to be given.

•  Grammar = repeated patterns, repeated structure

Grammar Induction

Simple example of grammar from a string:
Input string:
 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1
(Desired) Output Grammar:

 R0 R1 R1
 R1 R2 R2
 R2 1 1 2 2 1

Grammar-­‐Based	
 Mo6f	
 Discovery	

90

SEQUITUR	

•  Introduced by Nevill-Manning and Witten, 1996
•  Online, linear-time, grammar-based compression algorithm
•  Infers a context-free grammar from a sequence of symbols
•  Works by compressing repeated patterns of input string

What is SEQUITUR?

•  Digram uniqueness
•  Rule utility

Policies of SEQUITUR

 	
 Input	
 string:	
 	
 	
 	
 abcdabc	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

91

Example	

 Grammar
 S à a

Digrams

 	
 Input	
 string:	
 	
 	
 	
 abcdabc	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

92

Example	

 Grammar
 S à ab

Digrams
ab

 	
 Input	
 string:	
 	
 	
 	
 abcdabc	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

93

Example	

 Grammar
 S à abc

Digrams
ab
bc

 	
 Input	
 string:	
 	
 	
 	
 abcdabc	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

94

Example	

 Grammar
 S à abcd

Digrams
ab
bc
cd

 	
 Input	
 string:	
 	
 	
 	
 abcdabc	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

95

Example	

 Grammar
 S à abcda

Digrams
ab
bc
cd
da

 	
 Input	
 string:	
 	
 	
 	
 abcdabc	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

96

Example	

 Grammar
 S à abcdab

Digrams
ab
bc
cd
da

Enforcing digram uniqueness
ab occurs twice
Creating new rule A → ab

 	
 Input	
 string:	
 	
 	
 	
 abcdabc	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

97

Example	

 Grammar
 S à AcdA
 A à ab

Digrams
ab
Ac
cd
dA Enforcing digram uniqueness

ab occurs twice
Creating new rule A → ab

 	
 Input	
 string:	
 	
 	
 	
 abcdabc	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

98

Example	

 Grammar
 S à AcdAc
 A à ab

Digrams
ab
Ac
cd
dA Enforcing digram uniqueness

Ac occurs twice
Creating new rule B → Ac

 	
 Input	
 string:	
 	
 	
 	
 abcdabc	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

99

Example	

 Grammar
 S à BdB
 A à ab
 B à Ac

Digrams
ab
Ac
Bd
dB

Enforcing digram uniqueness
Ac occurs twice
Creating new rule B → Ac

 	
 Input	
 string:	
 	
 	
 	
 abcdabc	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

100

Example	

 Grammar
 S à BdB
 B à abc

Digrams
ab
Ac
Bd
dB

Enforcing rule utility
A occurs only once
Removing A → ab

Solution: SAXify the data!

0 500 1000 1500 2000 2500

C
1

c a a

c

c

b

a

c

c
b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C
1

^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b(m – n) +1

a(m – n)

c(m – n) -1

::::

::::

c3

c2

c1

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b() +1

a(–

c(–) -1

::::

::::

c3

c2

c1

0 500 1000 1500 2000 2500

C
1

c a a

c

c

b

a

c

c
b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C
1

^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

0 500 1000 1500 2000 2500

C
1

c a a

c

c

b

a

c

c
b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

c

c

b

a

c

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C
1

^
C
1

^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b(m – n) +1

a(m – n)

c(m – n) -1

::::

::::

c3

c2

c1

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b() +1

a(–

c(–) -1

::::

::::

c3

c2

c1S = caa caa cab cac ccc caa caa caa cab…
 = caa1 cab3 cac4 ccc5 caa6 cab9 numerosity

reduction

There	
 is	
 a	
 problem,	
 however:	
 6me	
 series	

are	
 real-­‐valued!	

102

!

GrammarViz:	
 Variable-­‐Length	
 Mo6f	
 Discovery	

Yuan Li, Jessica Lin, and Tim Oates. 2012. Visualizing variable-length time series motifs. In
Proceedings of the 2012 SIAM International Conference on Data Mining. Anaheim, CA. Apr 26-28.
Pages 895-906.

103	

!

GrammarViz:	
 Variable-­‐Length	
 Mo6f	
 Discovery	

104	

Mul6variate	
 Mo6fs	

105	

Limita6ons	

Grammar	
 Rule	
 Expanded	
 Grammar	
 Rule	

R0	
 −>	
 R1	
 R1	
 R2	
 R2	
 R2	
 R3	
 3	
 1	
 1	
 1	
 1	
 1	
 2	
 1	
 3	
 1	
 1	
 3	
 1	
 1	
 1	
 1	
 1	
 2	
 1	
 3	
 1	
 1	
 3	
 1	
 1	
 1	
 1	

1	
 2	
 1	
 3	
 1	
 1	
 3	
 1	
 1	
 1	
 1	
 1	
 2	
 1	
 3	
 1	
 1	
 3	
 1	

R1	
 −>	
 1	
 1	
 1	
 1	

R2	
 −>	
 R3	
 R4	
 R1	
 1	
 2	
 1	
 3	
 1	
 1	
 3	
 1	
 1	
 1	
 1	
 1	

R3	
 −>	
 2	
 1	
 R	
 4	
 2	
 1	
 3	
 1	
 1	

R4	
 −>	
 3	
 R1	
 3	
 1	
 1	

Input string: (11112131131)4

•  Greedy algorithm
•  Grammar found is not minimal!

Tree	
 Search	
 for	
 Grammar	
 Induc6on	

106	

•  Trigrams:	
 any	
 three	
 adjacent	
 symbols	

•  A	
 trigram	
 is	
 made	
 of	
 2	
 digrams	
 (e.g.,	
 “abc”	
 can	
 be	
 parsed	

as	
 a(bc)	
 or	
 (ab)c	

•  Keep	
 track	
 of	
 all	
 digrams,	
 and	
 (selec/vely)	
 subs/tute	

repea/ng	
 digrams	
 with	
 new	
 symbols	

11112…

1111213113… AA213113…

A -> 11

AA2B1B1 AA213A31

AA2CC

B -> 13

C -> B1

A11213A31

A -> 11

11112A1A1

A -> 11 A -> 13

11112BB

B -> A1

11112131131

107	

Grammar	
 Rule	
 Expanded	
 Grammar	
 Rule	

R0	
 −>	
 R1	
 R1	
 1	
 1	
 1	
 1	
 2	
 1	
 3	
 1	
 1	
 3	
 1	
 1	
 1	
 1	
 1	
 2	
 1	
 3	
 1	
 1	
 3	
 1	

1	
 1	
 1	
 1	
 2	
 1	
 3	
 1	
 1	
 3	
 1	
 1	
 1	
 1	
 1	
 2	
 1	
 3	
 1	
 1	
 3	
 1	

R1	
 −>	
 R2	
 R2	
 1	
 1	
 1	
 1	
 2	
 1	
 3	
 1	
 1	
 3	
 1	
 1	
 1	
 1	
 1	
 2	
 1	
 3	
 1	
 1	
 3	
 1	
 	

R2	
 −>	
 R3	
 R3	
 2	
 1	
 3	
 R4	
 1	
 1	
 1	
 1	
 2	
 1	
 3	
 1	
 1	
 3	
 1	

R3	
 −>	
 1	
 1	
 1	
 1	

R4	
 −>	
 R3	
 3	
 1	
 1	
 1	
 3	
 1	

Tree	
 Search	
 for	
 Grammar	
 Induc6on	

Input string: (11112131131)4

Winding Dataset
(The angular speed of reel 2)

0 50 0 1000 150 0 2000 2500
A B C

Finding these 3 motifs requires about 6,250,000 calls to the Euclidean distance function

Motifs Discovery Challenges
How can we find motifs…

•  Without having to specify the length/other parameters
•  In massive datasets
•  In streaming data
•  While ignoring “background” motifs (ECG example)
•  Under time warping, or uniform scaling
•  While assessing their significance

Anomaly (interestingness) detection

We would like to be able to discover surprising (unusual, interesting,
anomalous) patterns in time series.

Note that we don’t know in advance in what way the time series
might be surprising

Also note that “surprising” is very context dependent, application
dependent, subjective etc.

0 100 200 300 400 500 600 700 800 900 1000 -10

-5

0

5

10

15

20

25

30

35 Limit Checking

Simple Approaches I

0 100 200 300 400 500 600 700 800 900 1000 -10

-5

0

5

10

15

20

25

30

35 Discrepancy Checking

Simple Approaches II

Early statistical
detection of anthrax
outbreaks by
tracking over-the-
counter medication
sales

Goldenberg, Shmueli,
Caruana, and Fienberg

Discrepancy Checking: Example

normalized sales
de-noised
threshold

 Actual value

 Predicted value

The actual value is
greater than the predicted
value, but still less than
the threshold, so no alarm
is sounded.

Time Series Discord
(Keogh and Lin, 2005)

•  Discord: subsequence that is least similar to
other subsequences

•  Applications:
– Anomaly detection
– Clustering
– Data cleaning

ECG qtdb/sel102
(excerpt)

Image Discords

What is the
most unusual
shape in this
collection?

Image Discords

This one!

Shape Discord: Given a collection of shapes S, the shape D
is the discord of S if D has the largest distance to its nearest
match. That is, ∀ shape C in S, the nearest match MC of C
and the nearest match MD of D, Dist(D, MD) > Dist(C, MC).

This one is even
more subtle…

Here is a subset
of a large

collection of
petroglyphs

Only one image shows
an arrow stuck into

the sheep

1st Discord

1st Discord

Discord Example

discord

Cluster1

Cluster2

Background – Sliding Windows

•  Use a sliding window to extract subsequences

Time Series Discords

•  Subsequence C of length n is said to be the
discord if C has the largest distance to its
nearest non-self match.

•  Kth Time Series Discord

Finding Discords: Brute-force

•  [outer loop] For each subsequence in the time
series, [inner loop] find the distance to its
nearest match

•  The subsequence that has the greatest such
value is the discord (i.e. discord is the
subsequence with the farthest nearest-
neighbor)

•  O(m2)

Function [dist, loc] = Discord_Search(S)
best_so_far_dist = 0
best_so_far_loc = NaN
for p = 1 to size (S) // begin outer loop
 nearest_neighbor_dist = infinity
 for q = 1 to size (S) // begin inner loop
 if p!= q // Don’t compare to self
 if RD(Cp , Cq) < nearest_neighbor_dist
 nearest_neighbor_dist = RD(Cp , Cq)
 end
 end
 end // end inner loop
 if nearest_neighbor_dist > best_so_far_dist
 best_so_far_dist = nearest_neighbor_dist
 best_so_far_loc = p
 end
end // end outer loop
return [best_so_far_dist, best_so_far_loc]

Finding Discords 0 2 4.2 1.1 2.3 8.5

2 0 3 3.2 3.5 8.2

4.2 3 0 1.2 9.2 9.7

1.1 3.2 1.2 0 0.1 7.5

2.3 3.5 9.2 0.1 0 7.6

8.5 8.8 9.7 7.5 7.6 0

1.1 2 1.2 0.1 0.1 7.5

The code says…
Find the smallest
(non diagonal) value
in each column, the
largest of these is
the discord

Function [dist, loc] = Heuristic_Search(S, Outer, Inner)
best_so_far_dist = 0
best_so_far_loc = NaN
for each index p given by heuristic Outer // begin outer loop
 nearest_neighbor_dist = infinity
 for each index q given by heuristic Inner // begin inner loop
 if p!= q
 if RD(Cp , Cq) < best_so_far_dist
 break // break out of inner loop
 end
 if RD(Cp , Cq) < nearest_neighbor_dist
 nearest_neighbor_dist = RD(Cp , Cq)
 end
 end
 end // end inner loop
 if nearest_neighbor_dist > best_so_far_dist
 best_so_far_dist = nearest_neighbor_dist
 best_so_far_loc = p
 end
end // end outer loop
return [best_so_far_dist, best_so_far_loc]

Finding Discords, Fast

The code now says…
If while searching a
given column, you find a
distance less than
nearest_neighbor_dist
then that column
cannot have the
discord.

The code also uses
heuristics to order the
search…

0 2 4.2 1.1 2.3 8.5

2 0 3 3.2 3.5 8.2

4.2 3 0 1.2 9.2 9.7

1.1 3.2 1.2 0 0.1 7.5

2.3 3.5 9.2 0.1 0 7.6

8.5 8.8 9.7 7.5 7.6 0

Example

5
best-so-far = 5

Example

best-so-far = 5
2

Example – Optimal Ordering

best-so-far = 10

Example – Optimal Ordering

best-so-far = 10

5

The Magic Heuristics

•  In the outer loop, visit the columns in order of the
Discord score
•  In the inner loop, visit the row cells in order of
nearest neighbor first

The Magic
Heuristics would
reduce the time
complexity from

O(n2) algorithm to
just O(n)!

0 2 4.2 1.1 2.3 8.5

2 0 3 3.2 3.5 8.2

4.2 3 0 1.2 9.2 9.7

1.1 3.2 1.2 0 0.1 7.5

2.3 3.5 9.2 0.1 0 7.6

8.5 8.8 9.7 7.5 7.6 0

0 2 4.2 1.1 2.3 8.5

2 0 3 3.2 3.5 8.2

4.2 3 0 1.2 9.2 9.7

1.1 3.2 1.2 0 0.1 7.5

2.3 3.5 9.2 0.1 0 7.6

8.5 8.8 9.7 7.5 7.6 0

The Magic Heuristics

•  In the outer loop, visit the columns in order of the
Discord score
•  In the inner loop, visit the row cells in order of
nearest neighbor first

Observations
•  Visiting the columns in approximately order of the
Discord score is still very helpful
•  For the inner loop, we don’t really need visit the
rows in order of nearest neighbor first, so long as
we find a “near enough” neighbor early on

We can try to
approximate Magic

0 2 4.2 1.1 2.3 8.5

2 0 3 3.2 3.5 8.2

4.2 3 0 1.2 9.2 9.7

1.1 3.2 1.2 0 0.1 7.5

2.3 3.5 9.2 0.1 0 7.6

8.5 8.8 9.7 7.5 7.6 0

Approximately Magic
Heuristics

c a a

c

c
b

a

c

c
b

a
c

b
a
c b
a
c b
a

1 3
2

77

9

23

731

c

Inserted into array Augmented Trie
1 c a a 3

2 c a b 1

3 c a a 3

:: :: :: :: ::
:: :: :: :: ::

c b b 2

m-1 a c b 1

m b c a 2

Image 1

Time Series 1

SAX Word

Rotation invariance
ignored here

Time Series
Discords

January June December 500
1000
1500
2000
2500 3rd Discord One years power demand at a Dutch research facility 1st Discord 2nd Discord

0 500 1000 1500 2000
Stage II sleep Eyes closed, awake or stage I sleep Eyes open, awake

Shallow breaths as waking cycle begins

A time series showing a patients respiration (measured by thorax extension), as they wake up. A medical expert, Dr. J.
Rittweger, manually segmented the data. The 1-discord is a very obvious deep breath taken as the patient opened their eyes.
The 2-discord is much more subtle and impossible to see at this scale. A zoom-in suggests that Dr. J. Rittweger noticed a few
shallow breaths that indicated the transition of sleeping stages.

Institute for Physiology. Free University of Berlin. Data shows respiration (thorax extension), sampling rate 10 Hz.

Power Demand

Sleep Cycles

0 100 200 300 400 500 600 700

Dec 25 Sunday

Liberation Day Ascension Thursday

Good Friday
Easter Sunday

0 100 200 300 400 500 600 700

Typical Week from the Dutch
Power Demand Dataset

A cardiologist noted subtle anomalies in this dataset. Let us see if the discord algorithm can find them.

0 500 1000 1500 2000 2500 -7
-6
-5
-4
-3

How was the discord able to find this very
subtle Premature ventricular contraction?
Note that in the normal heartbeats, the ST
wave increases monotonically, it is only in
the Premature ventricular contractions
that there is an inflection.NB, this is not
necessary true for all ECGS

0 50 100 150 200 250 300 350 400 450 500 -6.5
-6

-5.5
-5

-4.5
-4

-3.5
ST
Wave

Record
qtdbsele0606
from the
PhysioBank QT
Database (qtdb)

Discords in Medical Data

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Poppet pulled
significantly out of
the solenoid
before energizing"

The De-
Energizing phase
is normal"

Space Shuttle Marotta Valve Series

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Poppet pulled
significantly out of
the solenoid
before energizing"

Space Shuttle Marotta Valve Series

Example One

Example Two

1500 2000 2500

Poppet pulled out of the
solenoid before

energizing
Corresponding
section of
other cycles

Discord
1500 2000 2500

Poppet pulled out of the
solenoid before

energizing

0 50 100
Discord

0 50 100
Discord

Corresponding
section of
other cycles

Discords in Space Shuttle Marotta Valve Series

This discord is
subtle, lets zoom
in to see why it is
a discord.

0 2000 4000 6000 8000 10000 12000 14000 16000

Premature ventricular contraction Premature ventricular contraction Supraventricular escape beat

3-discord, d = 18.9361, location = 4017 2-discord, d = 21.7285, location = 10014 1-discord, d = 25.0896, location = 10871

The time series is record mitdb/x_mitdb/x_108 from the PhysioNet Web Server (The local copy in the UCR archive is
called mitdbx_mitdbx_108.txt). It is a two feature time series, here we are looking at just the MLII column.
Cardiologists from MIT have annotated the time series, here we have added colored makers to draw attention to those
annotations.
Here we show the results of finding the top 3 discords on this dataset. We chose a length of 600, because this a little longer
than the average length of a single heartbeat.

0 5000 10000 15000

MIT-BIH Arrhythmia Database: Record 108

r S r

1st Discord
2nd Discord

3rd Discord

Anomaly (interestingness) detection
In spite of the nice example in the previous slide, the
anomaly detection problem is wide open.

How can we find interesting patterns…

•  Without (or with very few) false positives…
•  In truly massive datasets...
•  In the face of concept drift…
•  With human input/feedback…
•  With annotated data…

136	

	
 	
 	
 Contrast-­‐Set	
 Mining	

A motivating example: What differentiates German
and Italian consumer electrical power demands?

Jessica Lin and Eamonn Keogh. 2006. Group SAX: Extending the notion of contrast sets to time series and multimedia
data. In Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in
Databases. Berlin, Germany. Sept 18-22. Pages 284-296. Lecture Notes in Computer Science, Springer.

