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Similarity Search On Large Datasets 

•  High I/O costs a challenge 
•  Utilize an index to speed up similarity search 

–  High dimensionality of time series makes indexing a 
challenge 

•  Generic framework 
–  Map the data to a reduced representation 
–  Obtain a candidate set in the reduced space 
–  Verify results in the native representation 

 
•  Efficiency and effectiveness affected by 

characteristics of the reduced representation  



-3 
-2 
-1 

0 
1 
2 
3 

4 8 12 16 0 

00 

01 

10 

11 

iSAX(T,4,4) 

-3 
-2 
-1 

0 
1 
2 
3 

4 8 12 16 0 4 8 12 16 0 

A time series T PAA(T,4) 

-3 
-2 
-1 

0 
1 
2 
3 

Classic SAX 
•  Symbolic Aggregate approXimation (SAX)  

–  (1) Represent a time series T of length n in w-dimensional space 
using Piecewise Aggregate Approximation (PAA) 

•  T typically normalized to µ = 0, σ = 1 
•  PAA(T,w) =                       where   
 

 

–  (2) Discretize into a vector of symbols  
•  Breakpoints map to a small alphabet a of symbols 
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Classic SAX (cont.) 
"   SAX lower bounds Euclidean distance 

 
"   Why not just index using SAX? 

 
"   Example: index 1,000,000 time series using SAX 

"   Choose SAX parameters  
"   Symbol cardinality = 8, wordlength = 4 
"   84 = 4,096 possible SAX word labels 

"   Place time series which map to the same label in the same file 
on disk 

"   Compute label for query and retrieve matching file 
"   Time series in file likely to be good approximate matches 

"   Average label occupancy 1,000,000/4,096 = ~244 (reasonable) 



Classic SAX (cont.) 
•  In practice, the distribution of time series to SAX 

word labels is not uniform and is highly skewed! 
–  Empty  
–  Disproportionate percentage of the dataset 

•  Ideal condition: We want to give a threshold th, and 
have the number of entries n mapped to a label to 
be  1 ≤ n ≤ th  
–  Favor larger n 

•  How can we achieve this? We need to make SAX 
more flexible 



iSAX Representation 

•  SAX uses a single hard-coded cardinality 
– Unable to differentiate only on dimensions of 

interest 
•  The indexing problem can be solved if we 

extend SAX to allow: 
– Different cardinalities within a single word 
– Comparison of words with different 

cardinalities 
•  This extension is called indexable SAX 

(iSAX) 



iSAX Representation (cont.) 
•  Multi-resolution property allows conversion to any lower 

resolution that differs by a power of two 
 
 
 
 

 
 
 
 
 
 
 

•  Lower bounding distance between iSAX words enforced 
through examination of both sets of breakpoints 

•  iSAX offers a bit aware, quantized, multi-resolution 
representation with variable granularity 

=    { 6, 6, 3, 0}    =    {110 ,110 ,011 ,000} 
 
 

=    { 3, 3, 1, 0}    =    {11  ,11  ,01  ,00 } 
 
 

=    { 1, 1, 0, 0}    =    {1   ,1   ,0   ,0  } 



Comparing Different Cardinality 
•  iSAX(T, 4, 8) = T8 = {110, 110, 011, 000} 
•  iSAX(S, 4, 2) = S2 = {0    , 0    , 1    , 1    } 
•  How do we compare T and S? 

– Promoting S2 word as S8 = {0**, 0**, 1**, 1**} 
– For each unknown bit Ski, 

   IF Ski forms a prefix for T8i THEN, 
 *i = T8i for all unknown bits 

   ELSE IF Ski is lexicographically smaller than  
corresponding bits in T8i, THEN, 

 *i = 1 for all unknown bits 
   ELSE 

 *i = 0 for all unknown bits 



Indexing with iSAX 
•  Split a set of time series represented by a common 

iSAX word into mutually exclusive subsets (multi-
resolution property / examining more bits): 
 
–  Increase cardinality along dimensions d, word length 

w, 1 ≤ d ≤ w 
–  Fan-out rate bound by 2d 

 

•  Iterative doubling 
 
–  Alignment of breakpoints overlap 
 

•  Allows for index structures which are hierarchical, with 
non-overlapping regions, and a controlled fan-out rate 



Indexing with iSAX (cont.) 
•  Demonstrate using simple tree-based index  

–  (base cardinality b (optional), word length w, threshold th)  
–  Hierarchically subdivides SAX space until num. entries ≤ th 

 
•  Approximate Search 

–  Match iSAX representation at each level 
 

•  Exact Search 
–  Leverage approximate search 
–  Prune search space 

•  Lower bounding distance 
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Indexing with iSAX (cont.) 
•  MinDist function for query time series T 

–  Let TPAA be the PAA representation of time series T, SiSAX be 
the iSAX representation of time series S 

–  Recall the jth cardinal value of SiSAX derives from a PAA 
value, v between two breakpoints βL, βU, βL < v ≤ βU, 1 ≤ j ≤ w  
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Tightness of Lower Bounds 
 

 
 
 

•  For a given dataset 
–  Time series length [480, 960, 1440, 1920]  
–  Bytes available for representation [16, 24, 32, 40] 
–  Results similar across thirty datasets 

 
 

–   
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Tightness of Lower Bounds (cont.) 

•  Competitive even if naïvely encoded to 
precision of real-valued counterparts 



Indexing Performance 
•  Indexed random walk datasets of [1, 2, 4, 8] million time series 

of length 256 (b = 4, w = 8, th = 100) 
 

•  Approximate Search (1000 queries): 
 

 
 
 
 
 
 

•  Exact Search (100 queries): 
 

 
 
 

At least 1 from top 100 

1m 2m 4m 8m 0 

20 

40 

60 

80 

100 

At least 1 from top 10 

1 from top 1 (true nearest neighbor) Outside top 1000 

Size of Random Walk Database  Pe
rc

en
ta

ge
 o

f Q
ue

rie
s 

 Avg. Time/Query (min)                            

1M 2M 4M 8M 

Exact Search 3.8 5.8 9.0 14.1 

Sequential Scan 71.5 104.8 168.8 297.6 

 Avg. Disk Accesses/Query                            

1M 2M 4M 8M 

Exact Search 2115.3 3172.5 4925.3 7719.1 

Sequential Scan 39255 57365 92209 162340 



Approximate Search Quality 
•  To evaluate the quality of approximate search 

–  Indexed ~10M time series of length 256 
–  100 random queries 
–  Given: Query Q, True Nearest Neighbor T, Approximate Result 

A 
–  Distance Ratio = EuclideanDist(Q,T) / EuclideanDist(Q,A)  
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Approximate Search Quality (cont.) 

•  Visually examine the lower median of 
distance ratios (0.907)  
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Classification in Time Series 

 
 
 
 
 
 
 
 
 

Class B 

 
 
 
 
 
 
 
 
 

Class A 

Which class does 

belong to? 



Classification in Time Series 

•  1-Nearest Neighbor classification is one of 
the most common 

•  It’s frequently used to compare the quality 
of time series representations or distance 
measures  



Dynamic Time Warping (DTW) 

Euclidean Distance 
One-to-one alignments 

Time Warping Distance 
Non-linear alignments are allowed 
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Global Constraints (I) 
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Sakoe-Chiba Band Itakura Parallelogram 

Prevent any  
unreasonable 

warping 
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Global Constraints (II) 

Ri 

Sakoe-Chiba Band Itakura Parallelogram 

A Global Constraint for a sequence of size m is defined by R, where 
Ri = d           0 ≤ d ≤ m, 1 ≤ i ≤ m. 
 
Ri defines a freedom of warping above and to the right of the diagonal  
at any given point i in the sequence. 
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Is Wider the Band, the Better? 
DTW dist = 1.6389 

R = 1 
DTW dist = 1.0204 

R = 25 
DTW dist = 1.0204 

R = 10 

Euclidean distance = 2.4836 

identical 
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Wider Isn’t Always Better 
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Larger warping window is not always a good thing. 
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Recall this 
example 

Most accuracies peak at smaller window size 
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Ratanamahatana-Keogh Band  
(R-K Band) 

Solution: Create an arbitrary shape and size of the band that is 
  appropriate for the data we want to classify.  
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How Many Bands Do We Need? 
•  Of course, we could use ONE same band to classify 

all the classes, as almost all of the researchers do. 

 
•  But…the width of the band does depend on the 

characteristic of the data within each class.  Having 
one single band for classification is unlikely to 
generalize. 

•  Proposed solution: 
 Create an arbitrary band (R-K band) for each class 
and use it accordingly for classification. 
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How Do We Create an R-K Band? 
First Attempt: We could look at the data and manually create the shape of the bands. 

        (then we need to adjust the width of each band as well until we get a good result) 
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Learning an R-K Band Automatically 
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Our heuristic search algorithm automatically learns the bands from the data. 
(sometimes, we can even get an unintuitive shape that give a good result.) 

100 % Accuracy as well! 
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Calculate h(1)

Calculate h(2)

h(2) > h(1) ? 
Yes No 

Calculate h(1)

Calculate h(2)

h(2) > h(1) ? 
Yes No 

R-K Band Learning With Heuristic Search 
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Clustering on Time Series 

•  Similarly, a lot of work are about: 
– Choosing the right representation, and/or 
– Choosing the right distance measure 
– Then use existing clustering algorithms such 

as k-means or hierarchical clustering 
algorithms 

•  Some ad-hoc time series clustering 
algorithms have been proposed 
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Time Series Clustering 
Whole Clustering: The notion of clustering 
here is similar to that of conventional clustering 
of discrete objects.  Given a set of individual 
time series data, the objective is to group 
similar time series into the same cluster.   

Subsequence Clustering: Given a single time 
series, individual time series (subsequences) 
are extracted with a sliding window.  Clustering 
is then performed on the extracted time series.  
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Whole Clustering 
Whole Clustering: The notion of clustering here is similar to that of 
conventional clustering of discrete objects.  Given a set of individual time 
series data, the objective is to group similar time series into the same 
cluster.   
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Whole Clustering 
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Subsequence Clustering (STS) 
Subsequence Clustering: Given a single time series, individual time series 
(subsequences) are extracted with a sliding window.  Clustering is then 
performed on the extracted time series.  

  

0   20   40   60   80   100   120   

  

    
    

Note: There may be other ways 
to define subsequence 
clustering, we are making no 
claim about any such 
definitions. 
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Why do Subsequence Clustering? 

•  Finding association rules in time series  
•  Anomaly detection in time series  
•  Indexing of time series  
•  Classifying time series  
•  Clustering of streaming time series has also been 
proposed as a knowledge discovery tool in its own right.  
 
However.. 

Subsequence clustering is meaningless! 

Keogh, E. and Lin, J. 2005. Clustering of time-series subsequences is meaningless: implications for 
previous and future research. Knowl. Inf. Syst. 8, 2 (Aug. 2005), 154-177. 
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What Does it Mean to be 
Meaningless? 

 
•  An algorithm is meaningless if its output 
is independent of its input. 

•  With the exception of random number 
generators, meaningless algorithms are 
useless. 
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Example of Meaningful Clustering 
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Example of Meaningless Clustering 
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For subsequence 
clustering, no matter 
what the input, the 
output is a set of 

(out of phase) sine 
waves! 

Let’s take a look at the cluster 
centers created by subsequence 
clustering: 
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Cylinder Bell Funnel 
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Why Sine Waves? 

Evgeny Slutsky  
 (1880-1948) 

Slutsky’s Theorem (informally stated)  
Any time series will converge to a sine wave after repeated 
applications of moving window smoothing  
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What If We Increase the Step Size? 
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A Hidden Constraint 
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Fact: For any dataset, the weighted (by cluster membership) average of k 
clusters must sum up to the global mean.  
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Trivial Matches 

•  Trivial Match: Given a subsequence C beginning at position 
p, a matching subsequence M beginning at q, and a distance 
R, we say that M is a trivial match to C of order R, if either p = 
q or there does not exist a subsequence M’ beginning at q’ 
such that D(C, M’) > R, and either q < q’< p or p < q’< q. 
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Trivial Matches 

•  Different subsequences have different 
numbers of trivial matches 
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Necessary Conditions 

•  For a STS clustering algorithm to discover 
k patterns: 
– The weighted mean of the patterns must sum 

to a horizontal line 
– Each of the k patterns must have 

approximately equal numbers of trivial 
matches 
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(Not) Finding rules in time series 

Das et. al. 
Rule discovery from time series. (1998). In Proc. of the 4th KDD 

The basic idea: 
 
•  Do STS clustering on a single time series. 
•  Give the cluster centers discrete labels (pattern 1, pattern 2 etc). 
•  Run a classic association rule algorithm on the discrete labels, with some temporal 
constraints. 
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“if we see pattern 17, then we 
can expect to see within 20 time 
units, pattern 27.”  
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(Not) Finding rules in time series 

•  Mori, T. & Uehara, K. (2001). Extraction of Primitive Motion and Discovery of Association 
Rules from Human Motion.   
•  Cotofrei, P. & Stoffel, K (2002). Classification Rules + Time = Temporal Rules. 
•  Fu, T. C., Chung, F. L., Ng, V. & Luk, R. (2001). Pattern Discovery from Stock Time Series 
Using Self-Organizing Maps. 
•  Harms, S. K., Deogun, J. & Tadesse, T. (2002). Discovering Sequential Association Rules 
with Constraints and Time Lags in Multiple Sequences. 
•  Hetland, M. L. & Sætrom, P. (2002). Temporal Rules Discovery Using Genetic Programming 
and Specialized Hardware.  
•  Jin, X., Lu, Y. & Shi, C. (2002). Distribution Discovery: Local Analysis of Temporal Rules. 
•  Yairi, T., Kato, Y. & Hori, K. (2001). Fault Detection by Mining Association Rules in House-
keeping Data. 
•  Tino, P., Schittenkopf, C. & Dorffner, G. (2000). Temporal Pattern Recognition in Noisy Non-
stationary Time Series Based on Quantization into Symbolic Streams.  
•  and many more     

G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery 
from time series. (1998). In Proc. of the 4th KDD 

Extended by: 
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 “if stock rises then falls greatly, 
follow a smaller rise, then we can 
expect to see within 20 time units, 
a pattern of rapid decrease 
followed by a leveling out.”  

A Simple Experiment... 

Our reimplementation 
The punch line is… 

Finding order in randomness?! 
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What we are NOT Claiming   

•  Clustering of time series is meaningless 
•  Sliding windows is always a bad thing 
•  Clustering of discrete sequences with 
sliding windows is flawed 
•  People are deliberately publishing 
results that they know are meaningless 
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Is There Another Way? 

•  The problem with STS clustering is that 
every subsequence is considered. 

•  If we want to find true patterns, we need to 
consider only the subsequences that 
matter. 
– Chicken & Egg problem?! 
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A Tentative Solution:  
Motif-based Clustering 

•  Time Series Motifs!! 
–  Frequently re-occurring patterns. 
–  Find m-motifs (m >> k) 
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Lin, J., Keogh, E., Patel, P. & Lonardi, S. (2002). Finding Motifs in Time Series. In the 2nd 
Workshop on Temporal Data Mining, at the 8th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining. Edmonton, Alberta, Canada. July 23-26, 2002.  

Chiu, B. Keogh, E., & Lonardi, S. (2003). Probabilistic Discovery of Time Series Motifs. In the 
9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 
August 24 - 27, 2003. Washington, DC, USA. 
 



Time Series Motif Discovery 



Time Series Motif Discovery  
(finding repeated patterns) 

 

  

Winding  Dataset     
( The angular speed of reel 2 )   
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Are there any repeated 
patterns, of about this 
length        in the above 
time series? 
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Time Series Motif Discovery  
(finding repeated patterns) 

 

To find these 3 motifs would require about 6,250,000  
calls to the Euclidean Distance function! 



· Mining association rules in time series requires the discovery of motifs. 
These are referred to as primitive shapes and frequent patterns.  

· Several time series classification algorithms work by constructing typical 
prototypes of each class. These prototypes may be considered motifs.  

· Many time series anomaly/interestingness detection algorithms 
essentially consist of modeling normal behavior with a set of typical shapes 
(which we see as motifs), and detecting future patterns that are dissimilar to 
all typical shapes. 

· In robotics, Oates et al., have introduced a method to allow an 
autonomous agent to generalize from a set of qualitatively different 
experiences gleaned from sensors. We see these “experiences” as motifs. 

· In medical data mining, Caraca-Valente and Lopez-Chavarrias have 
introduced a method for characterizing a physiotherapy patient’s recovery 
based of the discovery of similar patterns. Once again, we see these 
“similar patterns” as motifs. 

•  Animation and video capture… (Tanaka and Uehara, Zordan and Celly) 

Why Find Motifs? 



Definition 1. Match: Given a positive real number R (called range) and a time series T 
containing a subsequence C beginning at position p and a subsequence M beginning at q, if 
D(C, M) ≤ R, then M is called a matching subsequence of C. 
 
Definition 2. Trivial Match: Given a time series T, containing a subsequence C beginning at 
position p and a matching subsequence M beginning at q, we say that M is a trivial match to 
C if either p = q or there does not exist a subsequence M’ beginning at q’ such that D(C, M’) 
> R, and either q < q’< p or p < q’< q. 
 
Definition 3. K-Motif(n,R):  Given a time series T, a subsequence length n and a range R, 
the most significant motif in T (hereafter called the 1-Motif(n,R)) is the subsequence C1 that 
has highest count of non-trivial matches (ties are broken by choosing the motif whose 
matches have the lower variance). The Kth most significant motif in T (hereafter called the K-
Motif(n,R) ) is the subsequence CK that has the highest count of non-trivial matches, and 
satisfies D(CK, Ci) > 2R, for all  1 ≤  i < K. 
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Assume that we have a time 
series T of length 1,000, and a 
motif of length 16, which occurs 
twice, at time T1 and time T58.  
 
 
We can build a hash table, keyed 
on the SAX words 

A simple worked example of the motif discovery algorithm 



 A mask {1,2} was randomly 
chosen, so the values in columns 
{1,2} were used to project matrix 
into buckets.  

Collisions are recorded by 
incrementing the appropriate 
location in the collision matrix  
 



A mask {2,4} was randomly 
chosen, so the values in columns 
{2,4} were used to project matrix 
into buckets. 

  

Once again, collisions are 
recorded by incrementing the 
appropriate location in the 
collision matrix 
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A Simple Experiment 
Let us imbed two motifs into a random walk time series, and see if 
we can recover them 
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Planted Motifs 
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Some Examples of Real 
Motifs 
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Finding	  Time	  Series	  Mo/fs	  on	  
Disk-‐Resident	  Data	  

Abdullah	  Mueen,	  Dr.	  
Eamonn	  Keogh	  	  

UC	  Riverside	  

	  
Nima	  Bigdely-‐Shamlo	  	  

Swartz	  Center	  for	  Computa/onal	  
Neuroscience,	  UCSD	  



Motif Discovery in Disk-Resident 
Datasets 

•  Large	  datasets	  
–  Light	  Curves	  of	  Stars.	  
–  Performance	  Counters	  of	  Data	  Centers.	  

•  Pseudo	  /me	  series	  dataset	  
–  “80	  million	  Tiny	  Images”	  

•  Database	  of	  normalized	  subsequences	  
– An	  hour	  long	  trace	  of	  EEG	  generates	  over	  one	  
million	  normalized	  subsequences.	  
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Block 3 and 
block 6 do not 

overlap. No 
comparison. 

Loaded	  
Blocks	  

bsf 

No 
Comparison 

1 Comparison 9 comparisons 1 comparison 

Block-‐Pair	  (3,5)	   Block-‐Pair	  (3,6)	   Block-‐Pair	  (4,5)	   Block-‐Pair	  (4,6)	  

11	  comparisons	  are	  made	  instead	  of	  9*16=144	  
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Speedup	  

Algorithm 
Largest 
Dataset 
Tested 

(thousands) 

Time for 
the 

Largest 
Dataset 

Estimated 
Time for 

4.0 
 million 

CompletelyInMemory 100 35 
minutes 

37.8 
days 

CompletelyInDisk 200 1.50 
days 

1.65 
years 

DAME 4,000 1.35 
days 

1.35 
days 

NoAdditionalStorage 
(normalization done in memory) 

200 4.82 
days 

5.28 
years 

√	   X 

X √	  

√	   √	  

√	   X 

Memory	   Disk	  



Performance	  Evalua/on	  
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Case	  Study:	  Image	  Mo/fs	  

•  Concatenated color 
histogram is considered as 
pseudo time series. 

•  Each time series is of 
length 256*3 = 768. 

•  80 million tiny images of 
32X32 resolution. 
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80	  million	  )ny	  images	  :	  collected	  by	  Antonio	  Torralba,	  Rob	  Fergus,	  William	  T.	  Freeman	  at	  MIT.	  
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Case	  Study:	  Image	  Mo/fs	  

•  DAME	  worked	  on	  the	  first	  40	  million	  /me	  series	  in	  ~6.5	  days	  	  
•  DAME	  found	  3,836,902	  images	  which	  have	  at	  least	  one	  duplicate.	  

–  1,719,443	  unique	  images.	  
•  542,603	  images	  have	  near	  duplicates	  with	  distance	  less	  than	  0.1.	  

Duplicate	  Image	   Near	  Duplicate	  Image	  



Conclusion	  

•  DAME:	  The	  first	  exact-‐mo/f	  discovery	  
algorithm	  that	  finds	  mo/f	  in	  disk-‐resident	  
data.	  

•  DAME	  is	  scalable	  to	  massive	  datasets	  of	  the	  
order	  of	  millions	  of	  /me	  series.	  

•  DAME	  successfully	  finds	  mo/f	  in	  EEG	  traces	  
and	  image	  databases.	  
	  



10001000101001000101010100001
010100010101110111101011010010
111010010101001110101010100101
00101010111010101001010101011
010101001011001011101111010001
110000101000010011101010001110
0001010101100101110101 

010110010111100110100100001000
101001101101011100001010101110
1111100011011011011111101001100
100100011010001111001101101000
101111000101101001101100110100
000010011000100111000001110100
1100101100001010010 

Here are two sets of bit strings. Which set is 
generated by a human and which one is 
generated by a computer? 
 

84 

VizTree	  -‐	  Mo6va6on	  



 

 

10001000101001000101010100001010
100010101110111101011010010111010
010101001110101010100101001010101
110101010010101010110101010010110
010111011110100011100001010000100
111010100011100001010101100101110
101 

010110010111100110100100001000101
001101101011100001010101110111110
001101101101111110100110010010001
101000111100110110100010111100010
110100110110011010000001001100010
011100000111010011001011000010100
10 

 “humans usually try to fake randomness by alternating patterns” 

Lets put the sequences into a depth limited 
suffix tree, such that the frequencies of all 
triplets are encoded in the thickness of 
branches…  85 

VizTree	  
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VizTree	  	  
(hFp://www.cs.gmu.edu/~jessica/viztree.htm)	  
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VizTree/ DiffTree  

DiffTree 
•  Convert the two time 
series to SAX 
•  Push the data in a 
depth-limited suffix tree 
•  Encode the frequencies 
as the line thickness 

•  Encode the 
difference of 
frequencies as the line 
color 

 
 

 
Blue lines  -  pattern is more common in A 
Green lines -  pattern is more common in B 
Red lines - pattern is equi-frequent in A and B 



89	  

•  Most algorithms still suffer a limitation: the length of 
motif needs to be given. 

•  Grammar = repeated patterns, repeated structure 

Grammar Induction 

Simple example of grammar from a string:  
Input string:  
    1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 
(Desired) Output Grammar: 

   R0      R1 R1 
   R1      R2 R2 
   R2      1 1 2 2 1 

        

Grammar-‐Based	  Mo6f	  Discovery	  
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SEQUITUR	  

•  Introduced by Nevill-Manning and Witten, 1996 
•  Online, linear-time, grammar-based compression algorithm 
•  Infers a context-free grammar from a sequence of symbols 
•  Works by compressing repeated patterns of input string 

 

What is SEQUITUR? 

•  Digram uniqueness 
•  Rule utility 
 

Policies of SEQUITUR 



            	  Input	  string:	  	  	  	  abcdabc	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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Example	  

 Grammar 
  S à a 

Digrams 



            	  Input	  string:	  	  	  	  abcdabc	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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Example	  

 Grammar 
  S à ab 

Digrams 
ab 



            	  Input	  string:	  	  	  	  abcdabc	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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Example	  

 Grammar 
  S à abc 

Digrams 
ab 
bc 



            	  Input	  string:	  	  	  	  abcdabc	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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Example	  

 Grammar 
  S à abcd 

Digrams 
ab 
bc 
cd 



            	  Input	  string:	  	  	  	  abcdabc	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
 
                                                    

95 

Example	  

 Grammar 
  S à abcda 

Digrams 
ab 
bc 
cd 
da 



            	  Input	  string:	  	  	  	  abcdabc	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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Example	  

 Grammar 
  S à abcdab 

Digrams 
ab 
bc 
cd 
da 

Enforcing digram uniqueness 
ab occurs twice 
Creating new rule A → ab 



            	  Input	  string:	  	  	  	  abcdabc	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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Example	  

 Grammar 
  S à AcdA 
  A à ab 

Digrams 
ab 
Ac 
cd 
dA Enforcing digram uniqueness 

ab occurs twice 
Creating new rule A → ab 



            	  Input	  string:	  	  	  	  abcdabc	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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Example	  

 Grammar 
  S à AcdAc 
  A à ab 

Digrams 
ab 
Ac 
cd 
dA Enforcing digram uniqueness 

Ac occurs twice 
Creating new rule B → Ac 



            	  Input	  string:	  	  	  	  abcdabc	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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Example	  

 Grammar 
  S à BdB 
  A à ab 
  B à Ac 

Digrams 
ab 
Ac 
Bd 
dB 

Enforcing digram uniqueness 
Ac occurs twice 
Creating new rule B → Ac 



            	  Input	  string:	  	  	  	  abcdabc	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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Example	  

 Grammar 
  S à BdB 
  B à abc 

Digrams 
ab 
Ac 
Bd 
dB 

Enforcing rule utility 
A occurs only once 
Removing A → ab 



Solution: SAXify the data! 
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c1S = caa caa cab cac ccc caa caa caa cab… 
   = caa1 cab3 cac4 ccc5 caa6 cab9 numerosity 

reduction 

There	  is	  a	  problem,	  however:	  6me	  series	  
are	  real-‐valued!	  
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!

GrammarViz:	  Variable-‐Length	  Mo6f	  Discovery	  

Yuan Li, Jessica Lin, and Tim Oates. 2012. Visualizing variable-length time series motifs. In 
Proceedings of the 2012 SIAM International Conference on Data Mining. Anaheim, CA. Apr 26-28. 
Pages 895-906. 
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!

GrammarViz:	  Variable-‐Length	  Mo6f	  Discovery	  
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Mul6variate	  Mo6fs	  
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Limita6ons	  

Grammar	  Rule	   Expanded	  Grammar	  Rule	  

R0	  −>	  R1	  R1	  R2	  R2	  R2	  R3	  3	  1	   1	  1	  1	  1	  2	  1	  3	  1	  1	  3	  1	  1	  1	  1	  1	  2	  1	  3	  1	  1	  3	  1	  1	  1	  1	  
1	  2	  1	  3	  1	  1	  3	  1	  1	  1	  1	  1	  2	  1	  3	  1	  1	  3	  1	  

R1	  −>	  1	  1	   1	  1	  

R2	  −>	  R3	  R4	  R1	  1	   2	  1	  3	  1	  1	  3	  1	  1	  1	  1	  1	  

R3	  −>	  2	  1	  R	  4	   2	  1	  3	  1	  1	  

R4	  −>	  3	  R1	   3	  1	  1	  

Input string: (11112131131)4  

•  Greedy algorithm   
•  Grammar found is not minimal! 



Tree	  Search	  for	  Grammar	  Induc6on	  
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•  Trigrams:	  any	  three	  adjacent	  symbols	  
•  A	  trigram	  is	  made	  of	  2	  digrams	  (e.g.,	  “abc”	  can	  be	  parsed	  

as	  a(bc)	  or	  (ab)c	  
•  Keep	  track	  of	  all	  digrams,	  and	  (selec/vely)	  subs/tute	  

repea/ng	  digrams	  with	  new	  symbols	  

11112…  

1111213113…  AA213113…  

A -> 11  

AA2B1B1  AA213A31  

AA2CC  

B -> 13  

C -> B1  

A11213A31  

A -> 11  

11112A1A1  

A -> 11  A -> 13  

11112BB  

B -> A1  

11112131131 
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Grammar	  Rule	   Expanded	  Grammar	  Rule	  

R0	  −>	  R1	  R1	   1	  1	  1	  1	  2	  1	  3	  1	  1	  3	  1	  1	  1	  1	  1	  2	  1	  3	  1	  1	  3	  1	  
1	  1	  1	  1	  2	  1	  3	  1	  1	  3	  1	  1	  1	  1	  1	  2	  1	  3	  1	  1	  3	  1	  

R1	  −>	  R2	  R2	   1	  1	  1	  1	  2	  1	  3	  1	  1	  3	  1	  1	  1	  1	  1	  2	  1	  3	  1	  1	  3	  1	  	  

R2	  −>	  R3	  R3	  2	  1	  3	  R4	   1	  1	  1	  1	  2	  1	  3	  1	  1	  3	  1	  

R3	  −>	  1	  1	   1	  1	  

R4	  −>	  R3	  3	  1	   1	  1	  3	  1	  

Tree	  Search	  for	  Grammar	  Induc6on	  

Input string: (11112131131)4  



  

Winding  Dataset     
( The angular speed of reel 2 )   

0   50 0   1000   150 0   2000   2500   
A   B   C   

Finding these 3 motifs requires about 6,250,000 calls to the Euclidean distance function 

Motifs Discovery Challenges  
How can we find motifs… 
 

•  Without having to specify the length/other parameters  
•  In massive datasets 
•  In streaming data 
•  While ignoring “background” motifs (ECG example) 
•  Under time warping, or uniform scaling  
•  While assessing their significance  



Anomaly (interestingness) detection 

  

We would like to be able to discover surprising (unusual, interesting, 
anomalous) patterns in time series. 
 
Note that we don’t know in advance in what way the time series 
might be surprising 
 
Also note that “surprising” is very context dependent, application 
dependent, subjective etc. 
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Simple Approaches I 
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Simple Approaches II 



Early statistical 
detection of anthrax 
outbreaks by 
tracking over-the-
counter medication 
sales 
 
Goldenberg, Shmueli,   
Caruana, and Fienberg 

  
  

Discrepancy Checking: Example 

normalized sales 
de-noised 
threshold 

  

  Actual value 
 
  Predicted value 
 
The actual value is 
greater than the predicted 
value, but still less than 
the threshold, so no alarm 
is sounded.  



Time Series Discord 
(Keogh and Lin, 2005) 

•  Discord: subsequence that is least similar to 
other subsequences 

•  Applications: 
– Anomaly detection 
– Clustering 
– Data cleaning  

ECG qtdb/sel102 
(excerpt) 



Image Discords 

What is the 
most unusual 
shape in this 
collection? 



Image Discords 

This one! 

Shape Discord: Given a collection of shapes S, the shape D 
is the discord of S if D has the largest distance to its nearest 
match. That is, ∀ shape C in S, the nearest match MC of C 
and the nearest match MD of D, Dist(D, MD) > Dist(C, MC).  



This one is even 
more subtle… 

Here is a subset 
of a large 

collection of 
petroglyphs 



Only one image shows 
an arrow stuck into 

the sheep 

1st Discord 

1st Discord 



Discord Example 

discord 

Cluster1 

Cluster2 



Background – Sliding Windows 

•  Use a sliding window to extract subsequences 



Time Series Discords 

•  Subsequence C of length n is said to be the 
discord if C has the largest distance to its 
nearest non-self match.  

•  Kth Time Series Discord 



Finding Discords: Brute-force 

•  [outer loop] For each subsequence in the time 
series, [inner loop] find the distance to its 
nearest match  

•  The subsequence that has the greatest such 
value is the discord (i.e. discord is the 
subsequence with the farthest nearest-
neighbor) 

•  O(m2) 



Function  [ dist, loc ] = Discord_Search(S) 
best_so_far_dist = 0 
best_so_far_loc = NaN 
for p  = 1 to size (S)                                     // begin outer loop                        
   nearest_neighbor_dist = infinity    
   for q  = 1 to size (S)                                  // begin inner loop 
      if p!= q                                                    // Don’t compare to self 
             if  RD(Cp , Cq )  < nearest_neighbor_dist 
                nearest_neighbor_dist = RD(Cp , Cq )   
            end 
      end                                                           
   end                                                            // end inner loop 
    if nearest_neighbor_dist > best_so_far_dist 
       best_so_far_dist = nearest_neighbor_dist 
       best_so_far_loc  = p 
    end 
end                                                                // end outer loop 
return [ best_so_far_dist, best_so_far_loc ] 

Finding Discords 0 2 4.2 1.1 2.3 8.5 

2 0 3 3.2 3.5 8.2 

4.2 3 0 1.2 9.2 9.7 

1.1 3.2 1.2 0 0.1 7.5 

2.3 3.5 9.2 0.1 0 7.6 

8.5 8.8 9.7 7.5 7.6 0 

1.1 2 1.2 0.1 0.1 7.5 

The code says… 
Find the smallest 
(non diagonal) value 
in each column, the 
largest of these is 
the discord 
 



Function  [ dist, loc ] = Heuristic_Search(S, Outer, Inner ) 
best_so_far_dist = 0 
best_so_far_loc = NaN 
for each index p  given by heuristic Outer   // begin outer loop                        
   nearest_neighbor_dist = infinity    
   for each index q  given  by heuristic Inner // begin inner loop 
      if p!= q                                                         
         if  RD(Cp , Cq )  < best_so_far_dist 
            break                                           // break out of inner loop 
         end 
         if  RD(Cp , Cq )  < nearest_neighbor_dist 
             nearest_neighbor_dist = RD(Cp , Cq )   
          end 
      end                                                           
   end                                                         // end inner loop 
    if nearest_neighbor_dist > best_so_far_dist 
       best_so_far_dist = nearest_neighbor_dist 
       best_so_far_loc  = p 
    end 
end                                                          // end outer loop 
return [ best_so_far_dist, best_so_far_loc ] 

 

Finding Discords, Fast 

The code now says… 
If while searching a 
given column, you find a 
distance less than 
nearest_neighbor_dist 
then that column 
cannot have the 
discord. 
 
The code also uses 
heuristics to order the 
search… 
 

0 2 4.2 1.1 2.3 8.5 

2 0 3 3.2 3.5 8.2 

4.2 3 0 1.2 9.2 9.7 

1.1 3.2 1.2 0 0.1 7.5 

2.3 3.5 9.2 0.1 0 7.6 

8.5 8.8 9.7 7.5 7.6 0 



Example 

5 
best-so-far = 5 



Example 

best-so-far = 5 
2 



Example – Optimal Ordering 

best-so-far = 10 



Example – Optimal Ordering 

best-so-far = 10 

5 



The Magic Heuristics 
 
•  In the outer loop, visit the columns in order of the 
Discord score 
•  In the inner loop, visit the row cells in order of 
nearest neighbor first 

The Magic 
Heuristics would 
reduce the time 
complexity from 

O(n2) algorithm to 
just O(n)!  

 

0 2 4.2 1.1 2.3 8.5 

2 0 3 3.2 3.5 8.2 

4.2 3 0 1.2 9.2 9.7 

1.1 3.2 1.2 0 0.1 7.5 

2.3 3.5 9.2 0.1 0 7.6 

8.5 8.8 9.7 7.5 7.6 0 



0 2 4.2 1.1 2.3 8.5 

2 0 3 3.2 3.5 8.2 

4.2 3 0 1.2 9.2 9.7 

1.1 3.2 1.2 0 0.1 7.5 

2.3 3.5 9.2 0.1 0 7.6 

8.5 8.8 9.7 7.5 7.6 0 

The Magic Heuristics 
 
•  In the outer loop, visit the columns in order of the 
Discord score 
•  In the inner loop, visit the row cells in order of 
nearest neighbor first 

Observations  
•  Visiting the columns in approximately order of the 
Discord score is still very helpful 
•  For the inner loop, we don’t really need visit the 
rows in order of nearest neighbor first, so long as 
we find a “near enough” neighbor early on 

We can try to 
approximate  Magic 
 



0 2 4.2 1.1 2.3 8.5 

2 0 3 3.2 3.5 8.2 

4.2 3 0 1.2 9.2 9.7 

1.1 3.2 1.2 0 0.1 7.5 

2.3 3.5 9.2 0.1 0 7.6 

8.5 8.8 9.7 7.5 7.6 0 

Approximately Magic 
Heuristics 

c a a 

c 

c 
b 

a 

c 

c 
b 

a 
c 

b 
a 
c b 
a 
c b 
a 

1 3 
2 

77 

9 

23 

731 

c 

Inserted into array Augmented Trie 
1 c a a 3 

2 c a b 1 

3 c a a 3 

:: :: :: :: :: 
:: :: :: :: :: 

c b b 2 

m-1 a c b 1 

m  b c a 2 

Image 1 

Time Series 1 

SAX Word 

Rotation invariance 
ignored here 



Time Series 
Discords 

January  June December 500 
1000 
1500 
2000 
2500 3rd Discord One years power demand at a Dutch research facility 1st Discord 2nd  Discord 

0 500 1000 1500 2000 
Stage II sleep  Eyes closed, awake or stage I sleep  Eyes open, awake 

Shallow breaths as waking cycle begins 

A time series showing a patients respiration (measured by thorax extension), as they wake up. A medical expert, Dr. J. 
Rittweger, manually segmented the data. The 1-discord is a very obvious deep breath taken as the patient opened their eyes. 
The 2-discord is much more subtle and impossible to see at this scale. A zoom-in suggests that Dr. J. Rittweger noticed a few 
shallow breaths that indicated the transition of sleeping stages. 
 
Institute for Physiology. Free University of Berlin. Data shows respiration (thorax extension), sampling rate 10 Hz. 

Power Demand 

Sleep Cycles 

0 100 200 300 400 500 600 700 

Dec 25 Sunday 

Liberation Day  Ascension Thursday  

Good Friday 
Easter Sunday 

0 100 200 300 400 500 600 700 

Typical Week from the Dutch 
Power Demand Dataset  



A cardiologist noted subtle anomalies in this dataset. Let us see if the discord algorithm can find them.  

0 500 1000 1500 2000 2500 -7 
-6 
-5 
-4 
-3 

How was the discord able to find this very 
subtle Premature ventricular contraction? 
Note that in the normal heartbeats, the ST 
wave increases monotonically, it is only in 
the  Premature ventricular contractions 
that there is an inflection.NB, this is not 
necessary true for all ECGS 
 

0 50 100 150 200 250 300 350 400 450 500 -6.5 
-6 

-5.5 
-5 

-4.5 
-4 

-3.5 
ST 
Wave 

Record 
qtdbsele0606 
from the 
PhysioBank QT 
Database (qtdb)  

Discords in Medical Data 



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Poppet pulled 
significantly out of 
the solenoid 
before energizing"

The De-
Energizing phase 
is normal"

Space Shuttle Marotta Valve Series 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Poppet pulled 
significantly out of 
the solenoid 
before energizing"

Space Shuttle Marotta Valve Series 

Example One 

Example Two 

1500 2000 2500 

Poppet pulled out of the  
solenoid before  

energizing 
Corresponding  
section of    
other cycles 

Discord 
1500 2000 2500 

Poppet pulled out of the  
solenoid before  

energizing 

0 50 100 
Discord 

0 50 100 
Discord 

Corresponding  
section of    
other cycles 

Discords in Space Shuttle Marotta Valve Series 

This discord is 
subtle, lets zoom 
in to see why it is 
a discord. 
 



0 2000 4000 6000 8000 10000 12000 14000 16000 

Premature ventricular contraction Premature ventricular contraction Supraventricular escape beat 

3-discord, d  = 18.9361, location = 4017  2-discord, d  = 21.7285, location = 10014  1-discord, d  = 25.0896, location = 10871  

The time series is record mitdb/x_mitdb/x_108 from the PhysioNet Web Server (The local copy in the UCR archive is 
called mitdbx_mitdbx_108.txt). It is a two feature time series, here we are looking at just the MLII column. 
Cardiologists from MIT have annotated the time series, here we have added colored makers to draw attention to those 
annotations.   
Here we show the results of finding the top 3 discords on this dataset. We chose a length of 600, because this a little longer 
than the average length of a single heartbeat.  

  

0 5000 10000 15000 

MIT-BIH Arrhythmia Database: Record 108 

r S r 

1st Discord 
2nd Discord 

3rd Discord 



Anomaly (interestingness) detection 
In spite of the nice example in the previous slide, the 
anomaly detection problem is wide open. 
 
How can we find interesting patterns… 
 

•  Without (or with very few) false positives…  
•  In truly massive datasets... 
•  In the face of concept drift… 
•  With human input/feedback… 
•  With annotated data… 
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	   	   	  Contrast-‐Set	  Mining	  

A motivating example: What differentiates German 
and Italian consumer electrical power demands? 

Jessica Lin and Eamonn Keogh. 2006. Group SAX: Extending the notion of contrast sets to time series and multimedia 
data. In Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in 
Databases. Berlin, Germany. Sept 18-22. Pages 284-296. Lecture Notes in Computer Science, Springer. 


