Mining Time Series Data 2

You go to the doctor because of chest pains. Your ECG looks strange...

Your doctor wants to search a database to find similar ECGs, in the hope that they will offer clues about your condition...
-How do we define similar?
Two questions:
-How do we search quickly?

Indexing Time Series

We have seen techniques for assessing the similarity of two time series.

However we have not addressed the problem of finding the best match to a query in a large database

The obvious solution, to retrieve and
 examine every item (sequential scanning), simply does not scale to large datasets.

We need some way to index the data...

We can project time series of length n into n dimension space.

The first value in C is the X -axis, the second value in C is the Y-axis etc.

One advantage of doing this is that we have abstracted away the details of "time series", now all query processing can be imagined as finding points in space...
...we can project the query time series Q into the same n-dimension space and simply look for the nearest points.

...the problem is that we have to look at every point to find the nearest neighbor..

We can group clusters of datapoints with "boxes", called Minimum Bounding Rectangles (MBR).

We can further recursively group MBRs into larger MBRs....
...these nested MBRs are organized as a tree (called a spatial access tree or a multidimensional tree). Examples include R-tree, Hybrid-Tree etc.

R10

R12

Spatial Access Methods

We can use Spatial Access Methods like the R-Tree to index our data, but...

The performance of R-Trees degrade exponentially with the number of dimensions. Somewhere above 6-20 dimensions the RTree degrades to linear scanning.

Often we want to index time series with hundreds, perhaps even thousands of features....

Data Mining is Constrained by Disk I/O

For example, suppose you have one gig of main memory and want to do K-means clustering...

> Clustering $\frac{1}{4}$ gig of data, 100 sec Clustering $\frac{1}{2}$ gig of data, 200 sec Clustering 1 gig of data, 400 sec Clustering 1.1 gigs of data, 20 hours

GEMINI GEneric Multimedia INdexIng

\{Christos Faloutsos\}

- Establish a distance metric from a domain expert.
- Produce a dimensionality reduction technique that reduces the dimensionality of the data from n to N, where N can be efficiently handled by your favorite SAM.
- Produce a distance measure defined on the N dimensional representation of the data, and prove that it obeys $D_{\text {indexspace }}(A, B) \leq D_{\text {true }}(A, B)$. i.e. The lower bounding lemma.
- Plug into an off-the-shelve SAM.

Notation for Dimensionality Reduction

For the future discussion of dimensionality reduction we will assume that
M is the number time series in our database.
n is the original dimensionality of the data.
(i.e. the length of the time series)
N is the reduced dimensionality of the data.
$C_{\text {Ratio }}=N / n$ is the compression ratio.

An Example of a
Dimensionality Reduction
Technique I

$n=128$

Raw

Data
0.4995
0.5264
0.5523
0.5761
0.5973
0.6153
0.6301
0.6420
0.6515
0.6596
0.6672
0.6751
0.6843
0.6954
0.7086
0.7240
0.7412
0.7595
0.7780
0.7956
0.8115
0.8247
0.8345
0.8407
0.8431
0.8423
0.8387

The graphic shows a time series with 128 points.

The raw data used to produce the graphic is also reproduced as a column of numbers (just the first 30 or so points are shown).

An Example of a Dimensionality Reduction Technique II

Raw
Data
0.4995
0.5264
0.5523
0.5761
0.5973
0.6153
0.6301
0.6420
0.6515
0.6596
0.6672
0.6751
0.6843
0.6954
0.7086
0.7240
0.7412
0.7595
0.7780
0.7956
0.8115
0.8247
0.8345
0.8407
0.8431
0.8423
0.8387

Fourier Coefficients

We can decompose the data into 64 pure sine waves using the Discrete Fourier Transform (just the first few sine waves are shown).

The Fourier Coefficients are reproduced as a column of numbers (just the first 30 or so coefficients are shown).

Note that at this stage we have not done dimensionality reduction, we have merely changed the representation...

An Example of a Dimensionality Reduction Technique III

We have discarded $\frac{15}{16}$ of the data.

Raw Data	Fourier Coefficients	Truncated Fourier Coefficients
0.4995	1.5698	1.5698
0.5264	$\underline{1.0485}$	$1.0485 \quad n=128$
0.5523	0.7160	$0.7160 \quad N=8$
0.5761	$\underline{0.8406}$	$\underline{0.8406} \quad N=8$
0.5973	0.3709	$0.3709 \quad C=1 / 16$
0.6153	$\underline{0.4670}$	${ }_{0.4670}^{0.267} \quad C_{\text {ratio }}=1 / 16$
0.6301	0.2667	0.2667 (avo
0.6420	0.1928	0.1928
0.6515	0.1635	
0.6596	$\underline{0.1602}$	
0.6672	0.0992	
0.6751	0.1282	... however, note that the first
0.6843 0.6954	0.1438	few sine waves tend to be the
$\begin{aligned} & 0.6954 \\ & 0.7086 \end{aligned}$	$\frac{0.1416}{0.1400}$	largest (equivalently the
0.7240	0.1412	largest (equivalcntry,
0.7412	0.1530	magnitude of the Fourier
0.7595 0.7780	$\frac{0.0795}{0.1013}$	coefficients tend to decrease
0.7956	0.1150	as you move down the
0.8115	0.1801	
0.8247	0.1082	column).
0.8345	0.0812	
0.8407	0.0347	
0.8431	0.0052	We can therefore truncate
0.8423	$\underline{0.0017}$	most of the small coefficients
0.8387 ...	0.0002	most of the smat coefficients
...	...	with little effect.

An Example of a Dimensionality Reduction Technique IIII

Raw Raw
Data 1 Data 2

0.4995	0.7412	1.5698	1.1198
0.5264	0.7595	1.0485	1.4322
0.5523	0.7780	0.7160	1.0100
0.5761	0.7956	0.8406	0.4326
0.5973	0.8115	0.3709	0.5609
0.6153	0.8247	0.4670	0.8770
0.6301	0.8345	0.2667	0.1557
0.6420	- 0.8407	$\underline{0.1928}$	0.4528
0.6515	- 0.8431		
0.6596	- 0.8423		
0.6672	- 0.8387	The Euclidean distance between	
$\begin{aligned} & 0.6751 \\ & 0.6843 \end{aligned}$	$\begin{array}{ll} - & 0.4995 \\ - & 0.5264 \end{array}$		
0.6954	- 0.5523	the two truncated Fourier	
0.7086	$-\quad 0.5761$ $-\quad 0.5073$	coefficient vectors is always less	
0.7240 0.7412	- 0.5973 $-\quad 0.6153$	than or equal to the Euclidean	
0.7595	- 0.6301	distance between the two raw data	
0.7780	- 0.6420		
0.7956	- 0.6515	vectors*.	
0.8115	- 0.6596		
0.8247	- 0.6672		
0.8345	- 0.6751	So DFT allows lower bounding!	
$\begin{aligned} & 0.8407 \\ & 0.8431 \end{aligned}$	$-\quad 0.6843$ $-\quad 0.6954$		
0.8423	- 0.7086		
0.8387	- 0.7240	*Parseval's Theore	

Mini Review for the Generic Data Mining Algorithm

We cannot fit all that raw data in main memory.
We can fit the dimensionally reduced data in main memory.

So we will solve the problem at hand on the dimensionally reduced data, making a few

Raw	Raw	
ita 1	Data 2	Raw Data n
.4995	0.7412	0.8115
.5264	0.5595	0.8247
.5523	0.7780	0.8345
.5761	0.7956	0.8407
.5973	0.8115	0.8431
.6153	0.8247	0.8433
.6301	0.8345	0.8387
.6420	0.8407	0.4995
.6515	0.8431	0.7412
.6596	0.8423	0.7595
.6672	0.8387	0.7780
.6751	0.4995	0.7956
.6843	0.5264	0.5264
.6954	0.5523	0.5523
.7086	0.5761	0.5761
.7240	0.5973	0.5973
.7412	0.6153	0.6153

Truncated Fourier Coefficients 1	Truncated Fourier Coefficients 2	Truncated Fourier Coefficients n
1.5698	1.1198	1.3434
$\underline{1.0485}$	$\underline{1.4322}$	$\underline{1.4343}$
$\underline{0.7160}$	$\underline{1.0100}$	1.4643
$\underline{0.8406}$	$\underline{0.4326}$	$\underline{0.7635}$
$\underline{0.3709}$	$\underline{0.5609}$	0.5448
$\underline{0.4670}$	$\underline{0.1557}$	$\underline{0.4464}$
$\underline{0.2667}$	$\underline{0.1928}$	$\underline{0.2126}$

Lower Bounding Revisited

- Lower bounding means the estimated distance in the reduced space is always less than or equal to the distance in the original space.

Why is Lower Bounding So Important?

We have 6 objects in 3-D space. We issue a query to find all objects within 1 unit of the point $(-3,0,-2) \ldots$

Why is Lower Bounding So Important?

The query successfully finds the object E .

Consider what would happen if we issued the same query after reducing the dimensionality to 2 , assuming the dimensionality technique obeys the lower bounding lemma...

Why is Lower Bounding So Important?

Example of a dimensionality reduction technique in which the lower bounding lemma is satisfied

Informally, it's OK if objects appear closer in the dimensionality reduced space, than in the true space.

Note that because of the dimensionality reduction, object \mathbf{F} appears to less than one unit from the query (it is a false alarm).

This is OK so long as it does not happen too much, since we can always retrieve it, then test it in the true, 3-D space. This would leave us with just \mathbf{E}, the correct answer.

Why is Lower Bounding So Important?

Example of a dimensionality reduction technique in which the lower bounding lemma is not satisfied
Informally, some objects appear
further apart in the dimensionality reduced space than in the true
space.

Note that because of the dimensionality reduction, object \mathbf{E} appears to be more than one unit from the query (it is a false dismissal).

This is unacceptable.
We have failed to find the true answer set to our query.

Discrete Fourier Transform I

Basic Idea: Represent the time series as a linear combination of sines and cosines, but keep only the first $n / 2$ coefficients.

Why $n / 2$ coefficients? Because the coefficients are symmetric: the $2^{\text {nd }}$ half is the repeat of the first half in reverse order

Jean Fourier
1768-1830

DFT does a good job concentrating energy in the first few coefficients
$C(t)=\sum_{k=1}^{n}\left(A_{k} \cos \left(2 \pi w_{k} t\right)+B_{k} \sin \left(2 \pi w_{k} t\right)\right)$

Excellent free Fourier Primer
Hagit Shatkay, The Fourier Transform - a Primer", Technical Report CS-95-37, Department of Computer Science, Brown University, 1995.
http://www.ncbi.nlm.nih.gov/CBBresearch/Postdocs/Shatkay/

Fourier Decomposition

Decompose a time-series into sum of sine waves

$$
\begin{aligned}
& \text { DFT: } X\left(f_{k / N}\right)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-\frac{j 2 \pi k n}{N}}, \quad k=0,1 \ldots N-1 \\
& \text { IDFT: } x(n)=\frac{1}{\sqrt{N}} \int_{n=0}^{N-1} X\left(f_{k / N}\right) e^{\frac{j 2 \pi k n}{N}}, \quad k=0,1 \ldots N-1 \\
& e^{i a}=\cos (a)+i \sin (a) \\
& X\left(f_{k / N}\right)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n)\left(\left(\cos \left(\frac{2 \pi k n}{N}\right)-i \sin \left(\frac{2 \pi k n}{N}\right)\right)\right.
\end{aligned}
$$

Fourier Coefficients

> "Every signal can be represented as a superposition of sines and cosines"

Fourier Decomposition

r^{-}	
X(f)	$x(\mathrm{n})$
-0.3633	-0.4446
$-0.6280+0.2709 i$	-0.9864
$-0.4929+0.0399 i$	-0.3254
$-1.0143+0.9520 i$	-0.6938
0.7200-1.0571i	-0.1086
$-0.0411+0.1674 i$	-0.3470
$-0.5120-0.3572 i$	0.5849
$0.9860+0.8043 i$	1.5927
$-0.3680-0.1296 i$	-0.9430
-0.0517-0.0830i	-0.3037
-0.9158 + 0.4481i	-0.7805
1.1212-0.6795i	-0.1953
$0.2667+0.1100 \mathrm{i}$	-0.3037
$0.2667-0.1100 i$	0.2381
$1.1212+0.6795 i$	2.8389
$-0.9158-0.4481 \mathrm{i}$	-0.7046
$-0.0517+0.0830 i$	-0.5529
$-0.3680+0.1296 i$	-0.6721
0.9860-0.8043i	0.1189
$-0.5120+0.3572 i$	0.2706
$-0.0411-0.1674 i$	-0.0003
$0.7200+1.0571 \mathrm{i}$	1.3976
-1.0143-0.9520i	-0.4987
-0.4929-0.0399i	-0.2387
-0.6280-0.2709i	-0.7588

```
fa = fft(a); % Fourier decomposition
fa(5:end) = 0; % keep first 5 coefficients (low frequencies)
reconstr = real(ifft(fa)); % reconstruct signal
```


Fourier Decomposition

How much space we gain by compressing random walk data?

- 1 coeff > 60\% of energy
- 10 coeff $>90 \%$ of energy

Fourier Decomposition

How much space we gain by compressing random walk data?

- 1 coeff > 60\% of energy
- 10 coeff $>90 \%$ of energy

Fourier Decomposition

How much space we gain by compressing random walk data?

- 1 coeff > 60\% of energy
- 10 coeff $>90 \%$ of energy

Fourier Decomposition

How much space we gain by compressing random walk data?

- 1 coeff > 60\% of energy
- 10 coeff $>90 \%$ of energy

Fourier Decomposition

How much space we gain by compressing random walk data?

- 1 coeff > 60\% of energy
- 10 coeff > 90\% of energy

Fourier Decomposition

Which coefficients are important?

- We can measure the 'energy' of each coefficient
$-\operatorname{Energy}=\operatorname{Real}\left(X\left(f_{k}\right)\right)^{2}+\operatorname{Imag}\left(X\left(f_{k}\right)\right)^{2}$

Random Walk

Periodogram


```
fa = fft(a); % Fourier decomposition
N = length(a); % how many?
fa = fa(1:ceil(N/2)); % keep first half only
mag = 2*abs(fa).^2; % calculate energy
```

Most of data-mining research uses first k coefficients:

- Good for random walk signals (eg stock market)
- Easy to 'index'
- Not good for general signals

Fourier Decomposition

Which coefficients are important?

- We can measure the 'energy’ of each coefficient
$-\operatorname{Energy}=\operatorname{Real}\left(X\left(f_{k}\right)\right)^{2}+\operatorname{Imag}\left(X\left(f_{k}\right)\right)^{2}$

Periodic Sequence

Usage of the coefficients with highest energy:

- Good for all types of signals
- Believed to be difficult to index
- CAN be indexed using metric trees

Code for Reconstructed Sequence $\times n$

```
a = load('randomWalk.dat');
a = (a-mean(a))/std(a);
fa=fft(a);
maxInd = ceil(length(a)/2);
N = length(a);
energy = zeros(maxInd-1, 1);
E = sum(a.^2);
for ind=2:maxInd,
    fa_N = fa;
    fa_N(ind+1:N-ind+1) = 0;
    r = real(ifft(fa_N));
% z-normalization
    % zero out unused
    % reconstruction
    plot(r, 'r','LineWidth',2); hold on;
    plot(a,'k');
    title(['Reconstruction using ' num2str(ind-1) 'coefficients']);
    set(gca,'plotboxaspectratio', [3 1 1]);
    axis tight
    % wait for key
    cla; % clear axis
```


Code for Plotting the Error

```
a = load('randomWalk.dat');
a = (a-mean(a))/std(a);
fa = fft(a);
maxInd = ceil(length(a)/2);
N = length(a);
energy = zeros(maxInd-1, 1);
E = sum(a.^2);
for ind=2:maxInd,
    fa_N = fa; % copy fourier
    fa_N(ind+1:N-ind+1) = 0; % zero out unused
    r = real(ifft(fa_N)); % reconstruction
    energy(ind-1) = sum(r.^2); % energy of reconstruction
    error(ind-1) = sum(abs(r-a).^2); % error
end
E = ones (maxInd-1, 1)*E;
error = E - energy;
ratio = energy ./ E;
subplot(1,2,1); % left plot
plot([1:maxInd-1], error, 'r', 'LineWidth',1.5);
subplot(1,2,2); % right plot
plot([1:maxInd-1], ratio, 'b', 'LineWidth',1.5);
```


Lower Bounding using Fourier coefficients

Parseval's Theorem states that energy in the frequency domain equals the energy in the time domain:

$$
\begin{aligned}
& \sum_{t=0}^{N-1}\left\|x(t)^{2}\right\|=\sum_{k=0}^{N-1}\left\|X\left(f_{k / N}\right)^{2}\right\| \\
& \text { or, that } \sum_{t=0}^{N-1}\|x(t)-y(t)\|^{2}=\sum_{k=0}^{N-1}\left\|X\left(f_{k / N}\right)-Y\left(f_{k / N}\right)\right\|^{2} \quad \text { Euclidean distance }
\end{aligned}
$$

If we just keep some of the coefficients, their sum of squares always underestimates (ie lower bounds) the Euclidean distance:

$$
\sum_{k=0}^{m}\left\|X\left(f_{k / N}\right)-Y\left(\left(f_{k / N}\right)\right)\right\|^{2} \leq \sum_{n=0}^{N-1}\|x(t)-y(t)\|^{2}, \quad m \leq N-1
$$

Lower Bounding using Fourier coefficients -Example

Fourier Decomposition

- O(nlogn) complexity
- Tried and tested
- Hardware implementations
- Many applications:
- compression
- smoothing
- periodicity detection
- Not good approximation for bursty signals
- Not good approximation for signals with flat and busy sections
(requires many coefficients)

Wavelets - Why exist?

- Similar concept with Fourier decomposition
- Fourier coefficients represent global contributions, wavelets are localized

HAAR Wavelets and Time Series

Multiresolution
Fast to compute: O(n)

HAAR Wavelet Example

| Full resolution | Resolution Averages Differences
 (coefficients)
 8 $\left(\begin{array}{ll}28159726)\end{array}\right.$
 4 (5384) $(-3-21-2)$
 2 (46) (12)
 1 5 -1 |
| :---: | :---: | :---: |

HAAR coefficients: $\left(\begin{array}{llllllll}5 & -1 & 1 & 2 & -3 & -2 & 1 & -2\end{array}\right)$

Wavelets (Haar) - Intuition

- Wavelet coefficients, still represent an inner product (projection) of the signal with some basis functions.
- These functions have lengths that are powers of two (full sequence length, half, quarter etc)

Wavelets in Matlab

Specialized Matlab interface for wavelets

07 Wavele	
Ele yeem Insert Iools Mindow Hep	
	Wavelet dib
	Level
$a_{5}{ }^{1}$	Analye
	Statisics
	Histograms
	Display mode
	Full Decompositio at level 5 -
	\ulcorner Show Sym
$\left.\frac{X+\left\|Y_{+}\right\| X+t}{X \cdot-\mid X Y} \right\rvert\,$	Clo°

See also:wavemenu

Code for Haar Wavelets

```
a = load('randomWalk.dat');
a = (a-mean(a))/std(a); % z-normalization
maxlevels = wmaxlev(length(a),'haar');
[Ca, La] = wavedec(a,maxlevels,'haar');
% Plot coefficients and MRA
for level = 1:maxlevels
    cla;
    subplot(2,1,1);
    plot(detcoef(Ca,La,level)); axis tight;
    title(sprintf('Wavelet coefficients - Level %d',level));
    subplot(2,1,2);
    plot(wrcoef('d',Ca,La,'haar',level)); axis tight;
    title(sprintf('MRA - Level %d',level));
    pause;
end
% Top-20 coefficient reconstruction
[Ca_sorted, Ca_sortind] = sort(Ca);
Ca_top20 = Ca; Ca_top20(Ca_sortind(1:end-19)) = 0;
a_top20 = waverec(Ca_top20,La,'haar');
figure; hold on;
plot(a, 'b'); plot(a_top20, 'r');
```


Wavelet Decomposition

- $O(n)$ complexity
- Hierarchical structure
- Progressive transmission
- Better localization
- Good for bursty signals
- Many applications:
- compression
- periodicity detection
- Most data-mining research still utilizes Haar wavelets because of their simplicity.

PAA (Piecewise Aggregate Approximation)

also featured as Piecewise Constant Approximation

- Represent time-series as a sequence of segments
- Essentially a projection of the Haar coefficients in time

PAA (Piecewise Aggregate Approximation)

also featured as Piecewise Constant Approximation

- Represent time-series as a sequence of segments
- Essentially a projection of the Haar coefficients in time

PAA (Piecewise Aggregate Approximation)

also featured as Piecewise Constant Approximation

- Represent time-series as a sequence of segments
- Essentially a projection of the Haar coefficients in time

PAA (Piecewise Aggregate Approximation)

also featured as Piecewise Constant Approximation

- Represent time-series as a sequence of segments
- Essentially a projection of the Haar coefficients in time

Reconstruction using 8coefficients

PAA (Piecewise Aggregate Approximation)

also featured as Piecewise Constant Approximation

- Represent time-series as a sequence of segments
- Essentially a projection of the Haar coefficients in time

PAA (Piecewise Aggregate Approximation)

also featured as Piecewise Constant Approximation

- Represent time-series as a sequence of segments
- Essentially a projection of the Haar coefficients in time

PAA Matlab Code

```
function data = paa(s, numCoeff)
% PAA(s, numcoeff)
% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)
N = length(s); _............leng.h..of..sequence.....................................N=8
segLen = N/numCoeff; ............s.ume.i.t..s.innte.ger................................. segLen sen
sN = reshape(s, segLen, numCoeff); % break in segments
avg = mean(sN); % average segments
data = repmat(avg, segLen, 1); % expand segments
data = data(:); % make column
```


PAA Matlab Code

```
function data = paa(s, numCoeff)
% PAA(s, numcoeff)
% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)
N = length(s); _..............n._....of..sequence...................................N N=8
```



```
sN = reshape(s, segLen, numCoeff) ;
% break in segments
avg = mean(sN);
    % average segments
data = repmat(avg, segLen, 1); % expand segments
data = data(:); % make column
```

S	1	2	3	4	5	6	7	8	numCoeff	4

$S N$	1	3	5	7
	2	4	6	8

PAA Matlab Code

```
function data = paa(s, numCoeff)
% PAA(s, numcoeff)
% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)
```



```
sN = reshape(s, segLen, numCoeff);
avg_ = mean(sN):
% break in segments
data = repmat(avg, segLen, 1);
% average segments
data = data(:); % make column
```

S	1	2	3	4	5	6	7	8	numCoeff	4

PAA Matlab Code

```
function data = paa(s, numCoeff)
% PAA(s, numcoeff)
% s: sequence vector (1xN)
% numCoeff: number of PAA segments
% data: PAA sequence (1xN)
N = length(s); _............length..of..sequence......................................N=8
```



```
sN = reshape(s, segLen, numCoeff); % break in segments
avg = mean(sN); 2 % average segments
data = repmat(avg, segLen, 1); % expand segments
data = data(:)'; % make row
```

S	1	2	3	4	5	6	7	8	numCoeff			
sN	1	3	5	7			data		1.5	3.5	5.5	7.5
	2	4	6	8					1.5	3.5	5.5	7.5

```
avg 1.5
```


PAA Matlab Code

```
function data = paa(s, numCoeff)
% PAA(s, numcoeff)
% s: sequence vector (1xN)
% numCoeff: number of PAA segments
% data: PAA sequence (1xN)
N = length(s); _..............n.....of..sequence..................................N N=8
```



```
sN = reshape(s, segLen, numCoeff); % break in segments
avg = mean(sN); % average segments
data = repmat(avg, segLen, 1); % expand segments
data = data(:)'; % make row
```

S	1	2	3	4	5	6	7	8	numCoeff				4			
sN	1	3	5	7			data		1.5	3.5	5.5	7.5				
	2	4	6	8					1.5	3.5	5.5	7.5				
avg	1.5	3.5	5.5	7.5					1.5	1.5	3.5	3.5	5.5	5.5	7.5	7.5

A Completely Pointless Slide

A piecewise constant approximate of a time series, and a piecewise constant approximation of me!

Piecewise Aggregate Approximation

APCA (Adaptive Piecewise Constant Approximation)

- Not all haar/PAA coefficients are equally important
- Intuition: Keep ones with the highest energy
- Segments of variable length
- APCA is good for bursty signals
- PAA requires 1 number per segment, APCA requires
2: [value, length]
E.g. 10 bits for a
sequence of 1024 points

Piecewise Linear Approximation (PLA)

- Approximate a sequence with multiple linear segments
- First such algorithms appeared in cartography for map approximation
- Many implementations
- Optimal
- Greedy Bottom-Up
- Greedy Top-down
- Genetic, etc

Piecewise Linear Approximation (PLA)

- Approximate a sequence with multiple linear segments
- First such algorithms appeared in cartography for map approximation

Piecewise Linear Approximation (PLA)

- Approximate a sequence with multiple linear segments
- First such algorithms appeared in cartography for map approximation

Piecewise Linear Approximation (PLA)

- Approximate a sequence with multiple linear segments
- First such algorithms appeared in cartography for map approximation

Piecewise Linear Approximation (PLA)

- Approximate a sequence with multiple linear segments
- First such algorithms appeared in cartography for map approximation

Piecewise Linear Approximation (PLA)

- Approximate a sequence with multiple linear segments
- First such algorithms appeared in cartography for map approximation

Piecewise Linear Approximation (PLA)

- O(nlogn) complexity for "bottom up" algorithm
- Incremental computation possible
- Provable error bounds
- Applications for:
- Image / signal simplification
- Trend detection
- Visually not very smooth or pleasing.

Singular Value Decomposition (SVD)

- SVD attempts to find the 'optimal' basis for describing a set of multidimensional points
- Objective: Find the axis ('directions') that describe better the data variance

Singular Value Decomposition (SVD)

- Each time-series is essentially a multidimensional point
- Objective: Find the ‘eigenwaves’ (basis) whose linear combination describes best the sequences. Eigenwaves are data-dependent.

A linear combination of the eigenwaves can produce any
sequence in the database

$$
A_{M x n}=U_{M x r} * \Sigma_{r x r} * V_{n x r}^{\top}
$$

Factoring of data array into 3 matrices
each of length n

Code for SVD / PCA

```
A = cumsum(randn (100,10));
% z-normalization
A = (A-repmat(mean(A),size(A,1),1))./repmat(std(A),size(A,1),1);
[U,S,V] = svd(A,O);
% Plot relative energy
figure; plot(cumsum(diag(S).^2)/norm(diag(S))^2);
set(gca, 'YLim', [0 1]); pause;
% Top-3 eigenvector reconstruction
A_top3 = U(:,1:3)*S (1:3,1:3) *V(:,1:3)';
% Plot original and reconstruction
figure;
for i = 1:10
    cla;
    subplot(2,1,1);
    plot(A(:,i));
    title('Original'); axis tight;
    subplot(2,1,2);
    plot(A_top3(:,i));
    title('Reconstruction'); axis tight;
    pause;
end
```


Singular Value Decomposition

- Optimal dimensionality reduction in Euclidean distance sense
- SVD is a very powerful tool in many domains:
- Websearch (PageRank)
- Cannot be applied for just one sequence. A set of sequences is required.
- Addition of a sequence in database requires recomputation
- Very costly to compute. Time: $\min \left\{\mathbf{O}\left(\mathrm{M}^{2} \mathrm{n}\right), \mathrm{O}\left(\mathrm{Mn}^{2}\right)\right.$ \} Space: O(Mn) M sequences of length n

We'll spend some time on SAX, since many recent time series pattern discovery algorithms use it

Why do we care so much about symbolic representations?

Symbolic Representations Allow:

- Hashing
- Suffix Trees
- Markov Models
- Utilize ideas from text processing/statistical

language processing/bioinformatics community

- Much less space requirement
- etc

SYM
DFT

There is one symbolic representation of time series, that allows...

- Lower bounding of Euclidean distance
- Lower bounding of the DTW distance
- Dimensionality Reduction
- Numerosity Reduction

SAX:

Symbolic Aggregate approXimation

- Lower bounds Euclidean distance
- Achieves dimensionality reduction

How do we obtain SAX?

Why a Gaussian?

Short time series subsequences tend to have a highly Gaussian distribution

A normal probability plot of the (cumulative) distribution of values from subsequences of length 128.

Normality Plots

Determining Breakpoints

Alphabet size

3	4	5	6	7	8	9	10
-0.43	-0.67	-0.84	-0.97	-1.07	-1.15	-1.22	-1.28
0.43	0	-0.25	-0.43	-0.57	-0.67	-0.76	-0.84
	0.67	0.25	0	-0.18	-0.32	-0.43	-0.52
		0.84	0.43	0.18	0	-0.14	-0.25
			0.97	0.57	0.32	0.14	0
				1.07	0.67	0.43	0.25
					1.15	0.76	0.52
						1.22	0.84
							1.28

$$
D(Q, C) \equiv \sqrt{\sum_{i=1}^{n}\left(q_{i}-c_{i}\right)^{2}}
$$

Euclidean Distance

$$
D R(\bar{Q}, \bar{C}) \equiv \sqrt{\frac{n}{w}} \sqrt{\sum_{i=1}^{w}\left(\bar{q}_{i}-\bar{c}_{i}\right)^{2}}
$$

PAA distance lower-bounds the

Euclidean Distance

$$
\begin{aligned}
& \hat{c}=\text { baabccbc } \\
& \hat{\imath} \hat{V} \hat{V} \hat{V} \hat{\imath}
\end{aligned}
$$

dist() can be implemented using a table lookup.

Computing String Distances

	a	b	c
a	0	0	0.86
b	0	0	0
c	0.86	0	0

Distance table

SAX: Symbolic
Aggregate approXimation
SAX is (for the first time) a symbolic representation that allows

- Lower bounding of Euclidean distance
- Dimensionality Reduction

- Numerosity Reduction

aaaaaabbbbbcccccebbccccdddddddd

Symbolic Approximations

- Linear complexity
- After 'symbolization' many tools from bioinformatics can be used
- Markov models
- Suffix-Trees, etc
- Number of regions (alphabet length) can affect the quality of result

Multidimensional Time-Series

- Catching momentum in the last decade
- Applications for mobile trajectories, sensor networks, epidemiology, etc

- Let's see how to approximate 2D trajectories with
Minimum Bounding Rectangles

Ari, are you sure the world is not 1D?

Aristotle

Multidimensional MBRs

Find Bounding rectangles that completely contain a trajectory given some optimization criteria (eg minimize volume)

On my income tax 1040 it says "Check this box if you are blind." I wanted to put a check mark about three inches away.

- Tom Lehrer, lecturing in "The Nature of Math"

So which dimensionality reduction is the best?

Comparison of all Dimensionality Reduction Techniques

- We have already compared features (Does representation X allow weighted queries, queries of arbitrary lengths, is it simple to implement...
- We can compare the indexing efficiency: How long does it take to find the best answer to the query.
- It turns out that the fairest way to measure this is to measure the number of times we have to retrieve an item from disk.

Comparison of Time Series Representation Methods

TLB on an ECG data set

\# 8 representation methods:
SAX, DFT, DWT, DCT, PAA, CHEB, APCA, IPLA
\# Use tightness of lower bounds (TLB) as a metric for comparison:

- TLB = LowerBoundDist / TrueEuclideanDist
\# The tightness of lower bounding (\Rightarrow pruning power, \Rightarrow effectiveness of the indexing) of different representation methods, for the most part, makes little difference on various data sets

TLB on a bursty data set

TLB on a periodic data set

We have seen different distance

 measures and time series representations- Many time series data mining tasks are really about
- Choosing the right representations, and/or
- Choosing the right distance measures

