
Mining Time Series Data 2 



 
Motivating example revisited… 

You go to the doctor 
because of chest pains. 
Your ECG looks 
strange… 
 
Your doctor wants to 
search a database to find 
similar ECGs, in the 
hope that they will offer 
clues about your 
condition... 

Two questions:  
• How do we define similar? 

• How do we search quickly? 

ECG 



Indexing Time Series 

We have seen techniques for assessing the similarity of 
two time series.  
 
However we have not addressed the problem of finding 
the best match to a query in a large database 

The obvious solution, to retrieve and 
examine every item (sequential 
scanning), simply does not scale to 
large datasets. 
 
We need some way to index the data... 

Query Q 



We can project time series 
of length n into n-
dimension space. 
 
The first value in C is the 
X-axis, the second value in 
C is the Y-axis etc. 
 
One advantage of doing 
this is that we have 
abstracted away the details 
of “time series”, now all 
query processing can be 
imagined as finding points 
in space... 



…we can project the query time 
series Q into the same n-dimension 
space and simply look for the nearest 
points. 

Q 

…the problem is that we have to look at 
every point to find the nearest neighbor.. 



R1!

R2!
R5!

R3!

R7! R9!

R8!

R6!

R4!

We can group clusters of datapoints 
with “boxes”, called Minimum 
Bounding Rectangles (MBR). 
 
 
 
 
 
 
 
We can further recursively group 
MBRs into larger MBRs….  



R10   R11  R12!

R1   R2  R3! R4   R5  R6! R7   R8  R9!

Data nodes containing points!

…these nested MBRs are organized 
as a tree (called a spatial access tree 
or a multidimensional tree). Examples 
include R-tree, Hybrid-Tree etc. 

R10! R11!

R12!



Spatial Access Methods  
 We can use Spatial Access Methods like the R-Tree to index our 

data, but… 
 
The performance of R-Trees degrade exponentially with the 
number of dimensions. Somewhere above 6-20 dimensions the R-
Tree degrades to linear scanning. 
 
Often we want to index time series with hundreds, perhaps even 
thousands of features…. 
 
 
 



Data Mining is Constrained by Disk 
I/O 

For example, suppose you have 
one gig of main memory and want 

to do K-means clustering… 

Clustering ¼ gig of data, 100 sec 
Clustering ½ gig of data, 200 sec 
Clustering 1 gig of data, 400 sec 

Clustering 1.1 gigs of data, 20 hours 

Bradley, M. Fayyad, & Reina: Scaling Clustering Algorithms to Large Databases. KDD 1998: 
9-15 



GEMINI GEneric Multimedia INdexIng 

•  Establish a distance metric from a domain expert. 	

•  Produce a dimensionality reduction technique that 

reduces the dimensionality of the data from n to N, 
where  N  can  be  efficiently  handled  by  your 
favorite SAM.	


•  Produce  a  distance  measure  defined  on  the  N 
dimensional representation of the data, and prove 
that  it  obeys   Dindexspace(A,B)   ≤   Dtrue(A,B).        
i.e. The lower bounding lemma.	


•  Plug into an off-the-shelve SAM. 

{Christos Faloutsos} 



Notation for Dimensionality Reduction  
For the future discussion of dimensionality reduction 
we will assume that 
 
M is the number time series in our database.  
 
n is the original dimensionality of the data.  
 
N is the reduced dimensionality of the data. 
 
CRatio = N/n is the compression ratio. 
 
 

(i.e. the length of the time series) 
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An Example of a 
Dimensionality Reduction 

Technique I 
     0.4995 

    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 
    0.6420 
    0.6515 
    0.6596 
    0.6672 
    0.6751 
    0.6843 
    0.6954 
    0.7086 
    0.7240 
    0.7412 
    0.7595 
    0.7780 
    0.7956 
    0.8115 
    0.8247 
    0.8345 
    0.8407 
    0.8431 
    0.8423 
    0.8387 
    … 

 

Raw 
Data 

The graphic shows a 
time series with 128 
points. 
 
The raw data used to 
produce the graphic is 
also reproduced as a 
column of numbers (just 
the first 30 or so points are 
shown). 

n = 128 
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An Example of a 
Dimensionality Reduction 

Technique II 
       1.5698 

    1.0485 
    0.7160 
    0.8406 
    0.3709 
    0.4670 
    0.2667 
    0.1928 
    0.1635 
    0.1602 
    0.0992 
    0.1282 
    0.1438 
    0.1416 
    0.1400 
    0.1412 
    0.1530 
    0.0795 
    0.1013 
    0.1150 
    0.1801 
    0.1082 
    0.0812 
    0.0347 
    0.0052 
    0.0017 
    0.0002 
    ... 

Fourier 
Coefficients 

    0.4995 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 
    0.6420 
    0.6515 
    0.6596 
    0.6672 
    0.6751 
    0.6843 
    0.6954 
    0.7086 
    0.7240 
    0.7412 
    0.7595 
    0.7780 
    0.7956 
    0.8115 
    0.8247 
    0.8345 
    0.8407 
    0.8431 
    0.8423 
    0.8387 
    … 

 

Raw 
Data 

We can decompose the 
data into 64 pure sine 
waves using the Discrete 
Fourier Transform (just the 
first few sine waves are 
shown). 
 
The Fourier Coefficients 
are reproduced as a 
column of numbers (just 
the first 30 or so 
coefficients are shown). 
 
Note that at this stage we 
have not done 
dimensionality reduction, 
we have merely changed 
the representation... 
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An Example of a 
Dimensionality Reduction 

Technique III 
     1.5698 

    1.0485 
    0.7160 
    0.8406 
    0.3709 
    0.4670 
    0.2667 
    0.1928 
     

Truncated 
Fourier 

Coefficients 

C’ 

We have 
discarded  
of the data. 

16
15

      1.5698 
    1.0485 
    0.7160 
    0.8406 
    0.3709 
    0.4670 
    0.2667 
    0.1928 
    0.1635 
    0.1602 
    0.0992 
    0.1282 
    0.1438 
    0.1416 
    0.1400 
    0.1412 
    0.1530 
    0.0795 
    0.1013 
    0.1150 
    0.1801 
    0.1082 
    0.0812 
    0.0347 
    0.0052 
    0.0017 
    0.0002 
    ... 

Fourier 
Coefficients 

    0.4995 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 
    0.6420 
    0.6515 
    0.6596 
    0.6672 
    0.6751 
    0.6843 
    0.6954 
    0.7086 
    0.7240 
    0.7412 
    0.7595 
    0.7780 
    0.7956 
    0.8115 
    0.8247 
    0.8345 
    0.8407 
    0.8431 
    0.8423 
    0.8387 
    … 

 

Raw 
Data 

 
… however, note that the first 
few sine waves tend to be the 
largest (equivalently, the 
magnitude of the Fourier 
coefficients tend to decrease 
as you move down the 
column). 
 
We can therefore truncate 
most of the small coefficients 
with little effect.  

n = 128 
N = 8 
Cratio = 1/16 
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An Example of a 
Dimensionality Reduction 

Technique IIII 
 

Sorted 
Truncated 

Fourier 
Coefficients 

C’ 

      1.5698 
    1.0485 
    0.7160 
    0.8406 
    0.3709 
    0.1670 
    0.4667 
    0.1928 
    0.1635 
    0.1302 
    0.0992 
    0.1282 
    0.2438 
    0.2316 
    0.1400 
    0.1412 
    0.1530 
    0.0795 
    0.1013 
    0.1150 
    0.1801 
    0.1082 
    0.0812 
    0.0347 
    0.0052 
    0.0017 
    0.0002 
    ... 

Fourier 
Coefficients 

    0.4995 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 
    0.6420 
    0.6515 
    0.6596 
    0.6672 
    0.6751 
    0.6843 
    0.6954 
    0.7086 
    0.7240 
    0.7412 
    0.7595 
    0.7780 
    0.7956 
    0.8115 
    0.8247 
    0.8345 
    0.8407 
    0.8431 
    0.8423 
    0.8387 
    … 

 

Raw 
Data 

     1.5698 
    1.0485 
    0.7160 
    0.8406 
    0.2667 
    0.1928 
     0.1438 
    0.1416 

Instead of taking the first few 
coefficients, we could take 
the best coefficients 
 
This can help greatly in terms 
of approximation quality, but 
makes indexing hard 
(impossible?). 
 
Note this applies also to Wavelets 



An Example of a 
Dimensionality Reduction 

Technique IIII 
     1.5698 

    1.0485 
    0.7160 
    0.8406 
    0.3709 
    0.4670 
    0.2667 
    0.1928 
     

Truncated 
Fourier 

Coefficients 1 
    0.4995 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 
    0.6420 
    0.6515 
    0.6596 
    0.6672 
    0.6751 
    0.6843 
    0.6954 
    0.7086 
    0.7240 
    0.7412 
    0.7595 
    0.7780 
    0.7956 
    0.8115 
    0.8247 
    0.8345 
    0.8407 
    0.8431 
    0.8423 
    0.8387 
    … 
    … 
 

Raw 
Data 1 

    0.7412 
    0.7595 
    0.7780 
    0.7956 
    0.8115 
    0.8247 
    0.8345 
    0.8407 
    0.8431 
    0.8423 
    0.8387 
    0.4995 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 
    0.6420 
    0.6515 
    0.6596 
    0.6672 
    0.6751 
    0.6843 
    0.6954 
    0.7086 
    0.7240 
 
    … 
    … 

 

Raw 
Data 2 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
 
 

 

    1.1198 
    1.4322 
    1.0100 
    0.4326 
    0.5609 
    0.8770 
    0.1557 
    0.4528 
     

Truncated 
Fourier 

Coefficients 2 

- 
- 
- 
- 
- 
- 
- 
- 

 
The Euclidean distance between 
the two truncated Fourier 
coefficient vectors is always less 
than or equal to the Euclidean 
distance between the two raw data 
vectors*.  
 
So DFT allows lower bounding! 
 
*Parseval's Theorem  

( ) ( )∑ −≡
=

n

i
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1
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    1.5698 
    1.0485 
    0.7160 
    0.8406 
    0.3709 
    0.4670 
    0.2667 
    0.1928 
     

Truncated 
Fourier 

Coefficients 1 

    0.4995 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 
    0.6420 
    0.6515 
    0.6596 
    0.6672 
    0.6751 
    0.6843 
    0.6954 
    0.7086 
    0.7240 
    0.7412 
    0.7595 
    0.7780 
    0.7956 
     

Raw 
Data 1 

    0.7412 
    0.7595 
    0.7780 
    0.7956 
    0.8115 
    0.8247 
    0.8345 
    0.8407 
    0.8431 
    0.8423 
    0.8387 
    0.4995 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 
    0.6420 
    0.6515 
     

Raw 
Data 2 

    1.1198 
    1.4322 
    1.0100 
    0.4326 
    0.5609 
    0.8770 
    0.1557 
    0.4528 
     

Truncated 
Fourier 

Coefficients 2 

Mini Review for the Generic Data Mining Algorithm 

    0.8115 
    0.8247 
    0.8345 
    0.8407 
    0.8431 
    0.8423 
    0.8387 
    0.4995 
    0.7412 
    0.7595 
    0.7780 
    0.7956 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 
    0.6420 
    0.6515 
     

Raw 
Data n 

    1.3434 
    1.4343 
    1.4643 
    0.7635 
    0.5448 
    0.4464 
    0.7932 
    0.2126 
     

Truncated 
Fourier 

Coefficients n 

We cannot fit all that raw data in main memory.  
We can fit the dimensionally reduced data in main memory. 
 

So we will solve the problem at hand on the 
dimensionally reduced data, making a few 
accesses to the raw data were necessary, 
and, if we are careful, the lower bounding 
property will insure that we get the right 
answer! 

Disk 

Main 
Memory 



•  Lower bounding means the estimated distance in the reduced space is 
always less than or equal to the distance in the original space. 

Lower Bounding Revisited   

S 

Q 

( )∑ −≡
=

n

i
ii sq

1

2
D(Q,S) ∑ = − −−≡

M

i iiii svqvsrsr
1

2
1 ))((DLB(Q’,S’) 

DLB(Q’,S
’) 

Q’ 

S’ 

Lower bounding means that for all Q and S, we have:  

DLB(Q’,S’) ≤ D(Q,S) 

Raw Data 
 
 
 
 
 

Approximation  
or  

“Representation” 
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-3 -2 -1 0 1 2 3 -1 
-0.5 

0 
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1 
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3 A 

E 
D

C 

B 
F 

We have 6 objects in 3-D space. We issue a query 
to find all objects within 1 unit of  

the point (-3, 0, -2)... 
 

Why is Lower Bounding So Important? 



20 

Consider what would happen if 
we issued the same query after 
reducing the dimensionality to 
2, assuming the dimensionality 

technique obeys the lower 
bounding lemma... 

-4 -3 -2 -1 0 1 2 3 

-3 -2 -1 0 1 2 3 -1 

0 

1 

2 

3 A 

F 

E 
D

C 

B 

Why is Lower Bounding So Important? 

The query successfully 
finds the object E.   
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C F 
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Informally, it’s OK if objects appear 
closer in the dimensionality reduced 

space, than in the true space.  

Example of a dimensionality reduction technique in which 
the lower bounding lemma is satisfied  

Note that because of the 
dimensionality reduction, 

object F appears to less than 
one unit from the query (it is a 

false alarm). 
 

This is OK so long as it does 
not happen too much, since 
we can always retrieve it, 

then test it in the true, 3-D 
space. This would leave us 

with just E, the correct 
answer. 

Why is Lower Bounding So Important? 
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E

Informally, some objects appear 
further apart in the dimensionality 

reduced space than in the true 
space.  

Example of a dimensionality reduction technique  in which 
the lower bounding lemma is not satisfied  

Note that because of the 
dimensionality reduction, 

object E appears to be more 
than one unit from the query (it 

is a false dismissal). 
 

This is unacceptable.  
 

We have failed to find the true 
answer set to our query.  

Why is Lower Bounding So Important? 



  Time Series  
Representations   

  
Data Adaptive   Non Data Adaptive   

Spectral   Wavelets   Piecewise   
Aggregate   

Approximation   
Piecewise  

Polynomial   Symbolic   Singular   
Value   

Decomposition   
Random   

Mappings   
Piecewise   

Linear   
Approximation   

Adaptive   
Piecewise   
Constant   

Approximat ion   
  

Discrete   
Fourier   

Transform   
Discrete   
Cosine   

Transform   
Haar   Daubechies   

dbn   n > 1   Coiflets   Symlets   

Sorted  
Coefficients   

Orthonormal   Bi - Orthonormal   
Interpolation   Regression   

Trees   

Natural  
Language   Strings   
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Jean Fourier 
1768-1830 
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Discrete Fourier 
Transform I 

Excellent free Fourier Primer 

Hagit Shatkay, The Fourier Transform - a Primer'', Technical Report 
CS-95-37, Department of Computer Science, Brown University, 1995.  

http://www.ncbi.nlm.nih.gov/CBBresearch/Postdocs/Shatkay/ 

Basic Idea: Represent the time 
series as a linear combination of 
sines and cosines, but keep only the 
first n/2 coefficients. 
 
Why n/2 coefficients? Because the 
coefficients are symmetric: the 2nd half 
is the repeat of the first half in reverse 
order 
 
DFT does a good job concentrating 
energy in the first few coefficients 

∑
=

+=
n

k
kkkk twBtwAtC

1

))2sin()2cos(()( ππ



Fourier Decomposition 
DFT: 

IDFT: 

“Every	  signal	  can	  be	  
represented	  as	  a	  
superposi4on	  of	  sines	  
and	  cosines”	  

Decompose a time-series into sum of sine waves 

X( fk/N )=
1
N

x(n)((cos(2πkn
N

)− i sin(2πkn
N

))
n=0

N−1

∑

eia = cos(a)+ i sin(a)



Fourier Decomposition 
Decompose a time-series into sum of sine waves 

fa = fft(a); % Fourier decomposition���
fa(5:end) = 0; % keep first 5 coefficients (low frequencies) 
reconstr = real(ifft(fa)); % reconstruct signal 

DFT: 

IDFT: 

  -0.4446 

   -0.9864 

   -0.3254 

   -0.6938 

   -0.1086 

   -0.3470 

    0.5849 

    1.5927 

   -0.9430 

   -0.3037 

   -0.7805 

   -0.1953 

   -0.3037 

    0.2381 

    2.8389 

   -0.7046 

   -0.5529 

   -0.6721 

    0.1189 

    0.2706 

   -0.0003 

    1.3976 

   -0.4987 

   -0.2387 

   -0.7588 

x(n) 

 -0.3633           

  -0.6280 + 0.2709i 

  -0.4929 + 0.0399i 

  -1.0143 + 0.9520i 

   0.7200 - 1.0571i 

  -0.0411 + 0.1674i 

  -0.5120 - 0.3572i 

   0.9860 + 0.8043i 

  -0.3680 - 0.1296i 

  -0.0517 - 0.0830i 

  -0.9158 + 0.4481i 

   1.1212 - 0.6795i 

   0.2667 + 0.1100i 

   0.2667 - 0.1100i 

   1.1212 + 0.6795i 

  -0.9158 - 0.4481i 

  -0.0517 + 0.0830i 

  -0.3680 + 0.1296i 

   0.9860 - 0.8043i 

  -0.5120 + 0.3572i 

  -0.0411 - 0.1674i 

   0.7200 + 1.0571i 

  -1.0143 - 0.9520i 

  -0.4929 - 0.0399i 

  -0.6280 - 0.2709i 

X(f) 

Life is complex, it has both real and imaginary parts.	




Fourier Decomposition 
How much space we gain by compressing random walk data? 

 

§  1 coeff > 60% of energy 

§  10 coeff > 90% of energy 
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-5 

0 

5 

Reconstruction using 1coefficients 



Fourier Decomposition 
How much space we gain by compressing random walk data? 

 

§  1 coeff > 60% of energy 

§  10 coeff > 90% of energy 
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Reconstruction using 2coefficients 



Fourier Decomposition 
How much space we gain by compressing random walk data? 

 

§  1 coeff > 60% of energy 

§  10 coeff > 90% of energy 
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Reconstruction using 7coefficients 



Fourier Decomposition 
How much space we gain by compressing random walk data? 

 

§  1 coeff > 60% of energy 

§  10 coeff > 90% of energy 

 

50 100 150 200 250 

-5 

0 

5 

Reconstruction using 20coefficients 
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Fourier Decomposition 
How much space we gain by compressing random walk data? 

 

§  1 coeff > 60% of energy 

§  10 coeff > 90% of energy 

 



Fourier Decomposition 
Which coefficients are important? 

–  We can measure the ‘energy’ of each coefficient 

–  Energy = Real(X(fk))2 + Imag(X(fk))2 

 
   Most of data-mining research 

uses first k coefficients: 

§  Good for random walk 
signals (eg stock market) 

§  Easy to ‘index’ 

§  Not good for general signals 

fa = fft(a); % Fourier decomposition 
N = length(a); % how many? 
fa = fa(1:ceil(N/2)); % keep first half only 
mag = 2*abs(fa).^2;  % calculate energy 



Fourier Decomposition 
Which coefficients are important? 

–  We can measure the ‘energy’ of each coefficient 

–  Energy = Real(X(fk))2 + Imag(X(fk))2 

 
   Usage of the coefficients with 

highest energy: 

§  Good for all types of signals 

§  Believed to be difficult to 
index 

§  CAN be indexed using 
metric trees 



Code for Reconstructed Sequence 
a = load('randomWalk.dat');!
a = (a-mean(a))/std(a);         % z-normalization!
!
fa = fft(a);!
!
maxInd = ceil(length(a)/2);     % until the middle!
N = length(a);                  !
!
energy = zeros(maxInd-1, 1);!
E = sum(a.^2);                  % energy of a!
!
for ind=2:maxInd,!
    !
    fa_N = fa;                  % copy fourier!
    fa_N(ind+1:N-ind+1) = 0;    % zero out unused!
    r = real(ifft(fa_N));       % reconstruction!
    !
    plot(r, 'r','LineWidth',2); hold on;!
    plot(a,'k');!
    title(['Reconstruction using ' num2str(ind-1) 'coefficients']);!
    set(gca,'plotboxaspectratio', [3 1 1]);!
    axis tight!
    pause; ! !      % wait for key!
    cla;!         !      % clear axis!
end!

 0           

  -0.6280 + 0.2709i 

  -0.4929 + 0.0399i 

  -1.0143 + 0.9520i 

   0.7200 - 1.0571i 

  -0.0411 + 0.1674i 

  -0.5120 - 0.3572i 

   0.9860 + 0.8043i 

  -0.3680 - 0.1296i 

  -0.0517 - 0.0830i 

  -0.9158 + 0.4481i 

   1.1212 - 0.6795i 

   0.2667 + 0.1100i 

   0.2667 - 0.1100i 

   1.1212 + 0.6795i 

  -0.9158 - 0.4481i 

  -0.0517 + 0.0830i 

  -0.3680 + 0.1296i 

   0.9860 - 0.8043i 

  -0.5120 + 0.3572i 

  -0.0411 - 0.1674i 

   0.7200 + 1.0571i 

  -1.0143 - 0.9520i 

  -0.4929 - 0.0399i 

  -0.6280 - 0.2709i 

X(f) 

keep 

Ignore 

keep 



Code for Plotting the Error 
a = load('randomWalk.dat'); 
a = (a-mean(a))/std(a);         % z-normalization 
fa = fft(a); 
maxInd = ceil(length(a)/2);     % until the middle 
N = length(a);                   
energy = zeros(maxInd-1, 1); 
E = sum(a.^2);                  % energy of a 
 
for ind=2:maxInd, 
    fa_N = fa;                  % copy fourier 
    fa_N(ind+1:N-ind+1) = 0;    % zero out unused 
    r = real(ifft(fa_N));       % reconstruction 
     
    energy(ind-1) = sum(r.^2);  % energy of reconstruction 
    error(ind-1) = sum(abs(r-a).^2); % error 
end 
 
E = ones(maxInd-1, 1)*E;         
error = E - energy; 
ratio = energy ./ E; 
 
subplot(1,2,1);                 % left plot 
plot([1:maxInd-1], error, 'r', 'LineWidth',1.5);  
subplot(1,2,2);                 % right plot 
plot([1:maxInd-1], ratio, 'b', 'LineWidth',1.5); 

This is the same 



Lower Bounding using Fourier 
coefficients 

     Parseval’s Theorem states that energy in the frequency domain equals the 
energy in the time domain: 

Euclidean distance or, that 

If we just keep some of the coefficients, their sum of squares always 
underestimates (ie lower bounds) the Euclidean distance: 



Lower Bounding using Fourier 
coefficients -Example 

x = cumsum(randn(100,1));!
y = cumsum(randn(100,1));!
euclid_Time = sqrt(sum((x-y).^2));!
!
fx = fft(x)/sqrt(length(x));  
fy = fft(y)/sqrt(length(x));!
euclid_Freq = sqrt(sum(abs(fx - fy).^2));!

x 

y 

Note the normalization 

120.9051 

120.9051 

Keeping 10 coefficients  
the distance is:  
115.5556 < 120.9051 



Fourier Decomposition 

§  O(nlogn) complexity 

§  Tried and tested 

§  Hardware implementations 

§  Many applications: 
–  compression 

–  smoothing  
–  periodicity detection 

§  Not good approximation for 
bursty signals  

§  Not good approximation for 
signals with flat and busy 
sections 
(requires many coefficients) 



Wavelets – Why exist? 
§  Similar concept with Fourier decomposition 

§  Fourier coefficients represent global contributions,  
wavelets are localized 

     Fourier is good for smooth, random walk data,  
but not for bursty data or flat data 
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n  Multiresolution 
n  Fast to compute: O(n) 

HAAR Wavelets and Time Series 



HAAR Wavelet Example 

Full resolution    

HAAR coefficients: (5  -1  1  2  -3  -2  1  -2) 



Wavelets (Haar) - Intuition 
§  Wavelet coefficients, still represent an inner product 

(projection) of the signal with some basis functions.  

§  These functions have lengths that are powers of two (full 
sequence length, half, quarter etc) 

See also:wavemenu 

Haar coefficients: {c, d00, d10, d11,…} 
 

D
c+d00 

c-d00 

etc 

An arithmetic example 
 X = [9,7,3,5] 

Haar = [6,2,1,-1] 

 

c = 6 = (9+7+3+5)/4 

c + d00 = 6+2 = 8 = (9+7)/2 

c - d00 = 6-2 = 4 = (3+5)/2 

etc 



Wavelets in Matlab 
    Specialized Matlab interface  

for wavelets 

See also:wavemenu 



Code for Haar Wavelets 
a = load('randomWalk.dat'); 
a = (a-mean(a))/std(a);         % z-normalization 
maxlevels = wmaxlev(length(a),'haar'); 
[Ca, La] = wavedec(a,maxlevels,'haar'); 
 
% Plot coefficients and MRA 
for level = 1:maxlevels 
    cla; 
    subplot(2,1,1); 
    plot(detcoef(Ca,La,level)); axis tight; 
    title(sprintf('Wavelet coefficients – Level %d',level)); 
    subplot(2,1,2); 
    plot(wrcoef('d',Ca,La,'haar',level)); axis tight; 
    title(sprintf('MRA – Level %d',level)); 
    pause; 
end 
 
% Top-20 coefficient reconstruction 
[Ca_sorted, Ca_sortind] = sort(Ca); 
Ca_top20 = Ca; Ca_top20(Ca_sortind(1:end-19)) = 0; 
a_top20 = waverec(Ca_top20,La,'haar'); 
figure; hold on; 
plot(a, 'b'); plot(a_top20, 'r'); 
 



Wavelet Decomposition 

§  O(n) complexity 

§  Hierarchical structure 

§  Progressive transmission 

§  Better localization 

§  Good for bursty signals 

§  Many applications: 
–  compression  

–  periodicity detection 

§  Most data-mining research 
still utilizes Haar wavelets 
because of their simplicity. 



PAA (Piecewise Aggregate 
Approximation) 

§  Represent time-series as a sequence of segments 

§  Essentially a projection of the Haar coefficients in time 

also featured as Piecewise Constant Approximation 
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Reconstruction using 1coefficients 



PAA (Piecewise Aggregate 
Approximation) 

§  Represent time-series as a sequence of segments 

§  Essentially a projection of the Haar coefficients in time 

also featured as Piecewise Constant Approximation 
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PAA (Piecewise Aggregate 
Approximation) 

§  Represent time-series as a sequence of segments 

§  Essentially a projection of the Haar coefficients in time 

also featured as Piecewise Constant Approximation 
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PAA (Piecewise Aggregate 
Approximation) 

§  Represent time-series as a sequence of segments 

§  Essentially a projection of the Haar coefficients in time 

also featured as Piecewise Constant Approximation 
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PAA (Piecewise Aggregate 
Approximation) 

§  Represent time-series as a sequence of segments 

§  Essentially a projection of the Haar coefficients in time 

also featured as Piecewise Constant Approximation 
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PAA (Piecewise Aggregate 
Approximation) 

§  Represent time-series as a sequence of segments 

§  Essentially a projection of the Haar coefficients in time 

also featured as Piecewise Constant Approximation 
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Reconstruction using 32coefficients 



PAA Matlab Code 
function data = paa(s, numCoeff) 
% PAA(s, numcoeff)  
% s: sequence vector (Nx1 or Nx1) 
% numCoeff: number of PAA segments 
% data: PAA sequence (Nx1) 
 
N = length(s);          % length of sequence 
segLen = N/numCoeff;    % assume it's integer 
 
sN = reshape(s, segLen, numCoeff);  % break in segments 
avg = mean(sN);                     % average segments 
data = repmat(avg, segLen, 1);      % expand segments 
data = data(:);                     % make column 

1 2 3 4 5 6 7 8 s numCoeff 4 

N=8 
segLen = 2 



PAA Matlab Code 
function data = paa(s, numCoeff) 
% PAA(s, numcoeff)  
% s: sequence vector (Nx1 or Nx1) 
% numCoeff: number of PAA segments 
% data: PAA sequence (Nx1) 
 
N = length(s);          % length of sequence 
segLen = N/numCoeff;    % assume it's integer 
 
sN = reshape(s, segLen, numCoeff);  % break in segments 
avg = mean(sN);                     % average segments 
data = repmat(avg, segLen, 1);      % expand segments 
data = data(:);                     % make column 

1 2 3 4 5 6 7 8 s numCoeff 4 

N=8 
segLen = 2 

2 4 

sN 1 

2 

3 

4 

5 

6 

7 

8 



PAA Matlab Code 
function data = paa(s, numCoeff) 
% PAA(s, numcoeff)  
% s: sequence vector (Nx1 or Nx1) 
% numCoeff: number of PAA segments 
% data: PAA sequence (Nx1) 
 
N = length(s);          % length of sequence 
segLen = N/numCoeff;    % assume it's integer 
 
sN = reshape(s, segLen, numCoeff);  % break in segments 
avg = mean(sN);                     % average segments 
data = repmat(avg, segLen, 1);      % expand segments 
data = data(:);                     % make column 

1 2 3 4 5 6 7 8 s numCoeff 4 

N=8 
segLen = 2 

sN 1 

2 

3 

4 

5 

6 

7 

8 

avg 1.5 3.5 5.5 7.5 



PAA Matlab Code 
function data = paa(s, numCoeff) 
% PAA(s, numcoeff)  
% s: sequence vector (1xN) 
% numCoeff: number of PAA segments 
% data: PAA sequence (1xN) 
 
N = length(s);          % length of sequence 
segLen = N/numCoeff;    % assume it's integer 
 
sN = reshape(s, segLen, numCoeff);  % break in segments 
avg = mean(sN);                     % average segments 
data = repmat(avg, segLen, 1);      % expand segments 
data = data(:)’;                    % make row 

1 2 3 4 5 6 7 8 s numCoeff 4 

N=8 
segLen = 2 

sN 1 

2 

3 

4 

5 

6 

7 

8 

avg 1.5 3.5 5.5 7.5 

1.5 3.5 5.5 7.5 

1.5 3.5 5.5 7.5 

2 

data 



PAA Matlab Code 
function data = paa(s, numCoeff) 
% PAA(s, numcoeff)  
% s: sequence vector (1xN) 
% numCoeff: number of PAA segments 
% data: PAA sequence (1xN) 
 
N = length(s);          % length of sequence 
segLen = N/numCoeff;    % assume it's integer 
 
sN = reshape(s, segLen, numCoeff);  % break in segments 
avg = mean(sN);                     % average segments 
data = repmat(avg, segLen, 1);      % expand segments 
data = data(:)’;                    % make row 

1 2 3 4 5 6 7 8 s numCoeff 4 

N=8 
segLen = 2 

sN 1 

2 

3 

4 

5 

6 

7 

8 

avg 1.5 3.5 5.5 7.5 

1.5 3.5 5.5 7.5 

1.5 3.5 5.5 7.5 
data 

data 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5 



Piecewise Aggregate 
Approximation 

0 20 40 60 80 100 120 140 

X 
X' 

A piecewise constant 
approximate of a time series, 

and a piecewise constant 
approximation of me! 

A Completely Pointless Slide 
 



APCA (Adaptive Piecewise Constant 
Approximation) 

§  Not all haar/PAA coefficients 
are equally important 

§  Intuition: Keep ones with the 
highest energy 

§  Segments of variable length 

§  APCA is good for bursty 
signals 

§  PAA requires 1 number per 
segment, APCA requires 
2: [value, length] 

PAA 

APCA 

Segments of 
equal size 

Segments of 
variable size 

E.g. 10 bits for a  
sequence of 1024 points 



Piecewise Linear Approximation (PLA) 

§  Approximate a sequence 
with multiple linear 
segments 

§  First such algorithms 
appeared in cartography 
for map approximation 

§  Many implementations 
–  Optimal 

–  Greedy Bottom-Up 
–  Greedy Top-down 

–  Genetic, etc 

 



Piecewise Linear Approximation (PLA) 

§  Approximate a sequence 
with multiple linear 
segments 

§  First such algorithms 
appeared in cartography 
for map approximation 

 



Piecewise Linear Approximation (PLA) 

§  Approximate a sequence 
with multiple linear 
segments 

§  First such algorithms 
appeared in cartography 
for map approximation 

 



Piecewise Linear Approximation (PLA) 

§  Approximate a sequence 
with multiple linear 
segments 

§  First such algorithms 
appeared in cartography 
for map approximation 

 



Piecewise Linear Approximation (PLA) 

§  Approximate a sequence 
with multiple linear 
segments 

§  First such algorithms 
appeared in cartography 
for map approximation 

 



Piecewise Linear Approximation (PLA) 

§  Approximate a sequence 
with multiple linear 
segments 

§  First such algorithms 
appeared in cartography 
for map approximation 

 



Piecewise Linear Approximation (PLA) 

§  O(nlogn) complexity for 
“bottom up” algorithm 

§  Incremental computation 
possible 

§  Provable error bounds 

§  Applications for: 
–  Image / signal 

simplification  

–  Trend detection 

§  Visually not very smooth or 
pleasing. 



Singular Value Decomposition (SVD) 
§  SVD attempts to find the ‘optimal’ basis for describing a set 

of multidimensional points 

§  Objective: Find the axis (‘directions’) that describe better 
the data variance  

x 

y 

We need 2 numbers (x,y) 
for every point 

x 

y 
Now we can describe each 
point with 1 number, their 

projection on the line  

New axis and position of points 
(after projection and rotation)  



Singular Value Decomposition (SVD) 
§  Each time-series is essentially a multidimensional point 

§  Objective: Find the ‘eigenwaves’ (basis) whose linear 
combination describes best the sequences. Eigenwaves are 
data-dependent. 

eigenwave 0 

eigenwave 1 

eigenwave 3 

eigenwave 4 

A linear combination of the 
eigenwaves can produce any 

sequence in the database  

AMxn = UMxr *Σ rxr * VT
nxr  

M
 s

eq
ue

nc
es

 

each of length n 

… 

Factoring of data array into 3 
matrices  

[U,S,V] = svd(A)!



Code for SVD / PCA 
A = cumsum(randn(100,10)); 
% z-normalization 
A = (A-repmat(mean(A),size(A,1),1))./repmat(std(A),size(A,1),1); 
[U,S,V] = svd(A,0); 
 
% Plot relative energy 
figure; plot(cumsum(diag(S).^2)/norm(diag(S))^2); 
set(gca, 'YLim', [0 1]); pause; 
 
% Top-3 eigenvector reconstruction 
A_top3 = U(:,1:3)*S(1:3,1:3)*V(:,1:3)'; 
 
% Plot original and reconstruction 
figure; 
for i = 1:10 
    cla; 
    subplot(2,1,1); 
    plot(A(:,i)); 
    title('Original'); axis tight; 
    subplot(2,1,2); 
    plot(A_top3(:,i)); 
    title('Reconstruction'); axis tight; 
    pause; 
end 



Singular Value Decomposition 

§  Optimal dimensionality 
reduction in Euclidean 
distance sense 

§  SVD is a very powerful tool 
in many domains: 
–  Websearch (PageRank) 

 

§  Cannot be applied for just 
one sequence. A set of 
sequences is required. 

§  Addition of a sequence in 
database requires 
recomputation 

§  Very costly to compute. 
Time: min{ O(M2n), O(Mn2)} 
Space: O(Mn)  
M sequences of length n 



Lower Bounding functions are known 
for wavelets, Fourier, SVD, 
piecewise polynomials, and 
Chebyshev Polynomials. They are all 
real-valued representations 

While there are more than 200 
different symbolic or discrete ways to 
approximate time series, none except 
for one: SAX 



We’ll spend some time on SAX, since 
many recent time series pattern 

discovery algorithms use it 
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SYM 

Why do we care so much about 
symbolic representations? 

 
•  Hashing 
•  Suffix Trees 
•  Markov Models 
•  Utilize ideas from text processing/statistical 
language processing/bioinformatics community 
•  Much less space requirement 
•  etc 
 

Symbolic Representations Allow: 



There is one symbolic 
representation of time 
series, that allows… 

•  Lower bounding of Euclidean distance 
•  Lower bounding of the DTW distance 
•  Dimensionality Reduction 
•  Numerosity Reduction  



SAX:          
Symbolic Aggregate approXimation 

baabccbc 
 
•  Lower bounds Euclidean distance 
•   Achieves dimensionality reduction 



How do we obtain SAX? 
  

baabccbc 
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    Short time series subsequences tend to 
have a highly Gaussian distribution 

  

- 1 0   0   1 0   
0 . 0 0 1   0 . 0 0 3   
0 . 0 1     0 . 0 2     
0 . 0 5     0 . 1 0     
0 . 2 5     
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0 . 7 5     
0 . 9 0     0 . 9 5     
0 . 9 8     0 . 9 9     
0 . 9 9 7   0 . 9 9 9   

Pr
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   A normal probability plot of the (cumulative) distribution of 
values from subsequences of length 128.  

Why a Gaussian? 
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Normality Plots 



Determining Breakpoints 

3 4 5 6 7 8 9 10 

β1  -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28 

β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84 

β3 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52 

β4 0.84 0.43 0.18 0 -0.14 -0.25 

β5 0.97 0.57 0.32 0.14 0 

β6 1.07 0.67 0.43 0.25 

β7 1.15 0.76 0.52 

β8 1.22 0.84 

β9 1.28 

Alphabet size 

B
re

ak
po

in
ts

 

0.43 

-0.43 



PAA distance lower-bounds the 
Euclidean Distance 
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dist() can be implemented using a table 
lookup. 



Computing String Distances 

a b c 

a 0 0 0.86 

b 0 0 0 

c 0.86 0 0 

Distance table 

0.43 

-0.43 
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SAX:  Symbolic 
Aggregate approXimation  

SAX is (for the first time) a symbolic 
representation that allows 

•  Lower bounding of Euclidean 
distance 

•  Dimensionality Reduction 

•  Numerosity Reduction 
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Symbolic Approximations 

§  Linear complexity  

§  After ‘symbolization’ 
many tools from 
bioinformatics can be 
used 
–  Markov models 

–  Suffix-Trees, etc 

§  Number of regions (alphabet 
length) can affect the quality 
of result 



Multidimensional Time-Series 
§  Catching momentum in the last decade 

§  Applications for mobile trajectories, sensor 
networks, epidemiology, etc 

§  Let’s see how to approximate 2D 
trajectories with  
Minimum Bounding Rectangles 

Aristotle 

Ari, are you sure the 

world is not 1D?  



Multidimensional MBRs  
     Find Bounding rectangles that completely contain a trajectory 

given some optimization criteria (eg minimize volume) 

 

On my income tax 1040 it says "Check this box 
if you are blind." I wanted to put a check mark 
about three inches away.  
- Tom Lehrer, lecturing in "The Nature of Math" 



So which dimensionality reduction is the best? 

Absence of proof is no proof of absence. 
  - Michael Crichton  

1993 2000 2001 2004 2005 

Fourier is 

good…  
PAA!  

APCA is 
better 
than 

PAA!  
Chebyshev 
is better 

than 

APCA!  

The 
future is 

symbolic!  



Comparison of all Dimensionality 
Reduction Techniques  

•  We have already compared features (Does 
representation X allow weighted queries, queries of 
arbitrary lengths, is it simple to implement… 
 
•  We can compare the indexing efficiency: How 
long does it take to find the best answer to the query. 

•  It turns out that the fairest way to measure this is 
to measure the number of times we have to 
retrieve an item from disk. 
 



Comparison of Time Series Representation 
Methods 

SAX,  DCT,  ACPA,  DFT,  PAA/DWT,  CHEB,  IPLA 
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TLB on an ECG data set 

TLB on a bursty data set 

TLB on a periodic data set 

"   8 representation methods: 
SAX, DFT, DWT, DCT, PAA, CHEB, APCA, 

IPLA 
"   Use tightness of lower bounds (TLB) as 

a metric for comparison: 
n  TLB = LowerBoundDist / 

TrueEuclideanDist 
"   The tightness of lower bounding  
     (⇒ pruning power, ⇒ effectiveness of 

the indexing) of different representation 
methods, for the most part, makes little 
difference on various data sets 



We have seen different distance 
measures and time series 

representations 

•  Many time series data mining tasks are 
really about  
– Choosing the right representations, and/or 
– Choosing the right distance measures 


