
Mining Time Series Data 2

Motivating example revisited…

You go to the doctor
because of chest pains.
Your ECG looks
strange…

Your doctor wants to
search a database to find
similar ECGs, in the
hope that they will offer
clues about your
condition...

Two questions:
• How do we define similar?

• How do we search quickly?

ECG

Indexing Time Series

We have seen techniques for assessing the similarity of
two time series.

However we have not addressed the problem of finding
the best match to a query in a large database

The obvious solution, to retrieve and
examine every item (sequential
scanning), simply does not scale to
large datasets.

We need some way to index the data...

Query Q

We can project time series
of length n into n-
dimension space.

The first value in C is the
X-axis, the second value in
C is the Y-axis etc.

One advantage of doing
this is that we have
abstracted away the details
of “time series”, now all
query processing can be
imagined as finding points
in space...

…we can project the query time
series Q into the same n-dimension
space and simply look for the nearest
points.

Q

…the problem is that we have to look at
every point to find the nearest neighbor..

R1!

R2!
R5!

R3!

R7! R9!

R8!

R6!

R4!

We can group clusters of datapoints
with “boxes”, called Minimum
Bounding Rectangles (MBR).

We can further recursively group
MBRs into larger MBRs….

R10 R11 R12!

R1 R2 R3! R4 R5 R6! R7 R8 R9!

Data nodes containing points!

…these nested MBRs are organized
as a tree (called a spatial access tree
or a multidimensional tree). Examples
include R-tree, Hybrid-Tree etc.

R10! R11!

R12!

Spatial Access Methods
 We can use Spatial Access Methods like the R-Tree to index our

data, but…

The performance of R-Trees degrade exponentially with the
number of dimensions. Somewhere above 6-20 dimensions the R-
Tree degrades to linear scanning.

Often we want to index time series with hundreds, perhaps even
thousands of features….

Data Mining is Constrained by Disk
I/O

For example, suppose you have
one gig of main memory and want

to do K-means clustering…

Clustering ¼ gig of data, 100 sec
Clustering ½ gig of data, 200 sec
Clustering 1 gig of data, 400 sec

Clustering 1.1 gigs of data, 20 hours

Bradley, M. Fayyad, & Reina: Scaling Clustering Algorithms to Large Databases. KDD 1998:
9-15

GEMINI GEneric Multimedia INdexIng

•  Establish a distance metric from a domain expert. 	

•  Produce a dimensionality reduction technique that

reduces the dimensionality of the data from n to N,
where N can be efficiently handled by your
favorite SAM.	

•  Produce a distance measure defined on the N
dimensional representation of the data, and prove
that it obeys Dindexspace(A,B) ≤ Dtrue(A,B).
i.e. The lower bounding lemma.	

•  Plug into an off-the-shelve SAM.

{Christos Faloutsos}

Notation for Dimensionality Reduction
For the future discussion of dimensionality reduction
we will assume that

M is the number time series in our database.

n is the original dimensionality of the data.

N is the reduced dimensionality of the data.

CRatio = N/n is the compression ratio.

(i.e. the length of the time series)

0 20 40 60 80 100 120 140

C

An Example of a
Dimensionality Reduction

Technique I
 0.4995

 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515
 0.6596
 0.6672
 0.6751
 0.6843
 0.6954
 0.7086
 0.7240
 0.7412
 0.7595
 0.7780
 0.7956
 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 …

Raw
Data

The graphic shows a
time series with 128
points.

The raw data used to
produce the graphic is
also reproduced as a
column of numbers (just
the first 30 or so points are
shown).

n = 128

0 20 40 60 80 100 120 140

C

.

An Example of a
Dimensionality Reduction

Technique II
 1.5698

 1.0485
 0.7160
 0.8406
 0.3709
 0.4670
 0.2667
 0.1928
 0.1635
 0.1602
 0.0992
 0.1282
 0.1438
 0.1416
 0.1400
 0.1412
 0.1530
 0.0795
 0.1013
 0.1150
 0.1801
 0.1082
 0.0812
 0.0347
 0.0052
 0.0017
 0.0002
 ...

Fourier
Coefficients

 0.4995
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515
 0.6596
 0.6672
 0.6751
 0.6843
 0.6954
 0.7086
 0.7240
 0.7412
 0.7595
 0.7780
 0.7956
 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 …

Raw
Data

We can decompose the
data into 64 pure sine
waves using the Discrete
Fourier Transform (just the
first few sine waves are
shown).

The Fourier Coefficients
are reproduced as a
column of numbers (just
the first 30 or so
coefficients are shown).

Note that at this stage we
have not done
dimensionality reduction,
we have merely changed
the representation...

0 20 40 60 80 100 120 140

C

An Example of a
Dimensionality Reduction

Technique III
 1.5698

 1.0485
 0.7160
 0.8406
 0.3709
 0.4670
 0.2667
 0.1928

Truncated
Fourier

Coefficients

C’

We have
discarded
of the data.

16
15

 1.5698
 1.0485
 0.7160
 0.8406
 0.3709
 0.4670
 0.2667
 0.1928
 0.1635
 0.1602
 0.0992
 0.1282
 0.1438
 0.1416
 0.1400
 0.1412
 0.1530
 0.0795
 0.1013
 0.1150
 0.1801
 0.1082
 0.0812
 0.0347
 0.0052
 0.0017
 0.0002
 ...

Fourier
Coefficients

 0.4995
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515
 0.6596
 0.6672
 0.6751
 0.6843
 0.6954
 0.7086
 0.7240
 0.7412
 0.7595
 0.7780
 0.7956
 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 …

Raw
Data

… however, note that the first
few sine waves tend to be the
largest (equivalently, the
magnitude of the Fourier
coefficients tend to decrease
as you move down the
column).

We can therefore truncate
most of the small coefficients
with little effect.

n = 128
N = 8
Cratio = 1/16

0 20 40 60 80 100 120 140

C

An Example of a
Dimensionality Reduction

Technique IIII

Sorted
Truncated

Fourier
Coefficients

C’

 1.5698
 1.0485
 0.7160
 0.8406
 0.3709
 0.1670
 0.4667
 0.1928
 0.1635
 0.1302
 0.0992
 0.1282
 0.2438
 0.2316
 0.1400
 0.1412
 0.1530
 0.0795
 0.1013
 0.1150
 0.1801
 0.1082
 0.0812
 0.0347
 0.0052
 0.0017
 0.0002
 ...

Fourier
Coefficients

 0.4995
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515
 0.6596
 0.6672
 0.6751
 0.6843
 0.6954
 0.7086
 0.7240
 0.7412
 0.7595
 0.7780
 0.7956
 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 …

Raw
Data

 1.5698
 1.0485
 0.7160
 0.8406
 0.2667
 0.1928
 0.1438
 0.1416

Instead of taking the first few
coefficients, we could take
the best coefficients

This can help greatly in terms
of approximation quality, but
makes indexing hard
(impossible?).

Note this applies also to Wavelets

An Example of a
Dimensionality Reduction

Technique IIII
 1.5698

 1.0485
 0.7160
 0.8406
 0.3709
 0.4670
 0.2667
 0.1928

Truncated
Fourier

Coefficients 1
 0.4995
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515
 0.6596
 0.6672
 0.6751
 0.6843
 0.6954
 0.7086
 0.7240
 0.7412
 0.7595
 0.7780
 0.7956
 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 …
 …

Raw
Data 1

 0.7412
 0.7595
 0.7780
 0.7956
 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 0.4995
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515
 0.6596
 0.6672
 0.6751
 0.6843
 0.6954
 0.7086
 0.7240

 …
 …

Raw
Data 2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

 1.1198
 1.4322
 1.0100
 0.4326
 0.5609
 0.8770
 0.1557
 0.4528

Truncated
Fourier

Coefficients 2

-
-
-
-
-
-
-
-

The Euclidean distance between
the two truncated Fourier
coefficient vectors is always less
than or equal to the Euclidean
distance between the two raw data
vectors*.

So DFT allows lower bounding!

*Parseval's Theorem

() ()∑ −≡
=

n

i
ii cqCQD

1

2,
≥

 1.5698
 1.0485
 0.7160
 0.8406
 0.3709
 0.4670
 0.2667
 0.1928

Truncated
Fourier

Coefficients 1

 0.4995
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515
 0.6596
 0.6672
 0.6751
 0.6843
 0.6954
 0.7086
 0.7240
 0.7412
 0.7595
 0.7780
 0.7956

Raw
Data 1

 0.7412
 0.7595
 0.7780
 0.7956
 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 0.4995
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515

Raw
Data 2

 1.1198
 1.4322
 1.0100
 0.4326
 0.5609
 0.8770
 0.1557
 0.4528

Truncated
Fourier

Coefficients 2

Mini Review for the Generic Data Mining Algorithm

 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 0.4995
 0.7412
 0.7595
 0.7780
 0.7956
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515

Raw
Data n

 1.3434
 1.4343
 1.4643
 0.7635
 0.5448
 0.4464
 0.7932
 0.2126

Truncated
Fourier

Coefficients n

We cannot fit all that raw data in main memory.
We can fit the dimensionally reduced data in main memory.

So we will solve the problem at hand on the
dimensionally reduced data, making a few
accesses to the raw data were necessary,
and, if we are careful, the lower bounding
property will insure that we get the right
answer!

Disk

Main
Memory

•  Lower bounding means the estimated distance in the reduced space is
always less than or equal to the distance in the original space.

Lower Bounding Revisited

S

Q

()∑ −≡
=

n

i
ii sq

1

2
D(Q,S) ∑ = − −−≡

M

i iiii svqvsrsr
1

2
1))((DLB(Q’,S’)

DLB(Q’,S
’)

Q’

S’

Lower bounding means that for all Q and S, we have:

DLB(Q’,S’) ≤ D(Q,S)

Raw Data

Approximation
or

“Representation”

19

-4 -3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3 -1
-0.5

0
0.5

1
1.5

2
2.5

3 A

E
D

C

B
F

We have 6 objects in 3-D space. We issue a query
to find all objects within 1 unit of

the point (-3, 0, -2)...

Why is Lower Bounding So Important?

20

Consider what would happen if
we issued the same query after
reducing the dimensionality to
2, assuming the dimensionality

technique obeys the lower
bounding lemma...

-4 -3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3 -1

0

1

2

3 A

F

E
D

C

B

Why is Lower Bounding So Important?

The query successfully
finds the object E.

21 -4 -3 -2 -1 0 1 2 3 -1
-0.5

0
0.5

1
1.5

2
2.5

3

A

B
D

C F

E

Informally, it’s OK if objects appear
closer in the dimensionality reduced

space, than in the true space.

Example of a dimensionality reduction technique in which
the lower bounding lemma is satisfied

Note that because of the
dimensionality reduction,

object F appears to less than
one unit from the query (it is a

false alarm).

This is OK so long as it does
not happen too much, since
we can always retrieve it,

then test it in the true, 3-D
space. This would leave us

with just E, the correct
answer.

Why is Lower Bounding So Important?

22 -4 -3 -2 -1 0 1 2 3 -1
-0.5

0
0.5

1
1.5

2
2.5

3

A

B
D

C

F

E

Informally, some objects appear
further apart in the dimensionality

reduced space than in the true
space.

Example of a dimensionality reduction technique in which
the lower bounding lemma is not satisfied

Note that because of the
dimensionality reduction,

object E appears to be more
than one unit from the query (it

is a false dismissal).

This is unacceptable.

We have failed to find the true
answer set to our query.

Why is Lower Bounding So Important?

 Time Series
Representations

Data Adaptive Non Data Adaptive

Spectral Wavelets Piecewise
Aggregate

Approximation
Piecewise

Polynomial Symbolic Singular
Value

Decomposition
Random

Mappings
Piecewise

Linear
Approximation

Adaptive
Piecewise
Constant

Approximat ion

Discrete
Fourier

Transform
Discrete
Cosine

Transform
Haar Daubechies

dbn n > 1 Coiflets Symlets

Sorted
Coefficients

Orthonormal Bi - Orthonormal
Interpolation Regression

Trees

Natural
Language Strings

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120

DFT DWT SVD APCA PAA PLA

0 20 40 60 80 100 120
aabbbccb

a
a
b
b
b
c
c
b

SAX

Jean Fourier
1768-1830

0 20 40 60 80 100 120 140

 0

 1

 2

 3

X

X'

 4

 5

 6

 7

 8

 9

Discrete Fourier
Transform I

Excellent free Fourier Primer

Hagit Shatkay, The Fourier Transform - a Primer'', Technical Report
CS-95-37, Department of Computer Science, Brown University, 1995.

http://www.ncbi.nlm.nih.gov/CBBresearch/Postdocs/Shatkay/

Basic Idea: Represent the time
series as a linear combination of
sines and cosines, but keep only the
first n/2 coefficients.

Why n/2 coefficients? Because the
coefficients are symmetric: the 2nd half
is the repeat of the first half in reverse
order

DFT does a good job concentrating
energy in the first few coefficients

∑
=

+=
n

k
kkkk twBtwAtC

1

))2sin()2cos(()(ππ

Fourier Decomposition
DFT:

IDFT:

“Every	 signal	 can	 be	
represented	 as	 a	
superposi4on	 of	 sines	
and	 cosines”	

Decompose a time-series into sum of sine waves

X(fk/N)=
1
N

x(n)((cos(2πkn
N

)− i sin(2πkn
N

))
n=0

N−1

∑

eia = cos(a)+ i sin(a)

Fourier Decomposition
Decompose a time-series into sum of sine waves

fa = fft(a); % Fourier decomposition���
fa(5:end) = 0; % keep first 5 coefficients (low frequencies)
reconstr = real(ifft(fa)); % reconstruct signal

DFT:

IDFT:

 -0.4446

 -0.9864

 -0.3254

 -0.6938

 -0.1086

 -0.3470

 0.5849

 1.5927

 -0.9430

 -0.3037

 -0.7805

 -0.1953

 -0.3037

 0.2381

 2.8389

 -0.7046

 -0.5529

 -0.6721

 0.1189

 0.2706

 -0.0003

 1.3976

 -0.4987

 -0.2387

 -0.7588

x(n)

 -0.3633

 -0.6280 + 0.2709i

 -0.4929 + 0.0399i

 -1.0143 + 0.9520i

 0.7200 - 1.0571i

 -0.0411 + 0.1674i

 -0.5120 - 0.3572i

 0.9860 + 0.8043i

 -0.3680 - 0.1296i

 -0.0517 - 0.0830i

 -0.9158 + 0.4481i

 1.1212 - 0.6795i

 0.2667 + 0.1100i

 0.2667 - 0.1100i

 1.1212 + 0.6795i

 -0.9158 - 0.4481i

 -0.0517 + 0.0830i

 -0.3680 + 0.1296i

 0.9860 - 0.8043i

 -0.5120 + 0.3572i

 -0.0411 - 0.1674i

 0.7200 + 1.0571i

 -1.0143 - 0.9520i

 -0.4929 - 0.0399i

 -0.6280 - 0.2709i

X(f)

Life is complex, it has both real and imaginary parts.	

Fourier Decomposition
How much space we gain by compressing random walk data?

§  1 coeff > 60% of energy

§  10 coeff > 90% of energy

50 100 150 200 250

-5

0

5

Reconstruction using 1coefficients

Fourier Decomposition
How much space we gain by compressing random walk data?

§  1 coeff > 60% of energy

§  10 coeff > 90% of energy

50 100 150 200 250

-5

0

5

Reconstruction using 2coefficients

Fourier Decomposition
How much space we gain by compressing random walk data?

§  1 coeff > 60% of energy

§  10 coeff > 90% of energy

50 100 150 200 250

-5

0

5

Reconstruction using 7coefficients

Fourier Decomposition
How much space we gain by compressing random walk data?

§  1 coeff > 60% of energy

§  10 coeff > 90% of energy

50 100 150 200 250

-5

0

5

Reconstruction using 20coefficients

20 40 60 80 100 120 0

500

1000

1500

Coefficients

Error

20 40 60 80 100 120

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Coefficients

Energy Percentage

Fourier Decomposition
How much space we gain by compressing random walk data?

§  1 coeff > 60% of energy

§  10 coeff > 90% of energy

Fourier Decomposition
Which coefficients are important?

–  We can measure the ‘energy’ of each coefficient

–  Energy = Real(X(fk))2 + Imag(X(fk))2

 Most of data-mining research

uses first k coefficients:

§  Good for random walk
signals (eg stock market)

§  Easy to ‘index’

§  Not good for general signals

fa = fft(a); % Fourier decomposition
N = length(a); % how many?
fa = fa(1:ceil(N/2)); % keep first half only
mag = 2*abs(fa).^2; % calculate energy

Fourier Decomposition
Which coefficients are important?

–  We can measure the ‘energy’ of each coefficient

–  Energy = Real(X(fk))2 + Imag(X(fk))2

 Usage of the coefficients with

highest energy:

§  Good for all types of signals

§  Believed to be difficult to
index

§  CAN be indexed using
metric trees

Code for Reconstructed Sequence
a = load('randomWalk.dat');!
a = (a-mean(a))/std(a); % z-normalization!
!
fa = fft(a);!
!
maxInd = ceil(length(a)/2); % until the middle!
N = length(a); !
!
energy = zeros(maxInd-1, 1);!
E = sum(a.^2); % energy of a!
!
for ind=2:maxInd,!
 !
 fa_N = fa; % copy fourier!
 fa_N(ind+1:N-ind+1) = 0; % zero out unused!
 r = real(ifft(fa_N)); % reconstruction!
 !
 plot(r, 'r','LineWidth',2); hold on;!
 plot(a,'k');!
 title(['Reconstruction using ' num2str(ind-1) 'coefficients']);!
 set(gca,'plotboxaspectratio', [3 1 1]);!
 axis tight!
 pause; ! ! % wait for key!
 cla;! ! % clear axis!
end!

 0

 -0.6280 + 0.2709i

 -0.4929 + 0.0399i

 -1.0143 + 0.9520i

 0.7200 - 1.0571i

 -0.0411 + 0.1674i

 -0.5120 - 0.3572i

 0.9860 + 0.8043i

 -0.3680 - 0.1296i

 -0.0517 - 0.0830i

 -0.9158 + 0.4481i

 1.1212 - 0.6795i

 0.2667 + 0.1100i

 0.2667 - 0.1100i

 1.1212 + 0.6795i

 -0.9158 - 0.4481i

 -0.0517 + 0.0830i

 -0.3680 + 0.1296i

 0.9860 - 0.8043i

 -0.5120 + 0.3572i

 -0.0411 - 0.1674i

 0.7200 + 1.0571i

 -1.0143 - 0.9520i

 -0.4929 - 0.0399i

 -0.6280 - 0.2709i

X(f)

keep

Ignore

keep

Code for Plotting the Error
a = load('randomWalk.dat');
a = (a-mean(a))/std(a); % z-normalization
fa = fft(a);
maxInd = ceil(length(a)/2); % until the middle
N = length(a);
energy = zeros(maxInd-1, 1);
E = sum(a.^2); % energy of a

for ind=2:maxInd,
 fa_N = fa; % copy fourier
 fa_N(ind+1:N-ind+1) = 0; % zero out unused
 r = real(ifft(fa_N)); % reconstruction

 energy(ind-1) = sum(r.^2); % energy of reconstruction
 error(ind-1) = sum(abs(r-a).^2); % error
end

E = ones(maxInd-1, 1)*E;
error = E - energy;
ratio = energy ./ E;

subplot(1,2,1); % left plot
plot([1:maxInd-1], error, 'r', 'LineWidth',1.5);
subplot(1,2,2); % right plot
plot([1:maxInd-1], ratio, 'b', 'LineWidth',1.5);

This is the same

Lower Bounding using Fourier
coefficients

 Parseval’s Theorem states that energy in the frequency domain equals the
energy in the time domain:

Euclidean distance or, that

If we just keep some of the coefficients, their sum of squares always
underestimates (ie lower bounds) the Euclidean distance:

Lower Bounding using Fourier
coefficients -Example

x = cumsum(randn(100,1));!
y = cumsum(randn(100,1));!
euclid_Time = sqrt(sum((x-y).^2));!
!
fx = fft(x)/sqrt(length(x));  
fy = fft(y)/sqrt(length(x));!
euclid_Freq = sqrt(sum(abs(fx - fy).^2));!

x

y

Note the normalization

120.9051

120.9051

Keeping 10 coefficients
the distance is:
115.5556 < 120.9051

Fourier Decomposition

§  O(nlogn) complexity

§  Tried and tested

§  Hardware implementations

§  Many applications:
–  compression

–  smoothing
–  periodicity detection

§  Not good approximation for
bursty signals

§  Not good approximation for
signals with flat and busy
sections
(requires many coefficients)

Wavelets – Why exist?
§  Similar concept with Fourier decomposition

§  Fourier coefficients represent global contributions,
wavelets are localized

 Fourier is good for smooth, random walk data,
but not for bursty data or flat data

41

0 100 200 300 400 500 600
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
L1

0 100 200 300 400 500 600
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
L2

0 100 200 300 400 500 600
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
L3

0 100 200 300 400 500 600
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
L4

0 100 200 300 400 500 600
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
L5

n  Multiresolution
n  Fast to compute: O(n)

HAAR Wavelets and Time Series

HAAR Wavelet Example

Full resolution

HAAR coefficients: (5 -1 1 2 -3 -2 1 -2)

Wavelets (Haar) - Intuition
§  Wavelet coefficients, still represent an inner product

(projection) of the signal with some basis functions.

§  These functions have lengths that are powers of two (full
sequence length, half, quarter etc)

See also:wavemenu

Haar coefficients: {c, d00, d10, d11,…}

D
c+d00

c-d00

etc

An arithmetic example
 X = [9,7,3,5]

Haar = [6,2,1,-1]

c = 6 = (9+7+3+5)/4

c + d00 = 6+2 = 8 = (9+7)/2

c - d00 = 6-2 = 4 = (3+5)/2

etc

Wavelets in Matlab
 Specialized Matlab interface

for wavelets

See also:wavemenu

Code for Haar Wavelets
a = load('randomWalk.dat');
a = (a-mean(a))/std(a); % z-normalization
maxlevels = wmaxlev(length(a),'haar');
[Ca, La] = wavedec(a,maxlevels,'haar');

% Plot coefficients and MRA
for level = 1:maxlevels
 cla;
 subplot(2,1,1);
 plot(detcoef(Ca,La,level)); axis tight;
 title(sprintf('Wavelet coefficients – Level %d',level));
 subplot(2,1,2);
 plot(wrcoef('d',Ca,La,'haar',level)); axis tight;
 title(sprintf('MRA – Level %d',level));
 pause;
end

% Top-20 coefficient reconstruction
[Ca_sorted, Ca_sortind] = sort(Ca);
Ca_top20 = Ca; Ca_top20(Ca_sortind(1:end-19)) = 0;
a_top20 = waverec(Ca_top20,La,'haar');
figure; hold on;
plot(a, 'b'); plot(a_top20, 'r');

Wavelet Decomposition

§  O(n) complexity

§  Hierarchical structure

§  Progressive transmission

§  Better localization

§  Good for bursty signals

§  Many applications:
–  compression

–  periodicity detection

§  Most data-mining research
still utilizes Haar wavelets
because of their simplicity.

PAA (Piecewise Aggregate
Approximation)

§  Represent time-series as a sequence of segments

§  Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250
-2

-1

0

1

2
Reconstruction using 1coefficients

PAA (Piecewise Aggregate
Approximation)

§  Represent time-series as a sequence of segments

§  Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250
-2

-1

0

1

2
Reconstruction using 2coefficients

PAA (Piecewise Aggregate
Approximation)

§  Represent time-series as a sequence of segments

§  Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250
-2

-1

0

1

2
Reconstruction using 4coefficients

PAA (Piecewise Aggregate
Approximation)

§  Represent time-series as a sequence of segments

§  Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250
-2

-1

0

1

2
Reconstruction using 8coefficients

PAA (Piecewise Aggregate
Approximation)

§  Represent time-series as a sequence of segments

§  Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250
-2

-1

0

1

2
Reconstruction using 16coefficients

PAA (Piecewise Aggregate
Approximation)

§  Represent time-series as a sequence of segments

§  Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250
-2

-1

0

1

2
Reconstruction using 32coefficients

PAA Matlab Code
function data = paa(s, numCoeff)
% PAA(s, numcoeff)
% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)

N = length(s); % length of sequence
segLen = N/numCoeff; % assume it's integer

sN = reshape(s, segLen, numCoeff); % break in segments
avg = mean(sN); % average segments
data = repmat(avg, segLen, 1); % expand segments
data = data(:); % make column

1 2 3 4 5 6 7 8 s numCoeff 4

N=8
segLen = 2

PAA Matlab Code
function data = paa(s, numCoeff)
% PAA(s, numcoeff)
% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)

N = length(s); % length of sequence
segLen = N/numCoeff; % assume it's integer

sN = reshape(s, segLen, numCoeff); % break in segments
avg = mean(sN); % average segments
data = repmat(avg, segLen, 1); % expand segments
data = data(:); % make column

1 2 3 4 5 6 7 8 s numCoeff 4

N=8
segLen = 2

2 4

sN 1

2

3

4

5

6

7

8

PAA Matlab Code
function data = paa(s, numCoeff)
% PAA(s, numcoeff)
% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)

N = length(s); % length of sequence
segLen = N/numCoeff; % assume it's integer

sN = reshape(s, segLen, numCoeff); % break in segments
avg = mean(sN); % average segments
data = repmat(avg, segLen, 1); % expand segments
data = data(:); % make column

1 2 3 4 5 6 7 8 s numCoeff 4

N=8
segLen = 2

sN 1

2

3

4

5

6

7

8

avg 1.5 3.5 5.5 7.5

PAA Matlab Code
function data = paa(s, numCoeff)
% PAA(s, numcoeff)
% s: sequence vector (1xN)
% numCoeff: number of PAA segments
% data: PAA sequence (1xN)

N = length(s); % length of sequence
segLen = N/numCoeff; % assume it's integer

sN = reshape(s, segLen, numCoeff); % break in segments
avg = mean(sN); % average segments
data = repmat(avg, segLen, 1); % expand segments
data = data(:)’; % make row

1 2 3 4 5 6 7 8 s numCoeff 4

N=8
segLen = 2

sN 1

2

3

4

5

6

7

8

avg 1.5 3.5 5.5 7.5

1.5 3.5 5.5 7.5

1.5 3.5 5.5 7.5

2

data

PAA Matlab Code
function data = paa(s, numCoeff)
% PAA(s, numcoeff)
% s: sequence vector (1xN)
% numCoeff: number of PAA segments
% data: PAA sequence (1xN)

N = length(s); % length of sequence
segLen = N/numCoeff; % assume it's integer

sN = reshape(s, segLen, numCoeff); % break in segments
avg = mean(sN); % average segments
data = repmat(avg, segLen, 1); % expand segments
data = data(:)’; % make row

1 2 3 4 5 6 7 8 s numCoeff 4

N=8
segLen = 2

sN 1

2

3

4

5

6

7

8

avg 1.5 3.5 5.5 7.5

1.5 3.5 5.5 7.5

1.5 3.5 5.5 7.5
data

data 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5

Piecewise Aggregate
Approximation

0 20 40 60 80 100 120 140

X
X'

A piecewise constant
approximate of a time series,

and a piecewise constant
approximation of me!

A Completely Pointless Slide

APCA (Adaptive Piecewise Constant
Approximation)

§  Not all haar/PAA coefficients
are equally important

§  Intuition: Keep ones with the
highest energy

§  Segments of variable length

§  APCA is good for bursty
signals

§  PAA requires 1 number per
segment, APCA requires
2: [value, length]

PAA

APCA

Segments of
equal size

Segments of
variable size

E.g. 10 bits for a
sequence of 1024 points

Piecewise Linear Approximation (PLA)

§  Approximate a sequence
with multiple linear
segments

§  First such algorithms
appeared in cartography
for map approximation

§  Many implementations
–  Optimal

–  Greedy Bottom-Up
–  Greedy Top-down

–  Genetic, etc

Piecewise Linear Approximation (PLA)

§  Approximate a sequence
with multiple linear
segments

§  First such algorithms
appeared in cartography
for map approximation

Piecewise Linear Approximation (PLA)

§  Approximate a sequence
with multiple linear
segments

§  First such algorithms
appeared in cartography
for map approximation

Piecewise Linear Approximation (PLA)

§  Approximate a sequence
with multiple linear
segments

§  First such algorithms
appeared in cartography
for map approximation

Piecewise Linear Approximation (PLA)

§  Approximate a sequence
with multiple linear
segments

§  First such algorithms
appeared in cartography
for map approximation

Piecewise Linear Approximation (PLA)

§  Approximate a sequence
with multiple linear
segments

§  First such algorithms
appeared in cartography
for map approximation

Piecewise Linear Approximation (PLA)

§  O(nlogn) complexity for
“bottom up” algorithm

§  Incremental computation
possible

§  Provable error bounds

§  Applications for:
–  Image / signal

simplification

–  Trend detection

§  Visually not very smooth or
pleasing.

Singular Value Decomposition (SVD)
§  SVD attempts to find the ‘optimal’ basis for describing a set

of multidimensional points

§  Objective: Find the axis (‘directions’) that describe better
the data variance

x

y

We need 2 numbers (x,y)
for every point

x

y
Now we can describe each
point with 1 number, their

projection on the line

New axis and position of points
(after projection and rotation)

Singular Value Decomposition (SVD)
§  Each time-series is essentially a multidimensional point

§  Objective: Find the ‘eigenwaves’ (basis) whose linear
combination describes best the sequences. Eigenwaves are
data-dependent.

eigenwave 0

eigenwave 1

eigenwave 3

eigenwave 4

A linear combination of the
eigenwaves can produce any

sequence in the database

AMxn = UMxr *Σ rxr * VT
nxr

M
 s

eq
ue

nc
es

each of length n

…

Factoring of data array into 3
matrices

[U,S,V] = svd(A)!

Code for SVD / PCA
A = cumsum(randn(100,10));
% z-normalization
A = (A-repmat(mean(A),size(A,1),1))./repmat(std(A),size(A,1),1);
[U,S,V] = svd(A,0);

% Plot relative energy
figure; plot(cumsum(diag(S).^2)/norm(diag(S))^2);
set(gca, 'YLim', [0 1]); pause;

% Top-3 eigenvector reconstruction
A_top3 = U(:,1:3)*S(1:3,1:3)*V(:,1:3)';

% Plot original and reconstruction
figure;
for i = 1:10
 cla;
 subplot(2,1,1);
 plot(A(:,i));
 title('Original'); axis tight;
 subplot(2,1,2);
 plot(A_top3(:,i));
 title('Reconstruction'); axis tight;
 pause;
end

Singular Value Decomposition

§  Optimal dimensionality
reduction in Euclidean
distance sense

§  SVD is a very powerful tool
in many domains:
–  Websearch (PageRank)

§  Cannot be applied for just
one sequence. A set of
sequences is required.

§  Addition of a sequence in
database requires
recomputation

§  Very costly to compute.
Time: min{ O(M2n), O(Mn2)}
Space: O(Mn)
M sequences of length n

Lower Bounding functions are known
for wavelets, Fourier, SVD,
piecewise polynomials, and
Chebyshev Polynomials. They are all
real-valued representations

While there are more than 200
different symbolic or discrete ways to
approximate time series, none except
for one: SAX

We’ll spend some time on SAX, since
many recent time series pattern

discovery algorithms use it

0 20 40 60 80 100 120

DFT

0 20 40 60 80 100 120
aabbbccb

a
a
b
b
b
c
c
b

SYM

Why do we care so much about
symbolic representations?

•  Hashing
•  Suffix Trees
•  Markov Models
•  Utilize ideas from text processing/statistical
language processing/bioinformatics community
•  Much less space requirement
•  etc

Symbolic Representations Allow:

There is one symbolic
representation of time
series, that allows…

•  Lower bounding of Euclidean distance
•  Lower bounding of the DTW distance
•  Dimensionality Reduction
•  Numerosity Reduction

SAX:
Symbolic Aggregate approXimation

baabccbc

•  Lower bounds Euclidean distance
•  Achieves dimensionality reduction

How do we obtain SAX?

baabccbc

0 20 40 60 80 100 120

C
C

(normalized) Time Series PAA
(Piecewise Aggregate Approximation)

0

-

-

0 20 40 60 80 100 120

b b
 b

 a

c
 c

c

 a

c

a

b PAA Symbols

 Short time series subsequences tend to
have a highly Gaussian distribution

- 1 0 0 1 0
0 . 0 0 1 0 . 0 0 3
0 . 0 1 0 . 0 2
0 . 0 5 0 . 1 0
0 . 2 5
0 . 5 0
0 . 7 5
0 . 9 0 0 . 9 5
0 . 9 8 0 . 9 9
0 . 9 9 7 0 . 9 9 9

Pr
ob

ab
ilit

y

 A normal probability plot of the (cumulative) distribution of
values from subsequences of length 128.

Why a Gaussian?

78

Normality Plots

Determining Breakpoints

3 4 5 6 7 8 9 10

β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28

β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84

β3 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52

β4 0.84 0.43 0.18 0 -0.14 -0.25

β5 0.97 0.57 0.32 0.14 0

β6 1.07 0.67 0.43 0.25

β7 1.15 0.76 0.52

β8 1.22 0.84

β9 1.28

Alphabet size

B
re

ak
po

in
ts

0.43

-0.43

PAA distance lower-bounds the
Euclidean Distance

0 20 40 60 80 100 120
- 1.5
- 1
- 0.5
0
0.5
1
1.5

C

Q

0 20 40 60 80 100 120
- 1.5
- 1
- 0.5
0
0.5
1
1.5

C

Q

= baabccbc C ̂

= babcacca Q ̂

() ()∑ −≡
=

n

i
ii cqCQD

1

2,

Euclidean Distance

()∑ =
−≡

w

i iiw
n cqCQDR

1
2),(

()∑ =
≡

w

i iiw
n cqdistCQMINDIST

1
2)ˆ,ˆ()ˆ,ˆ(

dist() can be implemented using a table
lookup.

Computing String Distances

a b c

a 0 0 0.86

b 0 0 0

c 0.86 0 0

Distance table

0.43

-0.43

0 20 40 60 80 100 120 140

X

X'

aaaaaabbbbbccccccbbccccdddddddd

d
c
b
a

SAX: Symbolic
Aggregate approXimation

SAX is (for the first time) a symbolic
representation that allows

•  Lower bounding of Euclidean
distance

•  Dimensionality Reduction

•  Numerosity Reduction

0

-

-

0 20 40 60 80 100 120

b b
 b

 a

c
 c

c

 a

baabccbc

Symbolic Approximations

§  Linear complexity

§  After ‘symbolization’
many tools from
bioinformatics can be
used
–  Markov models

–  Suffix-Trees, etc

§  Number of regions (alphabet
length) can affect the quality
of result

Multidimensional Time-Series
§  Catching momentum in the last decade

§  Applications for mobile trajectories, sensor
networks, epidemiology, etc

§  Let’s see how to approximate 2D
trajectories with
Minimum Bounding Rectangles

Aristotle

Ari, are you sure the

world is not 1D?

Multidimensional MBRs
 Find Bounding rectangles that completely contain a trajectory

given some optimization criteria (eg minimize volume)

On my income tax 1040 it says "Check this box
if you are blind." I wanted to put a check mark
about three inches away.
- Tom Lehrer, lecturing in "The Nature of Math"

So which dimensionality reduction is the best?

Absence of proof is no proof of absence.
 - Michael Crichton

1993 2000 2001 2004 2005

Fourier is

good…
PAA!

APCA is
better
than

PAA!
Chebyshev
is better

than

APCA!

The
future is

symbolic!

Comparison of all Dimensionality
Reduction Techniques

•  We have already compared features (Does
representation X allow weighted queries, queries of
arbitrary lengths, is it simple to implement…

•  We can compare the indexing efficiency: How
long does it take to find the best answer to the query.

•  It turns out that the fairest way to measure this is
to measure the number of times we have to
retrieve an item from disk.

Comparison of Time Series Representation
Methods

SAX, DCT, ACPA, DFT, PAA/DWT, CHEB, IPLA

4	6	8	
10	

0	

0.2	

0.4	

0.6	

0.8	

4
8
0
	

9
6
0
	

1
4
4
0
	

1
9
2
0
	

foetal_ecg (excerpt)"

0	 200	 400	

4 	6 	8 	10	

0	
0.5	

1	

4
8
0
	

9
6
0
	

1
4
4
0
	

1
9
2
0
	

SAX, DCT, ACPA, DFT, PAA/DWT, CHEB, IPLA

4
8
0
	

9
6
0
	

1
4
4
0
	

1
9
2
0
	

4 	6 	8 	10	

0	
0.2	
0.4	
0.6	
0.8	

SAX, DCT, ACPA, DFT, PAA/DWT, CHEB, IPLA

TLB on an ECG data set

TLB on a bursty data set

TLB on a periodic data set

"   8 representation methods:
SAX, DFT, DWT, DCT, PAA, CHEB, APCA,

IPLA
"   Use tightness of lower bounds (TLB) as

a metric for comparison:
n  TLB = LowerBoundDist /

TrueEuclideanDist
"   The tightness of lower bounding
 (⇒ pruning power, ⇒ effectiveness of

the indexing) of different representation
methods, for the most part, makes little
difference on various data sets

We have seen different distance
measures and time series

representations

•  Many time series data mining tasks are
really about
– Choosing the right representations, and/or
– Choosing the right distance measures

