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What are Time Series? 

0 50 100 150 200 250 300 350 400 450 500 23 

24 

25 

26 

27 

28 

29 

   25.1750 
   25.2250 
   25.2500 
   25.2500 
   25.2750 
   25.3250 
   25.3500 
   25.3500 
   25.4000 
   25.4000 
   25.3250 
   25.2250 
   25.2000 
   25.1750 

   .. 

   ..  
   24.6250 
   24.6750 
   24.6750 
   24.6250 
   24.6250 
   24.6250 
   24.6750 
   24.7500 

A time series is a collection of observations made 
sequentially in time.  



Time Series are Ubiquitous! I 

•  Their blood pressure 
•  George Bush's popularity rating 
•  The annual rainfall in Seattle 
•  The value of their Google stock             

Thus time series occur in virtually every medical, scientific and businesses domain 

People measure things… 

…and things change over time… 
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Time Series are Ubiquitous! II 

A random sample of 4,000 graphics from 15 
of the world’s newspapers published from 

1974 to 1989 found that more than 75% of all 
graphics were time series (Tufte, 1992).  



Shapes 
Recognize type of leaf based on its shape 

Acer platanoides  Ulmus carpinifolia  Salix fragilis  Tilia  Quercus robur  

Convert perimeter into a sequence of values 

ICDM 2006 Tutorial 

Michail Vlachos 
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Applications (Image Matching) 
    Many types of data can be  

converted to time-series 
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Applications (Motion Capture) 
Motion-Capture (MOCAP) Data (Movies, Games) 

–  Track position of several joints over time 

–  3*17 joints = 51 parameters per frame 

MOCAP data… 
…my precious… 



Applications (Video) 
Video-tracking / Surveillance 

–  Visual tracking of body features (2D time-series) 

–  Sign Language recognition (3D time-series) 

Video Tracking of body feature 
over time (Athens1, Athens2) 



Text data, may best be thought of as time series… 

0 1 2 3 4 5 6 7 8 x 10 5 0 

Blue: “God” -English Bible "
Red: “Dios” -Spanish Bible"

Gray: “El Senor” -Spanish Bible"

The local frequency 
of words in the Bible 



Text Data As Time Series II 

“big data” 



The day after election (11/05/08) 

Text Data As Time Series III 



Handwriting data, may best be thought of as time series… 

George Washington Manuscript 

George Washington 
1732-1799 
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Brain scans (3D voxels), may best be thought of as time series… 

Wang, Kontos, Li and Megalooikonomou ICASSP 2004 Works with 
3D glasses! 



Why is Working With Time Series so 
Difficult?  Part I  

 Answer: How do we work with very large databases?  

Since most of the data lives on disk (or tape), we need a 
representation of the data we can efficiently manipulate. 

  
•  1 Hour of ECG data: 1 GB 
•  Twitter: over 400 million tweets per day (in 2013, compared to 

340M in 2012, and 200M in 2011) 
•  Astronomy Databases: 

•  LSST (Large Synoptic Survey Telescope) project: 20 PB science 
data & 100 PB image archive 

•  Satellite data 
•  Sensor data 
•  Biological data 



Why is Working With Time Series so 
Difficult? Part II  

 

The definition of  similarity depends on the user, the domain and 
the task at hand. We need to be able to handle this subjectivity.	


Answer: We are dealing with subjectivity 



Why is working with time series so 
difficult?  Part III  

 Answer: Miscellaneous data handling problems. 
 

•  Differing data formats. 
•  Differing sampling rates. 
•  Noise, missing values, etc. 



What do we want to do with the time series data? 

 Clustering  Classification 

Query by 
Content 

Rule 
Discovery 

10 

⇒ 
s = 0.5 
c = 0.3 

Motif Discovery 

  Novelty Detection Visualization 



All these problems require similarity matching 

 Clustering  Classification 

Query by 
Content 

Rule 
Discovery 

10 

⇒ 
s = 0.5 
c = 0.3 

Motif Discovery 

  Novelty Detection Visualization 



 
A simple motivation 

You go to the doctor 
because of chest pains. 
Your ECG looks 
strange… 
 
You doctor wants to 
search a database to find 
similar ECGs, in the 
hope that they will offer 
clues about your 
condition... 

Two questions:  
•  How do we define similar? 

•  How do we search quickly? 

ECG tester 



Basic Time-Series Matching Problem 

     Database with time-series: 
–  Medical sequences 

–  Images, etc   

     Sequence Length:100-1000pts 
DB Size: 1 TByte 

query 

D = 7.3 

D = 10.2 

D = 11.8 

D = 17 

D = 22 

Distance 

     Objective: Compare the query with 
all sequences in DB and return 
the k most similar sequences to 
the query. 

Linear Scan: 



What other problems can we solve? 
Clustering: “Place time-series into ‘similar’ groups” 

Classification: “To which group is a time-series most ‘similar’ to?” 

query 
? 

? 
? 



Hierarchical Clustering 
•  Very	  generic	  &	  powerful	  tool	  
•  Provides	  visual	  data	  grouping	  

Z = linkage(D); 
H = dendrogram(Z); 

Pairwise 
distances  

D1,1 
D2,1 

DM,N 

1.  Merge objects with 
smallest distance 

2.  Re-evaluate distances 

3.  Repeat process  



Partitional Clustering 

K-Means Algorithm: 

1.  Initialize k clusters (k specified 
by user) randomly. 

2.  Repeat until convergence 
1.  Assign each object to the 

nearest cluster center. 

2.  Re-estimate cluster centers. 

§  Faster	  than	  hierarchical	  clustering	  

§  Typically	  provides	  subop;mal	  solu;ons	  (local	  minima)	  

§ Not	  good	  performance	  for	  high	  dimensions	  
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K-Means Demo 
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K-Means Clustering for Time-Series 

§  So	  how	  is	  kMeans	  applied	  for	  Time-‐Series	  that	  are	  high-‐
dimensional?	  

§ Perform	  kMeans	  on	  a	  compressed	  dimensionality	  

Original 
sequences  

Compressed 
sequences  
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Classification 
Typically	  classifica;on	  can	  be	  made	  easier	  if	  we	  have	  
clustered	  the	  objects	  
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    Project query in 
the new space and 
find its closest 
cluster 

    So, query Q is 
more similar to 
class B  

    Q  



Nearest Neighbor Classification 
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	  	  	  	  We	  need	  not	  perform	  clustering	  before	  classifica;on.	  We	  can	  classify	  an	  
object	  based	  on	  the	  class	  majority	  of	  its	  nearest	  neighbors/matches.	  



Example  

What do we need? 
1. Define Similarity  

2. Search fast  
–  Dimensionality Reduction 

(compress data) 



What is Similarity? 
The quality or state of being similar; likeness; 
resemblance; as, a similarity of features.  

Similarity is hard to 
define, but…  
“We know it when we 
see it” 
 
The real meaning of 
similarity is a 
philosophical question.  
 
We will take a more 
pragmatic approach.   

Webster's Dictionary 



Notion of Similarity I 
§  Solution to any time-series problem, boils down to a proper 

definition of *similarity* 

Similarity is always subjective. 
(i.e. it depends on the application) 



Notion of Similarity II 
Similarity depends on the features we consider 

(i.e. how we will describe or compress the sequences) 



Two Kinds of Similarity  

god 

cod 

pie 

SLY I'll pheeze you, in faith. Hostess A pair of stocks, you ro 

VALENTINE Cease to persuade, my loving Proteus:Home-k 

In the beginning God created the heavens and the earth. The e 

 
 
 

Similarity at 
the level of 
individual 

characters 

Similarity 
at the 

structural 
level 

 

text 



Two Kinds of Similarity  

 
 
 

Similarity at 
the level of 

shape 

Similarity at 
the structural 

level 

time series 



Metric and Non-metric Distance Functions 
Distance functions 

Metric Non-Metric 

§  Euclidean Distance 

§  Correlation 

§  Time Warping 

§  LCSS 

Positivity and Constancy:  

 d(x,y) ≥ 0 and d(x,y)=0, if x=y 

 
Symmetry: d(x,y) = d(y,x) 

 
Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z) 

Properties 
If any of these is not 
obeyed then the distance 
is a non-metric 

 

 



Triangle Inequality 
Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z) 

x y 

z 
     Metric distance 

functions can exploit 
the triangle inequality 
to speed-up search  

     Intuitively, if: 
- x is similar to y and,  
- y is similar to z, then, 
- x is similar to z too. 



Triangle Inequality (Importance) 
Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z) 

     A  

B  

     C  

     Q  

  A  B  C 

A   0  20  110 

B   20  0  90 

C   110  90  0 

Assume:	  	   	  d(Q,bestMatch)	  =	  20	  

and	  	  	  	  	  	  	  	  	  	  	   	  d(Q,B)	  =150	  

Then,	  since	  d(A,B)=20	  

	   	   	  d(Q,A)	  ≥	  d(Q,B)	  –	  d(B,A)	  	  

	   	   	  d(Q,A)	  ≥	  150	  –	  20	  =	  130	  

So	  we	  don’t	  have	  to	  retrieve	  A	  from	  disk	  

	  

	  



Non-Metric Distance Functions 

•  Matching flexibility 

•  Robustness to outliers 

•  Stretching in time/space 

•  Support for different sizes/lengths 

•  Speeding-up search can be 
difficult 

      Bat 
similar to 
batman 

Batman 
similar 
to man 

Man 
similar 
to bat?? 
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Euclidean Distance Metric 

About 80% of published 
work in data mining uses 

Euclidean distance 

Given two time series: 
  Q = q1…qn  

 C = c1…cn  
 
 

L2 = sqrt(sum((a-b).^2)); % return Euclidean distance 



Optimizing the Euclidean 
Distance Calculation 
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Euclidean distance and Squared 
Euclidean distance are equivalent in the 
sense that they return the same rankings, 
clusterings and classifications 

Instead of using the 
Euclidean distance 
       we can use the 
Squared Euclidean distance 

This optimization 
helps with CPU time, 

but most problems are 
I/O bound. 

 



Euclidean Distance (Vectorization) 
A Matlab trick 

Ques;on:	  If	  I	  want	  to	  compare	  many	  sequences	  to	  each	  other	  do	  
I	  have	  to	  use	  a	  for-‐loop?	  

Answer:	  No,	  one	  can	  use	  the	  following	  equa;on	  to	  perform	  
matrix	  computa;ons	  only…	  	  

||A-B|| = sqrt ( ||A||2 + ||B||2 - 2*A.B ) 

aa=sum(a.*a); bb=sum(b.*b); ab=a'*b;  
d = sqrt(repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) - 2*ab); 

A:	  DxM	  matrix	  

B:	  DxN	  matrix	  

Result	  is	  MxN	  
matrix	  

O
f l

en
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… A =  

result  

D1,1 
D2,1 

DM,N 



In the next few slides we 
will discuss the 4 most 

common distortions, and 
how to remove them 

Preprocessing the data before distance calculations 
 

•  Offset Translation 
•  Amplitude Scaling 
•  Linear Trend 
•  Noise 

This is because Euclidean distance is very 
sensitive to some “distortions” in the 
data. For most problems these distortions 
are not meaningful, and thus we can and 
should remove them 

If we naively try to measure the distance 
between two “raw” time series, we may get 

very unintuitive results 



average	  value	  of	  A	  

average	  value	  of	  B	  

A 

B 

Transformation I: Offset Translation  

A = A – mean(A) 
B = B – mean(B) 
D(A, B) 



Transformation II: Amplitude Scaling  

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 

Q = (Q - mean(Q)) / std(Q) 
C = (C - mean(C)) / std(C) 
D(Q,C) 



Transformation III: Linear Trend  

0 20 40 60 80 100 120 140 160 180 200 -4 
-2 
0 
2 
4 
6 
8 

10 
12 

0 20 40 60 80 100 120 140 160 180 200 -3 
-2 
-1 
0 
1 
2 
3 
4 
5 

Removed offset translation   
Removed amplitude scaling   

Removed linear trend   
The intuition behind removing 
linear trend is… 
 
Fit the best fitting straight line to the 
time series, then subtract that line 
from the time series. 



Transformation IIII: Noise  

0 20 40 60 80 100 120 140 -4 
-2 
0 
2 
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0 20 40 60 80 100 120 140 -4 
-2 
0 
2 
4 
6 
8 

Q = smooth(Q) 
C = smooth(C) 
D(Q,C) 

The intuition behind 
removing noise is... 
 
Average each datapoints 
value with its neighbors.  
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A Quick Experiment to Demonstrate the 
Utility of Preprocessing the Data  

1 
4 
7 
5 
8 
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9 
2 
3 

Clustered using Euclidean 
distance, after removing 

noise, linear trend, offset 
translation  and amplitude 

scaling 

Clustered using 
Euclidean 

distance on the 
raw data. 



Summary of Preprocessing 

We should keep in mind these problems as 
we consider the high level representations 
of time series which we will encounter 
later (DFT, Wavelets etc). Since these 
representations often allow us to handle 
distortions in elegant ways 

Of course, sometimes the distortions 
are the most interesting thing about 
the data, the above is only a general 
rule 

 

The “raw” time series may have 
distortions which we should  remove 
before clustering, classification etc 



Euclidean distance cannot compensate for small 
distortions in time axis. 

Solu;on:	  Allow	  for	  compression	  &	  decompression	  in	  ;me	  

A 

B 

C 

According	  to	  Euclidean	  distance	  	  
B	  is	  more	  similar	  to	  A	  than	  to	  C	  



Fixed Time Axis 
Sequences are aligned “one to one”. 

“Warped” Time Axis 
Nonlinear alignments are possible. 

Dynamic Time Warping 
 

Note: We will first see the utility of DTW, then see how it is calculated. 



Euclidean Dynamic Time Warping 

Nuclear  
Power 

Excellent!   
  

Here is another example on 
nuclear power plant trace data, 
to help you develop an intuition 

for DTW 
  



Dynamic Time-Warping 
First	  used	  in	  speech	  recogni;on	  
for	  recognizing	  words	  spoken	  at	  
different	  speeds	  

Same	  idea	  can	  work	  equally	  well	  
for	  generic	  ;me-‐series	  data	  

----Mat-lab-------------------------- 

---Maat--llaabb------------------- 



Euclidean distance	

T1 = [1, 1, 2, 2]���

                                d = 1	

T2 = [1, 2, 2, 2]	


Dynamic Time-Warping (how does it work?) 
The intuition is that we copy an element multiple times 
so as to achieve a better matching 

Warping distance	

T1 = [1, 1, 2, 2]���

                                d = 0	

T2 = [1, 2, 2, 2]	


One-to-one linear alignment 

One-to-many non-linear alignment 
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C 

Q 

How is DTW 
Calculated? I 

We create a matrix the size of  
|Q| by |C|, then fill it in with 
the distance between every 
pair of point in our two time 
series. 



C 

Q 

  

      
      
      
  
  

C 

Q 

How is DTW 
Calculated? II 

⎩
⎨
⎧= ∑ =

KwCQDTW K

k k1
min),(

Warping path w 

Every possible warping between two time 
series, is a path though the matrix. We 
want the best one… 

γ(i,j)  = d(qi,cj) + min{ γ(i-1,j-1), γ(i-1,j ), γ(i,j-1) } 

This recursive function gives us the 
minimum cost path 



How is DTW 
Calculated? II 

⎩
⎨
⎧= ∑ =

KwCQDTW K

k k1
min),(

C 

Q 

Warping path w 

Every possible warping between two time 
series, is a path though the matrix. We 
want the best one… 

γ(i,j)  = d(qi,cj) + min{ γ(i-1,j-1), γ(i-1,j ), γ(i,j-1) } 

This recursive function gives us the 
minimum cost path 



Three Constraints: Given a path W… 
•  Boundary Constraint: W 

must start and finish in the 
first and last points of the 
sequences 

•  Continuity: at any given 
point in W, we can only 
travel to neighboring 
points  

•  Monotonicity: points in 
W must be monotonically 
ordered 

C 

Q 



Let us visualize the cumulative matrix on a real world problem I 

This example shows 2 
one-week periods from 
the power demand time 
series. 
 
Note that although they 
both describe 4-day work 
weeks, the blue sequence 
had Monday as a holiday, 
and the red sequence had 
Wednesday as a holiday. 



Let us visualize the cumulative matrix on a real world problem II 



Dynamic Time-Warping (Examples) 
So does it work better than Euclidean? Well 

yes! After all it is more costly.. 
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  Dynamic Time Warping  
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Euclidean Distance  

MIT arrhythmia database 
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Sign language 

0 50 100 150 200 250 300 -3 -2 
-1 0 
1 2 
3 4 Trace 

Word Spotting 

Gun 

Let us compare Euclidean Distance and DTW on some problems 

Faces 

Leaves 

Control 

2-Patterns 



Dataset Euclidean DTW 
Word Spotting 4.78 1.10 
Sign language  28.70 25.93 
GUN  5.50 1.00 
Nuclear Trace 11.00 0.00 
Leaves# 33.26 4.07 
(4) Faces 6.25 2.68 
Control Chart* 7.5 0.33 
2-Patterns 1.04 0.00 

Results: Error Rate 
Using 1-
nearest-
neighbor, 
leaving-
one-out 

evaluation!   
  



Dataset Euclidean DTW 
Word Spotting 40  8,600  
Sign language  10 1,110 
GUN  60 11,820  
Nuclear Trace 210 144,470  
Leaves 150 51,830  
(4) Faces 50 45,080 
Control Chart 110 21,900 
2-Patterns 16,890 545,123 

Results: Time  (msec ) 

215 
 

110 
 

197 
 

687 
 

345 
 

901 
 

199 
 
32 

DTW is 
two to 
three 

orders of 
magnitude 

slower 
than 

Euclidean 
distance 

  



Fast Approximations to Dynamic Time Warp Distance I 

 
 

C 

Q 
C 

Q 

Simple Idea: Approximate the time series with 
some compressed or downsampled 
representation, and do DTW on the new 
representation.  How well does this work... 
  



Fast Approximations to Dynamic Time Warp Distance II 

0.07 sec 

1.03 sec 

… there is strong visual evidence to suggests it 
works well 
 There is good experimental evidence for the 
utility of the approach on clustering, classification, 
etc 



C 
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C 
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Sakoe-Chiba Band Itakura Parallelogram 

Global Constraints  

•  Slightly speed up the calculations 
•  Prevent pathological warpings 



A global constraint constrains the indices of the warping path wk = 
(i,j)k such that j-r ≤ i ≤ j+r 
 
Where r is a term defining allowed range of  warping for a given 
point in a sequence.  
 
We can learn the best r using a training set 

ri 

Sakoe-Chiba Band Itakura Parallelogram 
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w:  Warping Width 
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Accuracy vs. Width of Warping Window 



In general, it’s hard to speed up a single DTW calculation 

However, if we have to make many DTW 
calculations (which is almost always the 
case), we can potentiality speed up the 

whole process by lowerbounding.  

Keep in mind that the lowerbounding trick works 
for any situation where you have an expensive 

calculation that can be lowerbounded (string edit 
distance, graph edit distance etc) 

 

I will explain how lowerbounding works in a generic 
fashion in the next two slides, then show 

concretely how lowerbounding makes dealing with 
massive time series under DTW possible… 

 



Lower Bounding I 

Assume that we have two functions: 

•  DTW(A,B) 
•  lower_bound_distance(A,B) 
 

The true DTW 
function is very 
slow… 

The lower 
bound function 
is very fast… 

By definition, for all A, B, we have 
 
 lower_bound_distance(A,B) ≤ DTW(A,B) 



Lower Bounding II 

1. best_so_far = infinity; 
2. for all sequences in database 
3. LB_dist = lower_bound_distance( 
4. if LB_dist <  best_so_far 
5. true_dist = DTW( 
6. if true_dist < best_so_far 
7. best_so_far = true_dist; 
8. index_of_best_match = i; 
9. endif 
10. endif 
11.   endfor 

Algorithm Lower_Bounding_Sequential_Scan(Q)  
1. best_so_far = infinity; 
2. for all sequences in database 
3. 
4. if LB_dist <  best_so_far 
5. C i , Q); C i , Q); 
6. if true_dist < best_so_far 
7. best_so_far = true_dist; 
8. index_of_best_match = i; 
9. endif 
10. endif 
11.   endfor 

Algorithm Lower_Bounding_Sequential_Scan(Q)  

We can speed up similarity search under DTW 
by using a lower bounding function 

C i , Q); C i , Q); 

Only do the 
expensive, full 
calculations when 
it is absolutely 
necessary 

 
 

Try to use a cheap 
lower bounding 
calculation as 
often as possible. 
 



query sequences 

Lower Bounding Example 



sequences Lower 
Bounds 
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37.9032 

 
19.5174 

 
72.1846 

 
67.1436 

 
78.0920 

 
70.9273 

 
63.7253 

 
1.4121 

Lower Bounding Example 



sequences Lower 
Bounds 

 
4.6399 

 
37.9032 

 
19.5174 

 
72.1846 

 
67.1436 

 
78.0920 

 
70.9273 

 
63.7253 

 
1.4121 

True Distance 
 

  46.7790 
 

  108.8856 
 

  113.5873 
 

  104.5062 
 

  119.4087 
 

  120.0066 
 

  111.6011 
 

  119.0635 
 

   17.2540 BestSoFar 

Lower Bounding Example 



Lower Bound of Yi 

The sum of the squared length of gray 
lines represent the minimum 
corresponding points contribution to the 
overall DTW distance, and thus can be 
returned as the lower bounding measure  

Yi, B, Jagadish, H & Faloutsos, 
C. Efficient retrieval of similar 
time sequences under time 
warping. ICDE 98, pp 23-27.  

max(Q) 

min(Q) 
LB_Yi 



A 

B 

C 

D 

The (maximum) squared difference 
between the two sequence’s first (A), last 
(D), minimum (B) and maximum points 
(C) is returned as the lower bound  

Kim, S, Park, S, & Chu, W.  An 
index-based approach for 
similarity search supporting time 
warping in large sequence 
databases. ICDE 01, pp 607-614  

LB_Kim 

Lower Bound of Kim 



L 

U 

Q 

C 

 Q
 

 

Sakoe-Chiba Band 

Ui = max(qi-r : qi+r) 
Li  = min(qi-r : qi+r) 

Lower Bound of Keogh 

C 
U 

L Q 

LB_Keogh 

Envelope-Based 
Lower Bound 

LB_Keogh(Q,C)=

(Ci −Ui )
2 if Ci >Ui

(Ci − Li )
2 if Ci <Li

0 otherwise

"

#
$$

%
$
$

i=1

n

∑



Lower Bounding the Dynamic Time Warping 

 Minimum Bounding Envelope for bounding the DTW 
–  Create Minimum Bounding Envelope (MBE) of query Q 

–  Calculate distance between MBE of Q and any sequence A 
–  One can show that: D(MBE(Q)δ,A) < DTW(Q,A) 

Q 

A 
MBE(Q) 

δ  
U 

L 

 
 LB = sqrt(sum([[A > U].* [A-U]; [A < L].* [L-A]].^2)); 



LB_Keogh 
Sakoe-Chiba 

LB_Keogh 
Itakura 

LB_Yi 

LB_Kim 

The tightness of the lower bound for each technique is proportional 
to the length of gray lines used in the illustrations  



Longest Common Subsequence (LCSS) 

ignore majority 
of noise 

match 

match 

With	  Time	  Warping	  extreme	  values	  (outliers)	  can	  destroy	  the	  distance	  
es;mates.	  The	  LCSS	  model	  can	  offer	  more	  resilience	  to	  noise	  and	  impose	  
spa;al	  constraints	  too.	  

δ 
ε 

Matching within δ time 
and ε in space 

Everything that is outside the bounding 
envelope can never be matched 



Longest Common Subsequence (LCSS) 

ignore majority 
of noise 

match 

match 

Advantages of LCSS: 

A. Outlying values not matched 

B. Distance/Similarity distorted less 

C. Constraints in time & space 

Disadvantages of DTW: 

A. All points are matched 

B. Outliers can distort distance 

C. One-to-many mapping 

LCSS is more resilient to noise than DTW. 



LCSS (Implementation) 
Similar	  dynamic	  programming	  solu;on	  as	  DTW,	  but	  now	  we	  
measure	  similarity	  not	  distance.	  

Can also be expressed as distance 



Distance Measure Comparison 

LCSS is the least sensitive to noise because it includes a threshold to define a “match.”  



Distance Measure Comparison 
(Overview) 

Method Complexity Elastic Matching One-to-one Matching Noise 
Robustness 

Euclidean O(n) O P O 
DTW O(n*δ) P O O 
LCSS O(n*δ) P P P 



Two Kinds of Similarity  We are 
done with 

shape 
similarity 

Let us consider 
similarity at 

the structural 
level for the 

next 10 minutes 



Euclidean 
Distance 

For long time 
series, shape 

based similarity 
will give very 

poor results. We 
need to measure 
similarly based 
on high level 

structure 



Structure or Model Based Similarity  

A 
B 
C 

A B C 
Max Value 11 12 19 
Autocorrelation 0.2 0.3 0.5 
Zero Crossings 98 82 13 
ARIMA 0.3 0.4 0.1 
… … … … 

Feature 
Time    
       Series 

The basic idea is to 
extract global features 
from the time series, 

create a feature 
vector, and use these 

feature vectors to 
measure similarity and/

or classify  

But which 
•  features? 
•  distance measure/ 
learning algorithm? 



Feature-based Classification of Time-series Data 
Nanopoulos, Alcock, and Manolopoulos 

 

Features  
mean 

variance 
skewness 

kurtosis 
mean (1st derivative) 

variance (1st derivative) 

skewness (1st derivative) 

kurtosis (1st derivative) 

Learning Algorithm 
multi-layer perceptron neural network 

•  features? 
•  distance measure/ 
learning algorithm? 



Learning to Recognize Time Series: Combining ARMA Models with 
Memory-Based Learning 

Deng,  Moore and Nechyba 
 

Features  
The parameters of the 
Box Jenkins model. 

 
More concretely, the 

coefficients of the 
ARMA model. 

Distance Measure 
Euclidean distance (between coefficients) 

•  features? 
•  distance measure/ 
learning algorithm? 

•  Used to detect drunk drivers! 
•  Independently rediscovered and 
generalized by Kalpakis et. al. and 
expanded by Xiong and Yeung 



Deformable Markov Model Templates for Time Series Pattern Matching 
Ge and Smyth 

Features  
The parameters of a 

Markov Model 
 

The time series is first 
converted to a piecewise 

linear model  

•  features? 
•  distance measure/ 
learning algorithm? 

0 20 40 60 80 100 120 140 

X 

X' 

A B C 

A B C 

A 0.1 0.4 0.5 

B 0.4 0.2 0.2 

C 0.5 0.2 0.3 

Variations independently 
developed by Li and Biswas, 

Ge and Smyth, Lin, Orgun and 
Williams etc  

 

There tends to be 
lots of 

parameters to 
tune…  

 



Compression Based Dissimilarity 
(In general) Li, Chen, Li, Ma, and Vitányi: (For time series) Keogh, Lonardi and Ratanamahatana	


Features  
Whatever structure 

the compression 
algorithm finds... 

 
The time series is first converted 

to the SAX symbolic 
representation* 

Distance Measure 
Co-Compressibility  

•  features? 
•  distance measure/ 
learning algorithm? 

Euclidean CDM 

)()(
)(),(
yCxC

xyCyxCDM
+

=



Pattern-Histogram Based Similarity 
Lin and Li	


Features  
Represent time series 

as “bag of 
patterns” (much like 
the “bag of words” 

for text data) 
 

The time series is first converted 
to the SAX symbolic 

representation* 

Distance Measure 
Euclidean Distance on Bag of Patterns 

•  features? 
•  distance measure/ 
learning algorithm? 



Summary of Time Series Similarity 
•  If you have short time series, use DTW after 
searching over the warping window size (and 
shape), or LCSS 
•  Then use envelope based lower bounds to speed 
things up. 

•  If you have long time series, and you know 
nothing about your data, try compression based 
dissimilarity or bag-of-patterns similarity. 
•  If you do know something about your data, try to 
leverage of this knowledge to extract features.   


