
Mining Time Series Data 1

Acknowledgements

Some slides are provided by
•  Eamonn Keogh (various time series data

mining tutorials)
•  Michail Vlachos (ICDM 2006 tutorial)

What are Time Series?

0 50 100 150 200 250 300 350 400 450 500 23

24

25

26

27

28

29

 25.1750
 25.2250
 25.2500
 25.2500
 25.2750
 25.3250
 25.3500
 25.3500
 25.4000
 25.4000
 25.3250
 25.2250
 25.2000
 25.1750

 ..

 ..
 24.6250
 24.6750
 24.6750
 24.6250
 24.6250
 24.6250
 24.6750
 24.7500

A time series is a collection of observations made
sequentially in time.

Time Series are Ubiquitous! I

•  Their blood pressure
•  George Bush's popularity rating
•  The annual rainfall in Seattle
•  The value of their Google stock

Thus time series occur in virtually every medical, scientific and businesses domain

People measure things…

…and things change over time…

5

Time Series are Ubiquitous! II

A random sample of 4,000 graphics from 15
of the world’s newspapers published from

1974 to 1989 found that more than 75% of all
graphics were time series (Tufte, 1992).

Shapes
Recognize type of leaf based on its shape

Acer platanoides Ulmus carpinifolia Salix fragilis Tilia Quercus robur

Convert perimeter into a sequence of values

ICDM 2006 Tutorial

Michail Vlachos

50 100 150 200 250
0

200

400

600

50 100 150 200 250
0

200

400

50 100 150 200 250
0

200
400

600
800

50 100 150 200 250
0

200

400

600

50 100 150 200 250
0

200

400

50 100 150 200 250
0

200
400
600
800

50 100 150 200 250
0

2000

4000

50 100 150 200 250
0

2000

4000

50 100 150 200 250
0

2000

4000

50 100 150 200 250
0

1000

2000

3000

50 100 150 200 250
0

2000

4000

50 100 150 200 250
0

2000

4000

Convert to Time-Series

Image Histograms

Applications (Image Matching)
 Many types of data can be

converted to time-series

50 100 150 200 250
0

200

400

600

50 100 150 200 250
0

200

400

50 100 150 200 250
0

200
400

600
800

Cluster 1

Cluster 2

Image

Color Histogram

Time-Series

Applications (Motion Capture)
Motion-Capture (MOCAP) Data (Movies, Games)

–  Track position of several joints over time

–  3*17 joints = 51 parameters per frame

MOCAP data…
…my precious…

Applications (Video)
Video-tracking / Surveillance

–  Visual tracking of body features (2D time-series)

–  Sign Language recognition (3D time-series)

Video Tracking of body feature
over time (Athens1, Athens2)

Text data, may best be thought of as time series…

0 1 2 3 4 5 6 7 8 x 10 5 0

Blue: “God” -English Bible "
Red: “Dios” -Spanish Bible"

Gray: “El Senor” -Spanish Bible"

The local frequency
of words in the Bible

Text Data As Time Series II

“big data”

The day after election (11/05/08)

Text Data As Time Series III

Handwriting data, may best be thought of as time series…

George Washington Manuscript

George Washington
1732-1799

0 50 100 150 200 250 300 350 400 450 0
0.5

1

Brain scans (3D voxels), may best be thought of as time series…

Wang, Kontos, Li and Megalooikonomou ICASSP 2004 Works with
3D glasses!

Why is Working With Time Series so
Difficult? Part I

 Answer: How do we work with very large databases?

Since most of the data lives on disk (or tape), we need a
representation of the data we can efficiently manipulate.

•  1 Hour of ECG data: 1 GB
•  Twitter: over 400 million tweets per day (in 2013, compared to

340M in 2012, and 200M in 2011)
•  Astronomy Databases:

•  LSST (Large Synoptic Survey Telescope) project: 20 PB science
data & 100 PB image archive

•  Satellite data
•  Sensor data
•  Biological data

Why is Working With Time Series so
Difficult? Part II

The definition of similarity depends on the user, the domain and
the task at hand. We need to be able to handle this subjectivity.	

Answer: We are dealing with subjectivity

Why is working with time series so
difficult? Part III

 Answer: Miscellaneous data handling problems.

•  Differing data formats.
•  Differing sampling rates.
•  Noise, missing values, etc.

What do we want to do with the time series data?

 Clustering Classification

Query by
Content

Rule
Discovery

10

⇒
s = 0.5
c = 0.3

Motif Discovery

 Novelty Detection Visualization

All these problems require similarity matching

 Clustering Classification

Query by
Content

Rule
Discovery

10

⇒
s = 0.5
c = 0.3

Motif Discovery

 Novelty Detection Visualization

A simple motivation

You go to the doctor
because of chest pains.
Your ECG looks
strange…

You doctor wants to
search a database to find
similar ECGs, in the
hope that they will offer
clues about your
condition...

Two questions:
•  How do we define similar?

•  How do we search quickly?

ECG tester

Basic Time-Series Matching Problem

 Database with time-series:
–  Medical sequences

–  Images, etc

 Sequence Length:100-1000pts
DB Size: 1 TByte

query

D = 7.3

D = 10.2

D = 11.8

D = 17

D = 22

Distance

 Objective: Compare the query with
all sequences in DB and return
the k most similar sequences to
the query.

Linear Scan:

What other problems can we solve?
Clustering: “Place time-series into ‘similar’ groups”

Classification: “To which group is a time-series most ‘similar’ to?”

query
?

?
?

Hierarchical Clustering
•  Very	 generic	 &	 powerful	 tool	
•  Provides	 visual	 data	 grouping	

Z = linkage(D);
H = dendrogram(Z);

Pairwise
distances

D1,1
D2,1

DM,N

1.  Merge objects with
smallest distance

2.  Re-evaluate distances

3.  Repeat process

Partitional Clustering

K-Means Algorithm:

1.  Initialize k clusters (k specified
by user) randomly.

2.  Repeat until convergence
1.  Assign each object to the

nearest cluster center.

2.  Re-estimate cluster centers.

§  Faster	 than	 hierarchical	 clustering	

§  Typically	 provides	 subop;mal	 solu;ons	 (local	 minima)	

§ Not	 good	 performance	 for	 high	 dimensions	

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

See: kmeans

K-Means Demo

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

K-Means Clustering for Time-Series

§  So	 how	 is	 kMeans	 applied	 for	 Time-‐Series	 that	 are	 high-‐
dimensional?	

§ Perform	 kMeans	 on	 a	 compressed	 dimensionality	

Original
sequences

Compressed
sequences

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Clustering
space

Classification
Typically	 classifica;on	 can	 be	 made	 easier	 if	 we	 have	
clustered	 the	 objects	

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Class A

Class B

 Project query in
the new space and
find its closest
cluster

 So, query Q is
more similar to
class B

 Q

Nearest Neighbor Classification

H
ai

r L
en

gt
h

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

Hobbits
Elfs

Height

	 	 	 	 We	 need	 not	 perform	 clustering	 before	 classifica;on.	 We	 can	 classify	 an	
object	 based	 on	 the	 class	 majority	 of	 its	 nearest	 neighbors/matches.	

Example

What do we need?
1. Define Similarity

2. Search fast
–  Dimensionality Reduction

(compress data)

What is Similarity?
The quality or state of being similar; likeness;
resemblance; as, a similarity of features.

Similarity is hard to
define, but…
“We know it when we
see it”

The real meaning of
similarity is a
philosophical question.

We will take a more
pragmatic approach.

Webster's Dictionary

Notion of Similarity I
§  Solution to any time-series problem, boils down to a proper

definition of *similarity*

Similarity is always subjective.
(i.e. it depends on the application)

Notion of Similarity II
Similarity depends on the features we consider

(i.e. how we will describe or compress the sequences)

Two Kinds of Similarity

god

cod

pie

SLY I'll pheeze you, in faith. Hostess A pair of stocks, you ro

VALENTINE Cease to persuade, my loving Proteus:Home-k

In the beginning God created the heavens and the earth. The e

Similarity at
the level of
individual

characters

Similarity
at the

structural
level

text

Two Kinds of Similarity

Similarity at
the level of

shape

Similarity at
the structural

level

time series

Metric and Non-metric Distance Functions
Distance functions

Metric Non-Metric

§  Euclidean Distance

§  Correlation

§  Time Warping

§  LCSS

Positivity and Constancy:

 d(x,y) ≥ 0 and d(x,y)=0, if x=y

Symmetry: d(x,y) = d(y,x)

Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)

Properties
If any of these is not
obeyed then the distance
is a non-metric

Triangle Inequality
Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)

x y

z
 Metric distance

functions can exploit
the triangle inequality
to speed-up search

 Intuitively, if:
- x is similar to y and,
- y is similar to z, then,
- x is similar to z too.

Triangle Inequality (Importance)
Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)

 A

B

 C

 Q

 A B C

A 0 20 110

B 20 0 90

C 110 90 0

Assume:	 	 	 d(Q,bestMatch)	 =	 20	

and	 	 	 	 	 	 	 	 	 	 	 	 d(Q,B)	 =150	

Then,	 since	 d(A,B)=20	

	 	 	 d(Q,A)	 ≥	 d(Q,B)	 –	 d(B,A)	 	

	 	 	 d(Q,A)	 ≥	 150	 –	 20	 =	 130	

So	 we	 don’t	 have	 to	 retrieve	 A	 from	 disk	

	

	

Non-Metric Distance Functions

•  Matching flexibility

•  Robustness to outliers

•  Stretching in time/space

•  Support for different sizes/lengths

•  Speeding-up search can be
difficult

 Bat
similar to
batman

Batman
similar
to man

Man
similar
to bat??

() ()∑ −≡
=

n

i
ii cqCQD

1

2,
Q

C

D(Q,C)

Euclidean Distance Metric

About 80% of published
work in data mining uses

Euclidean distance

Given two time series:
 Q = q1…qn

 C = c1…cn

L2 = sqrt(sum((a-b).^2)); % return Euclidean distance

Optimizing the Euclidean
Distance Calculation

() ()∑ −≡

=

n

i
ii cqCQD

1

2,

() ()∑ −≡
=

n

i
iisquared cqCQD

1

2,

Euclidean distance and Squared
Euclidean distance are equivalent in the
sense that they return the same rankings,
clusterings and classifications

Instead of using the
Euclidean distance
 we can use the
Squared Euclidean distance

This optimization
helps with CPU time,

but most problems are
I/O bound.

Euclidean Distance (Vectorization)
A Matlab trick

Ques;on:	 If	 I	 want	 to	 compare	 many	 sequences	 to	 each	 other	 do	
I	 have	 to	 use	 a	 for-‐loop?	

Answer:	 No,	 one	 can	 use	 the	 following	 equa;on	 to	 perform	
matrix	 computa;ons	 only…	 	

||A-B|| = sqrt (||A||2 + ||B||2 - 2*A.B)

aa=sum(a.*a); bb=sum(b.*b); ab=a'*b;
d = sqrt(repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) - 2*ab);

A:	 DxM	 matrix	

B:	 DxN	 matrix	

Result	 is	 MxN	
matrix	

O
f l

en
gt

h
D

M sequences

… A =

result

D1,1
D2,1

DM,N

In the next few slides we
will discuss the 4 most

common distortions, and
how to remove them

Preprocessing the data before distance calculations

•  Offset Translation
•  Amplitude Scaling
•  Linear Trend
•  Noise

This is because Euclidean distance is very
sensitive to some “distortions” in the
data. For most problems these distortions
are not meaningful, and thus we can and
should remove them

If we naively try to measure the distance
between two “raw” time series, we may get

very unintuitive results

average	 value	 of	 A	

average	 value	 of	 B	

A

B

Transformation I: Offset Translation

A = A – mean(A)
B = B – mean(B)
D(A, B)

Transformation II: Amplitude Scaling

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Q = (Q - mean(Q)) / std(Q)
C = (C - mean(C)) / std(C)
D(Q,C)

Transformation III: Linear Trend

0 20 40 60 80 100 120 140 160 180 200 -4
-2
0
2
4
6
8

10
12

0 20 40 60 80 100 120 140 160 180 200 -3
-2
-1
0
1
2
3
4
5

Removed offset translation
Removed amplitude scaling

Removed linear trend
The intuition behind removing
linear trend is…

Fit the best fitting straight line to the
time series, then subtract that line
from the time series.

Transformation IIII: Noise

0 20 40 60 80 100 120 140 -4
-2
0
2
4
6
8

0 20 40 60 80 100 120 140 -4
-2
0
2
4
6
8

Q = smooth(Q)
C = smooth(C)
D(Q,C)

The intuition behind
removing noise is...

Average each datapoints
value with its neighbors.

1
2
3
4
6
5
7
8
9

A Quick Experiment to Demonstrate the
Utility of Preprocessing the Data

1
4
7
5
8
6
9
2
3

Clustered using Euclidean
distance, after removing

noise, linear trend, offset
translation and amplitude

scaling

Clustered using
Euclidean

distance on the
raw data.

Summary of Preprocessing

We should keep in mind these problems as
we consider the high level representations
of time series which we will encounter
later (DFT, Wavelets etc). Since these
representations often allow us to handle
distortions in elegant ways

Of course, sometimes the distortions
are the most interesting thing about
the data, the above is only a general
rule

The “raw” time series may have
distortions which we should remove
before clustering, classification etc

Euclidean distance cannot compensate for small
distortions in time axis.

Solu;on:	 Allow	 for	 compression	 &	 decompression	 in	 ;me	

A

B

C

According	 to	 Euclidean	 distance	 	
B	 is	 more	 similar	 to	 A	 than	 to	 C	

Fixed Time Axis
Sequences are aligned “one to one”.

“Warped” Time Axis
Nonlinear alignments are possible.

Dynamic Time Warping

Note: We will first see the utility of DTW, then see how it is calculated.

Euclidean Dynamic Time Warping

Nuclear
Power

Excellent!

Here is another example on
nuclear power plant trace data,
to help you develop an intuition

for DTW

Dynamic Time-Warping
First	 used	 in	 speech	 recogni;on	
for	 recognizing	 words	 spoken	 at	
different	 speeds	

Same	 idea	 can	 work	 equally	 well	
for	 generic	 ;me-‐series	 data	

----Mat-lab--------------------------

---Maat--llaabb-------------------

Euclidean distance	

T1 = [1, 1, 2, 2]���

 d = 1	

T2 = [1, 2, 2, 2]	

Dynamic Time-Warping (how does it work?)
The intuition is that we copy an element multiple times
so as to achieve a better matching

Warping distance	

T1 = [1, 1, 2, 2]���

 d = 0	

T2 = [1, 2, 2, 2]	

One-to-one linear alignment

One-to-many non-linear alignment

C

Q

C

Q

How is DTW
Calculated? I

We create a matrix the size of
|Q| by |C|, then fill it in with
the distance between every
pair of point in our two time
series.

C

Q

C

Q

How is DTW
Calculated? II

⎩
⎨
⎧= ∑ =

KwCQDTW K

k k1
min),(

Warping path w

Every possible warping between two time
series, is a path though the matrix. We
want the best one…

γ(i,j) = d(qi,cj) + min{ γ(i-1,j-1), γ(i-1,j), γ(i,j-1) }

This recursive function gives us the
minimum cost path

How is DTW
Calculated? II

⎩
⎨
⎧= ∑ =

KwCQDTW K

k k1
min),(

C

Q

Warping path w

Every possible warping between two time
series, is a path though the matrix. We
want the best one…

γ(i,j) = d(qi,cj) + min{ γ(i-1,j-1), γ(i-1,j), γ(i,j-1) }

This recursive function gives us the
minimum cost path

Three Constraints: Given a path W…
•  Boundary Constraint: W

must start and finish in the
first and last points of the
sequences

•  Continuity: at any given
point in W, we can only
travel to neighboring
points

•  Monotonicity: points in
W must be monotonically
ordered

C

Q

Let us visualize the cumulative matrix on a real world problem I

This example shows 2
one-week periods from
the power demand time
series.

Note that although they
both describe 4-day work
weeks, the blue sequence
had Monday as a holiday,
and the red sequence had
Wednesday as a holiday.

Let us visualize the cumulative matrix on a real world problem II

Dynamic Time-Warping (Examples)
So does it work better than Euclidean? Well

yes! After all it is more costly..

1
4
10
2
6
5
7
8
9
3
11
15
19
12
14
16
13
17
20
18

 Dynamic Time Warping

1
4
8
12
5
17
20
10
19
11
15
2
6
9
3
14
13
7
16
18

Euclidean Distance

MIT arrhythmia database

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 0 10 20 30 40 50 60 70 80 -4 -3 -2 -1 0
1 2
3 4

Sign language

0 50 100 150 200 250 300 -3 -2
-1 0
1 2
3 4 Trace

Word Spotting

Gun

Let us compare Euclidean Distance and DTW on some problems

Faces

Leaves

Control

2-Patterns

Dataset Euclidean DTW
Word Spotting 4.78 1.10
Sign language 28.70 25.93
GUN 5.50 1.00
Nuclear Trace 11.00 0.00
Leaves# 33.26 4.07
(4) Faces 6.25 2.68
Control Chart* 7.5 0.33
2-Patterns 1.04 0.00

Results: Error Rate
Using 1-
nearest-
neighbor,
leaving-
one-out

evaluation!

Dataset Euclidean DTW
Word Spotting 40 8,600
Sign language 10 1,110
GUN 60 11,820
Nuclear Trace 210 144,470
Leaves 150 51,830
(4) Faces 50 45,080
Control Chart 110 21,900
2-Patterns 16,890 545,123

Results: Time (msec)

215

110

197

687

345

901

199

32

DTW is
two to
three

orders of
magnitude

slower
than

Euclidean
distance

Fast Approximations to Dynamic Time Warp Distance I

C

Q
C

Q

Simple Idea: Approximate the time series with
some compressed or downsampled
representation, and do DTW on the new
representation. How well does this work...

Fast Approximations to Dynamic Time Warp Distance II

0.07 sec

1.03 sec

… there is strong visual evidence to suggests it
works well
 There is good experimental evidence for the
utility of the approach on clustering, classification,
etc

C

Q

C

Q

Sakoe-Chiba Band Itakura Parallelogram

Global Constraints

•  Slightly speed up the calculations
•  Prevent pathological warpings

A global constraint constrains the indices of the warping path wk =
(i,j)k such that j-r ≤ i ≤ j+r

Where r is a term defining allowed range of warping for a given
point in a sequence.

We can learn the best r using a training set

ri

Sakoe-Chiba Band Itakura Parallelogram

65

70

75

80

85

90

95

100

1 5 9 13

17

21

25

29

33

37

41

45

49

53

57

61

65

69

73

77

81

85

89

93

97

10
0

FACE 2%
GUNX 3%
LEAF 8%

Control Chart 4%
TRACE 3%
2-Patterns 3%
WordSpotting 3%

Warping width that achieves
 max Accuracy

A
cc

ur
ac

y

w: Warping Width

W

Accuracy vs. Width of Warping Window

In general, it’s hard to speed up a single DTW calculation

However, if we have to make many DTW
calculations (which is almost always the
case), we can potentiality speed up the

whole process by lowerbounding.

Keep in mind that the lowerbounding trick works
for any situation where you have an expensive

calculation that can be lowerbounded (string edit
distance, graph edit distance etc)

I will explain how lowerbounding works in a generic
fashion in the next two slides, then show

concretely how lowerbounding makes dealing with
massive time series under DTW possible…

Lower Bounding I

Assume that we have two functions:

•  DTW(A,B)
•  lower_bound_distance(A,B)

The true DTW
function is very
slow…

The lower
bound function
is very fast…

By definition, for all A, B, we have

 lower_bound_distance(A,B) ≤ DTW(A,B)

Lower Bounding II

1. best_so_far = infinity;
2. for all sequences in database
3. LB_dist = lower_bound_distance(
4. if LB_dist < best_so_far
5. true_dist = DTW(
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match = i;
9. endif
10. endif
11. endfor

Algorithm Lower_Bounding_Sequential_Scan(Q)
1. best_so_far = infinity;
2. for all sequences in database
3.
4. if LB_dist < best_so_far
5. C i , Q); C i , Q);
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match = i;
9. endif
10. endif
11. endfor

Algorithm Lower_Bounding_Sequential_Scan(Q)

We can speed up similarity search under DTW
by using a lower bounding function

C i , Q); C i , Q);

Only do the
expensive, full
calculations when
it is absolutely
necessary

Try to use a cheap
lower bounding
calculation as
often as possible.

query sequences

Lower Bounding Example

sequences Lower
Bounds

4.6399

37.9032

19.5174

72.1846

67.1436

78.0920

70.9273

63.7253

1.4121

Lower Bounding Example

sequences Lower
Bounds

4.6399

37.9032

19.5174

72.1846

67.1436

78.0920

70.9273

63.7253

1.4121

True Distance

 46.7790

 108.8856

 113.5873

 104.5062

 119.4087

 120.0066

 111.6011

 119.0635

 17.2540 BestSoFar

Lower Bounding Example

Lower Bound of Yi

The sum of the squared length of gray
lines represent the minimum
corresponding points contribution to the
overall DTW distance, and thus can be
returned as the lower bounding measure

Yi, B, Jagadish, H & Faloutsos,
C. Efficient retrieval of similar
time sequences under time
warping. ICDE 98, pp 23-27.

max(Q)

min(Q)
LB_Yi

A

B

C

D

The (maximum) squared difference
between the two sequence’s first (A), last
(D), minimum (B) and maximum points
(C) is returned as the lower bound

Kim, S, Park, S, & Chu, W. An
index-based approach for
similarity search supporting time
warping in large sequence
databases. ICDE 01, pp 607-614

LB_Kim

Lower Bound of Kim

L

U

Q

C

 Q

Sakoe-Chiba Band

Ui = max(qi-r : qi+r)
Li = min(qi-r : qi+r)

Lower Bound of Keogh

C
U

L Q

LB_Keogh

Envelope-Based
Lower Bound

LB_Keogh(Q,C)=

(Ci −Ui)
2 if Ci >Ui

(Ci − Li)
2 if Ci <Li

0 otherwise

"

#
$$

%
$
$

i=1

n

∑

Lower Bounding the Dynamic Time Warping

 Minimum Bounding Envelope for bounding the DTW
–  Create Minimum Bounding Envelope (MBE) of query Q

–  Calculate distance between MBE of Q and any sequence A
–  One can show that: D(MBE(Q)δ,A) < DTW(Q,A)

Q

A
MBE(Q)

δ
U

L

 LB = sqrt(sum([[A > U].* [A-U]; [A < L].* [L-A]].^2));

LB_Keogh
Sakoe-Chiba

LB_Keogh
Itakura

LB_Yi

LB_Kim

The tightness of the lower bound for each technique is proportional
to the length of gray lines used in the illustrations

Longest Common Subsequence (LCSS)

ignore majority
of noise

match

match

With	 Time	 Warping	 extreme	 values	 (outliers)	 can	 destroy	 the	 distance	
es;mates.	 The	 LCSS	 model	 can	 offer	 more	 resilience	 to	 noise	 and	 impose	
spa;al	 constraints	 too.	

δ
ε

Matching within δ time
and ε in space

Everything that is outside the bounding
envelope can never be matched

Longest Common Subsequence (LCSS)

ignore majority
of noise

match

match

Advantages of LCSS:

A. Outlying values not matched

B. Distance/Similarity distorted less

C. Constraints in time & space

Disadvantages of DTW:

A. All points are matched

B. Outliers can distort distance

C. One-to-many mapping

LCSS is more resilient to noise than DTW.

LCSS (Implementation)
Similar	 dynamic	 programming	 solu;on	 as	 DTW,	 but	 now	 we	
measure	 similarity	 not	 distance.	

Can also be expressed as distance

Distance Measure Comparison

LCSS is the least sensitive to noise because it includes a threshold to define a “match.”

Distance Measure Comparison
(Overview)

Method Complexity Elastic Matching One-to-one Matching Noise
Robustness

Euclidean O(n) O P O
DTW O(n*δ) P O O
LCSS O(n*δ) P P P

Two Kinds of Similarity We are
done with

shape
similarity

Let us consider
similarity at

the structural
level for the

next 10 minutes

Euclidean
Distance

For long time
series, shape

based similarity
will give very

poor results. We
need to measure
similarly based
on high level

structure

Structure or Model Based Similarity

A
B
C

A B C
Max Value 11 12 19
Autocorrelation 0.2 0.3 0.5
Zero Crossings 98 82 13
ARIMA 0.3 0.4 0.1
… … … …

Feature
Time
 Series

The basic idea is to
extract global features
from the time series,

create a feature
vector, and use these

feature vectors to
measure similarity and/

or classify

But which
•  features?
•  distance measure/
learning algorithm?

Feature-based Classification of Time-series Data
Nanopoulos, Alcock, and Manolopoulos

Features
mean

variance
skewness

kurtosis
mean (1st derivative)

variance (1st derivative)

skewness (1st derivative)

kurtosis (1st derivative)

Learning Algorithm
multi-layer perceptron neural network

•  features?
•  distance measure/
learning algorithm?

Learning to Recognize Time Series: Combining ARMA Models with
Memory-Based Learning

Deng, Moore and Nechyba

Features
The parameters of the
Box Jenkins model.

More concretely, the

coefficients of the
ARMA model.

Distance Measure
Euclidean distance (between coefficients)

•  features?
•  distance measure/
learning algorithm?

•  Used to detect drunk drivers!
•  Independently rediscovered and
generalized by Kalpakis et. al. and
expanded by Xiong and Yeung

Deformable Markov Model Templates for Time Series Pattern Matching
Ge and Smyth

Features
The parameters of a

Markov Model

The time series is first
converted to a piecewise

linear model

•  features?
•  distance measure/
learning algorithm?

0 20 40 60 80 100 120 140

X

X'

A B C

A B C

A 0.1 0.4 0.5

B 0.4 0.2 0.2

C 0.5 0.2 0.3

Variations independently
developed by Li and Biswas,

Ge and Smyth, Lin, Orgun and
Williams etc

There tends to be
lots of

parameters to
tune…

Compression Based Dissimilarity
(In general) Li, Chen, Li, Ma, and Vitányi: (For time series) Keogh, Lonardi and Ratanamahatana	

Features
Whatever structure

the compression
algorithm finds...

The time series is first converted

to the SAX symbolic
representation*

Distance Measure
Co-Compressibility

•  features?
•  distance measure/
learning algorithm?

Euclidean CDM

)()(
)(),(
yCxC

xyCyxCDM
+

=

Pattern-Histogram Based Similarity
Lin and Li	

Features
Represent time series

as “bag of
patterns” (much like
the “bag of words”

for text data)

The time series is first converted
to the SAX symbolic

representation*

Distance Measure
Euclidean Distance on Bag of Patterns

•  features?
•  distance measure/
learning algorithm?

Summary of Time Series Similarity
•  If you have short time series, use DTW after
searching over the warping window size (and
shape), or LCSS
•  Then use envelope based lower bounds to speed
things up.

•  If you have long time series, and you know
nothing about your data, try compression based
dissimilarity or bag-of-patterns similarity.
•  If you do know something about your data, try to
leverage of this knowledge to extract features.

