CS 780 Data Mining for Multimedia Data

Social Network Graph Mining

Dr. Jessica Lin

Betweenness

\square Betweenness of an edge (a, b) : the number of pairs of nodes x and y such that the edge (a, b) lies on the shortest path between x and y.

- If there are more than one shortest path, the edge (a, b) is credited with the fraction of those shortest paths that include the edge (a, b)
- Need to calculate the number of shortest paths going through each edge
- Girvan-Newman Algorithm

Girvan-Newman (GN) Algorithm

- Step 1: Convert graph to the BFS presentation starting at node X.
- Label each node by the number of shortest paths that reach it from the root.
\star Start by labeling the root 1
* For each level, label each node Y by the sum of the labels of its parents
- For each edge e, calculate the sum over all nodes Y of the fraction of shortest paths from the root X to Y that go through e
\star Each leaf in the DAG gets a credit of 1
\star Each node that is not a leaf gets a credit equal to $\{1+$ the sum of the credits of the DAG edges from that node to the level below\}
\star Each edge e gets credit from its child node. If the child node has n parent edges, then each edge gets $1 / n$ credit

Example

(1)

Level 1

Level 2

Level 3
(2)

(3)

Girvan-Newman Algorithm

■ Intuitively, why should this work? Analogy:

* Network of N nodes: nodes are towns, edges are roads
* Place N-1 cars on each node; each one to a town
* Each road gets a point when a car drives on it
* Remove the highest ranked road - interstate highway
\star Repeat the process
* First we'll remove all interstates (leaving state roads)
\star Then state roads will be removed, leaving county roads, then suburban roads, etc
\star After we each set of levels, we get a more fine-grained division of communities

Other Slides

- Challenges in Mining Large-Scale Social Network Data: http://cs.stanford.edu/people/jure/talks/networks-icdm-dec12.pdf * (more here: http://cs.stanford.edu/people/jure/talks/)

■ Discovering Clusters in Networks:
http://snap.stanford.edu/class/cs246-2012/slides/11-graphs.pdf

