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Roadmap for Today 

•  Last time we talked about Partitional 
clustering (k-means and its variants) 

•  Today we will talk about two more types of 
clustering algorithms 
– Hierarchical clustering 
– Density-based clustering (DBScan) 

•  Cluster validity 
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Hierarchical Clustering  

•  Produces a set of nested clusters organized 
as a hierarchical tree 

•  Can be visualized as a dendrogram 
– A tree like diagram that records the sequences 

of merges or splits 
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What is a natural grouping among these objects?"
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A Useful Tool for Summarizing Similarity Measurements  

Dendrogram: 

Root

Internal Branch

Terminal Branch

Leaf
Internal Node

Root

Internal Branch

Terminal Branch

Leaf
Internal Node

The similarity between two objects in a 
dendrogram is represented as the height of 
the lowest internal node they share. 
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(Bovine:0.69395,(Gibbon:0.36079,(Orangutan:
0.33636,(Gorilla:0.17147,(Chimp:
0.19268,Human:0.11927):0.08386):0.06124):

0.15057):0.54939); 
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Business & Economy 

B2B  Finance  Shopping  Jobs 

Aerospace Agriculture…  Banking Bonds…  Animals Apparel  Career Workspace  

Note that hierarchies are 
commonly used to 
organize information, for 
example in a web portal. 
 
Yahoo’s hierarchy is 
manually created, we will 
focus on automatic 
creation of hierarchies in 
data mining. 
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We can look at the dendrogram to determine the “correct” number of clusters. In this case, the 
two highly separated subtrees are highly suggestive of two clusters. (Things are rarely this 
clear cut, unfortunately) 
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Outlier 

One potential use of a dendrogram is to detect 
outliers 

The single isolated branch is suggestive of a data point that is 
very different to all others 
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Strengths of Hierarchical Clustering 

•  Do not have to assume any particular 
number of clusters 
– Any desired number of clusters can be obtained 

by ‘cutting’ the dendrogram at the proper level 
 
•  They may correspond to meaningful 

taxonomies 
– Example in biological sciences (e.g., animal 

kingdom, phylogeny reconstruction, …) 
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Hierarchical Clustering 

The number of dendrograms with n 
leafs  = (2n -3)!/[(2(n -2)) (n -2)!] 

 
Number  Number of Possible 
of Leafs  Dendrograms  
2   1 
3   3 
4   15 
5   105 
...   … 
10    34,459,425 
 

Since we cannot test all possible trees 
we will have to heuristic search of all 
possible trees. We could do this.. 
 
Bottom-Up (agglomerative): Starting 
with each item in its own cluster, find 
the best pair to merge into a new 
cluster. Repeat until all clusters are 
fused together.  
 
Top-Down (divisive): Starting with all 
the data in a single cluster, consider 
every possible way to divide the cluster 
into two. Choose the best division and 
recursively operate on both sides. 
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Agglomerative Clustering Algorithm 

•  More popular hierarchical clustering technique 

•  Basic algorithm is straightforward 
–  Compute the proximity matrix 
–  Let each data point be a cluster 
–  Repeat 

•  Merge the two closest clusters 
•  Update the proximity matrix 

–  Until only a single cluster remains 
–    

•  Key operation is the computation of the proximity of 
two clusters 
–  Different approaches to defining the distance between 

clusters distinguish the different algorithms 
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We begin with a distance matrix which 
contains the distances between every pair 
of objects in our database. 
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Bottom-Up (agglomerative): 
Starting with each item in its own 
cluster, find the best pair to merge into 
a new cluster. Repeat until all clusters 
are fused together.  

… 
Consider all 
possible 
merges… 

Choose 
the best 
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Starting Situation  

...
p1 p2 p3 p4 p9 p10 p11 p12

•  Start with clusters of individual points and a 
proximity matrix 
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. 

. Proximity Matrix 
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Intermediate Situation 

...
p1 p2 p3 p4 p9 p10 p11 p12

•  After some merging steps, we have some clusters  

C1 

C4 

C2 C5 

C3 

C2 C1 

C1 

C3 

C5 

C4 

C2 

C3 C4 C5 

Proximity Matrix 

20 



Intermediate Situation 

...
p1 p2 p3 p4 p9 p10 p11 p12

•  We want to merge the two closest clusters (C2 and C5)  and update 
the proximity matrix.  
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After Merging 

...
p1 p2 p3 p4 p9 p10 p11 p12

•  The question is “How do we update the proximity matrix?”  
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We know how to measure the distance between two 
objects, but defining the distance between an object 
and a cluster, or defining the distance between two 
clusters is non obvious.   

•  MIN or Single linkage (nearest neighbor): In this method the distance between two 
clusters is determined by the distance of the two closest objects (nearest neighbors) in 
the different clusters. 
•  MAX or Complete linkage (furthest neighbor): In this method, the distances 
between clusters are determined by the greatest distance between any two objects in the 
different clusters (i.e., by the "furthest neighbors").  
•  Group average linkage: In this method, the distance between two clusters is 
calculated as the average distance between all pairs of objects in the two different 
clusters. 
•  Distance between centroids: In this method, the distance between two clusters is 
determined by the distance between their respective centroids. 
•  Wards Linkage: In this method, we try to minimize the variance of the merged 
clusters 
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How to Define Inter-Cluster Similarity 

  

p1 

p3 

p5 

p4 

p2 

p1 p2 p3 p4 p5 . . . 

. 

. 

. 

Similarity? 

  MIN (single linkage) 
  MAX (complete linkage) 
  Group Average 
  Distance Between Centroids 
  Other methods driven by an objective 

function 
–  Ward’s Method uses squared error 

Proximity Matrix 

25 



How to Define Inter-Cluster Similarity 

  

p1 

p3 

p5 

p4 

p2 

p1 p2 p3 p4 p5 . . . 

. 

. 

. Proximity Matrix 

  MIN (single linkage) 
  MAX (complete linkage) 
  Group Average 
  Distance Between Centroids 
  Other methods driven by an objective 

function 
–  Ward’s Method uses squared error 

26 



How to Define Inter-Cluster Similarity 

  

p1 

p3 

p5 

p4 

p2 

p1 p2 p3 p4 p5 . . . 

. 

. 

. Proximity Matrix 

  MIN (single linkage) 
  MAX (complete linkage) 
  Group Average 
  Distance Between Centroids 
  Other methods driven by an objective 

function 
–  Ward’s Method uses squared error 

27 



How to Define Inter-Cluster Similarity 
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How to Define Inter-Cluster Similarity 
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Cluster Similarity: MIN or Single Link  
•  Similarity of two clusters is based on the 

two most similar (closest) points in the 
different clusters 
– Determined by one pair of points, i.e., by one 

link in the proximity graph. 
I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5 
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Hierarchical Clustering: MIN 

Nested Clusters Dendrogram 
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Strength of MIN 

Original Points Two Clusters 

•  Can handle non-elliptical shapes 
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Limitations of MIN 

Original Points Two Clusters 

•  Sensitive to noise and outliers 
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Cluster Similarity: MAX or Complete 
Linkage 

•  Similarity of two clusters is based on the two least 
similar (most distant) points in the different 
clusters 
–  Determined by all pairs of points in the two clusters 

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5 
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Hierarchical Clustering: MAX 

Nested Clusters Dendrogram 
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Strength of MAX 

Original Points Two Clusters 

•  Less susceptible to noise and outliers 
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Limitations of MAX 

Original Points Two Clusters 

• Tends to break large clusters 

• Biased towards globular clusters 
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Cluster Similarity: Group Average 
•  Proximity of two clusters is the average of pairwise proximity 

between points in the two clusters. 

•  Need to use average connectivity for scalability since total proximity 
favors large clusters 

||Cluster||Cluster

)p,pproximity(

)Cluster,Clusterproximity(
ji

Clusterp
Clusterp

ji

ji
jj
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∗
=

∑
∈
∈

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5 
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Hierarchical Clustering: Group Average 

Nested Clusters Dendrogram 
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Hierarchical Clustering: Group Average 

•  Compromise between Single and Complete 
Link 

•  Strengths 
–  Less susceptible to noise and outliers 

•  Limitations 
–  Biased towards globular clusters 
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Cluster Similarity: Ward’s Method 

•  Similarity of two clusters is based on the 
increase in squared error when two clusters are 
merged 
–  Similar to group average if distance between points 

is distance squared 

•  Less susceptible to noise and outliers 

•  Biased towards globular clusters 

•  Hierarchical analogue of K-means 
–  Can be used to initialize K-means 
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Hierarchical Clustering: Comparison 

Group Average 

Ward’s Method 
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Hierarchical Clustering:  Time and 
Space requirements 

•  O(N2) space since it uses the proximity matrix.   
–  N is the number of points. 

•  O(N3) time in many cases 
–  There are N steps and at each step the size, N2, 

proximity matrix must be updated and searched 
–  Complexity can be reduced to O(N2 log(N) ) time for 

some approaches 
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Hierarchical Clustering:  Problems 
and Limitations 

•  Once a decision is made to combine two clusters, 
it cannot be undone 

•  No objective function is directly minimized 
•  Different schemes have problems with one or 

more of the following: 
–  Sensitivity to noise and outliers 
–  Difficulty handling different sized clusters and convex 

shapes 
–  Breaking large clusters 

44 



MST: Divisive Hierarchical Clustering 
•  Build MST (Minimum Spanning Tree) 

–  Start with a tree that consists of any point 
–  In successive steps, look for the closest pair of points (p, q)  such that 

one point (p) is in the current tree but the other (q) is not 
–  Add q to the tree and put an edge between p and q 
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MST: Divisive Hierarchical Clustering 

•  Use MST for constructing hierarchy of clusters 
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DBSCAN 
•  DBSCAN is a density-based algorithm. 

–  Density = number of points within a specified 
radius (Eps) 

–  A point is a core point if it has more than a 
specified number of points (MinPts) within Eps  
•  These are points that are at the interior of a cluster 

–  A border point has fewer than MinPts within 
Eps, but is in the neighborhood of a core point 

–  A noise point is any point that is not a core 
point or a border point.  
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DBSCAN: Core, Border, and 
Noise Points 
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MinPts = 5 



DBSCAN Algorithm 

•  Label all points as core, border or noise 
•  Eliminate noise points 
•  Put an edge between all core points that are 

within Eps of each other. 
•  Make each group of connected points into a 

separate cluster. 
•  Assign each border point to one of the 

clusters of its associated core points. 
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DBSCAN: Core, Border and Noise 
Points 

Original Points Point types: core, 
border and noise 

Eps = 10, MinPts = 4 
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When DBSCAN Works Well 

Original Points Clusters 

•  Resistant to Noise 

•  Can handle clusters of different shapes and sizes 
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When DBSCAN Does NOT Work Well 

Original Points 

(MinPts=4, Eps=9.75).  

 (MinPts=4, Eps=9.92) 

•  Varying densities 

•  High-dimensional data 
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i j i j 4 

SNN graph: the weight of an edge is the number of shared 
neighbors between vertices given that the vertices are connected 

Shared Near Neighbor Approach 

53 



DBSCAN using SNN 
1.  Find the SNN density of each Point. 

Using a user specified parameters, Eps, find the number points that  have an 
SNN similarity of Eps or greater to each point. This is the SNN density of 
the point 

5.  Find the core points 
Using a user specified parameter, MinPts, find the core points, 
i.e., all points that have an SNN density greater than MinPts 

6.  Form clusters from the core points   
If two core points are within a radius, Eps, of each other they 
are place in the same cluster 

7.  Discard all noise points 
All non-core points that are not within a radius of Eps of a core 
point are discarded   

8.  Assign all non-noise, non-core points to clusters  
This can be done by assigning such points to the nearest core 
point 
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SNN Density 

   a) All Points                    b) High SNN Density 

c) Medium SNN Density        d) Low SNN Density 
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SNN Clustering Can Handle 
Differing Densities 

Original Points SNN Clustering 
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SNN Clustering Can Handle Other 
Difficult Situations 
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Cluster Validity  
•  For supervised classification we have a variety of measures 

to evaluate how good our model is 
–  Accuracy, precision, recall 

•  For cluster analysis, the analogous question is how to 
evaluate the “goodness” of the resulting clusters? 

•  But “clusters are in the eye of the beholder”!  

•  Then why do we want to evaluate them? 
–  To avoid finding patterns in noise 
–  To compare clustering algorithms 
–  To compare two sets of clusters 
–  To compare two clusters 
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Clusters found in Random Data 
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Different Aspects of Cluster Validation 
1.  Determining the clustering tendency of a set of data, i.e., distinguishing 

whether non-random structure actually exists in the data.  
2.  Comparing the results of a cluster analysis to externally known results, e.g., 

to externally given class labels. 
3.  Evaluating how well the results of a cluster analysis fit the data without 

reference to external information.  
 - Use only the data 

4.  Comparing the results of two different sets of cluster analyses to determine 
which is better. 

5.  Determining the ‘correct’ number of clusters. 

 For 2, 3, and 4, we can further distinguish whether we want to evaluate the 
entire clustering or just individual clusters.  
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Measures of Cluster Validity 
•  Numerical measures that are applied to judge various aspects of 

cluster validity, are classified into the following three types. 
–  External Index: Used to measure the extent to which cluster labels match 

externally supplied class labels. 
•  Entropy  

–  Internal Index:  Used to measure the goodness of a clustering structure 
without respect to external information.  

•  Sum of Squared Error (SSE) 

–  Relative Index: Used to compare two different clusterings or clusters.  
•  Often an external or internal index is used for this function, e.g., SSE or entropy 
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Measuring Cluster Validity Via 
Correlation 

•  Two matrices  
–  Proximity Matrix 
–  “Incidence” Matrix 

•  One row and one column for each data point 
•  An entry is 1 if the associated pair of points belong to the same cluster 
•  An entry is 0 if the associated pair of points belongs to different clusters 

•  Compute the correlation between the two matrices 
–  Since the matrices are symmetric, only the correlation between  

n(n-1) / 2 entries needs to be calculated. 

•  High correlation indicates that points that belong to the same 
cluster are close to each other.  

•  Not a good measure for some density or contiguity based 
clusters. 
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Measuring Cluster Validity Via 
Correlation 

•  Correlation of incidence and proximity matrices 
for the K-means clusterings of the following two 
data sets.  
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Using Similarity Matrix for Cluster 
Validation 

•  Order the similarity matrix with respect to cluster labels 
and inspect visually.  
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Using Similarity Matrix for 
Cluster Validation 

•  Clusters in random data are not so crisp 
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Cluster Validation 

•  Clusters in random data are not so crisp 
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Using Similarity Matrix for Cluster 
Validation 

•  Clusters in random data are not so crisp 
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Using Similarity Matrix for 
Cluster Validation 
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Internal Measures: SSE 
•  Clusters in more complicated figures aren’t well separated 
•  Internal Index:  Used to measure the goodness of a clustering structure 

without respect to external information 
–  SSE 

•  SSE is good for comparing two clusterings or two clusters 
(average SSE). 

•  Can also be used to estimate the number of clusters 
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Internal Measures: SSE 

•  SSE curve for a more complicated data set 
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70 



Framework for Cluster Validity 
•  Need a framework to interpret any measure.  

–  For example, if our measure of evaluation has the value, 10, is that good, fair, 
or poor? 

•  Statistics provide a framework for cluster validity 
–  The more “atypical” a clustering result is, the more likely it represents valid 

structure in the data 
–  Can compare the values of an index that result from random data or clusterings 

to those of a clustering result. 
•  If the value of the index is unlikely, then the cluster results are valid 

–  These approaches are more complicated and harder to understand. 

•  For comparing the results of two different sets of cluster 
analyses, a framework is less necessary. 

–  However, there is the question of whether the difference between two index 
values is significant 

71 



•  Example 
–  Compare SSE of 0.005 against three clusters in random data 
–  Histogram shows SSE of three clusters in 500 sets of random data points 

of size 100 distributed over the range 0.2 – 0.8 for x and y values 
 

Statistical Framework for SSE 
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Internal Measures: Cohesion and Separation 
•  Cluster Cohesion: Measures how closely related are 

objects in a cluster 
–  Example: SSE 

•  Cluster Separation: Measure how distinct or well-
separated a cluster is from other clusters 

•  Example: Squared Error 
–  Cohesion is measured by the within cluster sum of squares (SSE) 

–  Separation is measured by the between cluster sum of squares, or by 
between cluster to overall prototype sum of squares (shown) 

 
 
where |Ci| is the size of cluster i, ci is the centroid of cluster i, and c is the overall centroid.  
 

SSE = (x − ci )
2

x∈Ci

∑
i
∑

SSB = Ci (c− ci )
2

i
∑
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Total Sum of Squares (TSS) 

1 2 3 4 5 
× × × 
c1 c2 

c 

9)35.4(2)5.13(2
1)5.45()5.44()5.12()5.11(
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SSB
SSE
TSSK=1 cluster: 

TSS = SSE + SSB 
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Total Sum of Squares (TSS) 

 
  c: overall mean 
  ci: centroid of each cluster Ci 

  |Ci|: number of points in cluster Ci 

c c1 

c2 

c3 

TSS = dist(x,c)2∑

SSE= dist(x,ci )
2

x∈Ci

∑
i=1

k

∑

SSB = Ci dist(ci,c)
2

i=1

k

∑
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Total Sum of Squares (TSS) 

   TSS = SSE + SSB 

•  Given a data set, TSS is fixed 
•  A clustering with large SSE has small SSB, 

while one with small SSE has large SSB 

•  Goal is to minimize SSE and maximize SSB 
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Internal Measures: Cohesion and 
Separation 

•  A proximity graph based approach can also be used for 
cohesion and separation. 
–  Cluster cohesion is the sum of the weight of all links within a 

cluster. 
–  Cluster separation is the sum of the weights between nodes in the 

cluster and nodes outside the cluster. 

cohesion separation 77 



Internal Measures: Silhouette 
Coefficient 

•  Silhouette Coefficient combine ideas of both cohesion 
and separation, but for individual points, as well as 
clusters and clusterings 

•  For an individual point, i 
–  Calculate a = average distance of i to the points in its cluster 
–  Calculate b = min (average distance of i  to points in another cluster) 
–  The silhouette coefficient for a point is then given by  

 s = 1 – a/b   if a < b,   (or s = b/a - 1    if a ≥ b, not the usual case)  
–  Typically between 0 and 1 (but can be negative if  a ≥ b).  
–  The closer to 1 the better. 

 
 
•  Can calculate the Average Silhouette width for a cluster or a clustering 

a
b
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Unsupervised Evaluation of Hierarchical Clustering 

Distance Matrix: 

Single Link 
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Unsupervised Evaluation of Hierarchical Clustering 

•  Cophenetic distance 
–  the proximity at which the clustering technique puts the objects in the same 

cluster for the first time. 
–  E.g. if two clusters are merged with distance = 0.1, then all points in one cluster 

have a cophenetic distance of 0.1 wrt the points in the other cluster. 
•  CPCC (CoPhenetic Correlation Coefficient) 

–  Correlation between original distance matrix and cophenetic distance matrix 
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Unsupervised Evaluation of Hierarchical Clustering 
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External Measures of Cluster 
Validity: Entropy and Purity 
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Supervised Cluster Validation: 
Precision and Recall 

 
•  Precision for cluster i w.r.t. class j = 

•  Recall for cluster i w.r.t. class j =  

Cluster i 
mi1: class 1 
mi2: class 2 

Overall Data 
m1: class 1 
m2: class 2 

j

ij

k
kj

ij

m
m

m
m

=
∑

∑
k

ik

ij

m
m
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Supervised Cluster Validation: 
Hierarchical Clustering 

Hierarchical F-measure: 
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Supervised Cluster Validation:  
Binary Similarity 

•  Consider all pairs of distinct objects 
–  f00 = # of pairs of objects having a different 

class and a different cluster 
–  f01 = # of pairs of objects having a different 

class and the same cluster 
–  f10 = # of pairs of objects having the same 

class and a different cluster 
–  f11 = # of pairs of objects having the same 

class and the same cluster 
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Supervised Cluster Validation:  
Binary Similarity 

•  Rand Statistic (Simple matching 
coefficient): 

 
 
•  Jaccard Coefficient: 

f00 + f11
f00 + f01 + f10 + f11

f11
f01 + f10 + f11

Same Cluster Different Cluster 
Same Class f11 f10 
Different Class f01 f00 
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Final Comment on Cluster Validity 

•  “The validation of clustering structures is the 
most difficult and frustrating part of cluster 
analysis.  

•  Without a strong effort in this direction, cluster 
analysis will remain a black art accessible only 
to those true believers who have experience 
and great courage.” 

Algorithms for Clustering Data, by Jain and Dubes 
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