CS 584 Data Mining

Clustering 1

What is Cluster Analysis?

- Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

- Understanding
- Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

- Summarization
- Reduce the size of large data sets

What is not Cluster Analysis?

- Supervised classification
- Have class label information
- Simple segmentation
- Dividing students into different registration groups alphabetically, by last name
- Results of a query
- Groupings are a result of an external specification

Notion of a Cluster can be Ambiguous

How many clusters?
Six Clusters

$\begin{array}{ll}\Delta^{\Delta} \\ \Delta & \\ \Delta \Delta & \Delta \\ \Delta & \\ \Delta & \\ \Delta\end{array}$

Two Clusters
Four Clusters

Popular Types of Clusterings

- Partitional Clustering
- A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
- A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Other Distinctions Between Sets of Clusters

- Exclusive versus non-exclusive
- In non-exclusive clusterings, points may belong to multiple clusters.
- Can represent multiple classes or 'border' points
- Fuzzy versus non-fuzzy
- In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
- Weights must sum to 1
- Probabilistic clustering has similar characteristics
- Partial versus complete
- In some cases, we only want to cluster some of the data
- Heterogeneous versus homogeneous
- Cluster of widely different sizes, shapes, and densities

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- Density-based clustering

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

1: Select K points as the initial centroids.
2: repeat
3: \quad Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don't change

Interactive Demo

- http://home.dei.polimi.it/matteucc/ Clustering/tutorial html/AppletKM.html

K-means Clustering - Details

- Initial centroids are often chosen randomly.
- Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
- Often the stopping condition is changed to "Until relatively few points change clusters'
- Complexity is $\mathrm{O}(\mathrm{n} * \mathrm{~K} * \mathrm{I} * \mathrm{~d})$
$-\mathrm{n}=$ number of points, $\mathrm{K}=$ number of clusters,
$\mathrm{I}=$ number of iterations, $\mathrm{d}=$ number of attributes

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
- For each point, the error is the distance to the nearest cluster
- To get SSE, we square these errors and sum them.

$$
S S E=\sum_{i=1}^{K} \sum_{x \in C_{i}} d i s t^{2}\left(m_{i}, x\right)
$$

$-x$ is a data point in cluster C_{i} and m_{i} is the representative point for cluster C_{i}

- Can show that m_{i} corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
- A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

Two different K-means Clusterings

Importance of Choosing Initial Centroids

Iteration 6

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids ...

Problems with Selecting Initial Points

- If there are K 'real' clusters then the chance of selecting one centroid from each cluster is small.
- Chance is relatively small when K is large
- If clusters are the same size, n, then

$$
P=\frac{\text { number of ways to select one centroid from each cluster }}{\text { number of ways to select } K \text { centroids }}=\frac{K!n^{K}}{(K n)^{K}}=\frac{K!}{K^{K}}
$$

- For example, if $\mathrm{K}=10$, then probability $=10!/ 10^{\wedge} 10=$ 0.00036
- Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don' t
- Consider an example of five pairs of clusters

10 Clusters Example

Iteration 4

Starting with two initial centroids in one cluster of each pair of clusters

10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters

10 Clusters Example

Iteration 4

Starting with some pairs of clusters having three initial centroids, while other have only one.

10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.

Solutions to Initial Centroids Problem

- Multiple runs
- Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
- Select most widely separated
- Postprocessing
- Bisecting K-means
- Not as susceptible to initialization issues

Bisecting K-means

- Bisecting K-means algorithm
- Variant of K-means that can produce a partitional or a hierarchical clustering

1: Initialize the list of clusters to contain the cluster containing all points.
2: repeat
3: \quad Select a cluster from the list of clusters
4: for $i=1$ to number_of_iterations do
5: \quad Bisect the selected cluster using basic K-means
6: end for
7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
8: until Until the list of clusters contains K clusters

Bisecting K-means Example

Iteration 10

Handling Empty Clusters

- Basic K-means algorithm can yield empty clusters.
- Several strategies
- Choose the replacement centroid as the point that is furthest away from any other centroids.
- Choose a point from the cluster with the highest SSE
- Splits the clusters.
- If there are several empty clusters, the above can be repeated several times.

Updating Centers Incrementally

- In the basic K-means algorithm, centroids are updated after all points are assigned to a centroid
- An alternative is to update the centroids after each assignment (incremental approach)
- Each assignment updates zero or two centroids
- Never get an empty cluster
- Can use "weights" to change the impact
- More expensive
- Introduces an order dependency

Pre-processing and Post-processing

- Pre-processing
- Normalize the data
- Eliminate outliers
- Post-processing
- Eliminate small clusters that may represent outliers
- Split 'loose' clusters, i.e., clusters with relatively high SSE
- Merge clusters that are 'close' and that have relatively low SSE

Limitations of K-means

- K-means has problems when clusters are of differing
- Sizes
- Densities
- Non-globular shapes
- K-means has problems when the data contains outliers.

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Overcoming K-means Limitations

Original Points

One solution is to use many clusters.
Find parts of clusters, but need to put together.

Overcoming K-means Limitations

Original Points

K-means Clusters

Overcoming K-means Limitations

Original Points

K-means Clusters

Comments on the K-Means Method

- Strength
- Relatively efficient: $O(t k n d)$, where n is \# objects, k is \# clusters, d is the number of features, and t is \# iterations. Normally, $k, t \ll n$.
- Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms
- Weakness
- Applicable only when mean is defined, then what about categorical data?
- Need to specify k, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes

The K-Medoids Clustering Method

- Find representative objects, called medoids, in clusters
- PAM (Partitioning Around Medoids, 1987)
- starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
- PAM works effectively for small data sets, but does not scale well for large data sets

How can we tell the right number of clusters?

In general, this is a unsolved problem. However there are many approximate methods. In the next few slides we will see an example.

For our example, we will use the familiar katydid/grasshopper dataset.

However, in this case we are imagining that we do NOT know the class labels. We are only clustering on the X and Y axis values.
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

When $\mathrm{k}=1$, the objective function is 873.0

When $\mathrm{k}=2$, the objective function is 173.1

When $\mathrm{k}=3$, the objective function is 133.6

We can plot the objective function values for k equals 1 to $6 \ldots$
The abrupt change at $\mathrm{k}=2$, is highly suggestive of two clusters in the data. This technique for determining the number of clusters is known as "knee finding" or "elbow finding".

