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What is Cluster Analysis? 
•  Finding groups of objects such that the objects in a group 

will be similar (or related) to one another and different from 
(or unrelated to) the objects in other groups 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 
minimized 
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Applications of Cluster Analysis 
•  Understanding 

–  Group related documents for 
browsing, group genes and 
proteins that have similar 
functionality, or group stocks 
with similar price fluctuations 

•  Summarization 
–  Reduce the size of large data 

sets 

 Discovered Clusters Industry Group 

1 Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 
Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 
Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 
Sun-DOWN 

 
 

Technology1-DOWN 

2 Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 
ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 
Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 
 

Technology2-DOWN 

3 Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 
MBNA-Corp-DOWN,Morgan-Stanley-DOWN 

 
Financial-DOWN 

4 Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 
Oil-UP 

 

 

Clustering precipitation in 
Australia 



What is not Cluster Analysis? 

•  Supervised classification 
–  Have class label information 

•  Simple segmentation 
–  Dividing students into different registration groups alphabetically, 

by last name 

•  Results of a query 
–  Groupings are a result of an external specification 
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Notion of a Cluster can be Ambiguous 

How many clusters? 

Four Clusters  Two Clusters  

Six Clusters  
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Popular Types of Clusterings 
 
•  Partitional Clustering 

– A division data objects into non-overlapping 
subsets (clusters) such that each data object is 
in exactly one subset 

•  Hierarchical clustering 
– A set of nested clusters organized as a 

hierarchical tree  
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Partitional Clustering 

Original Points A Partitional  Clustering 
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Hierarchical Clustering 

p4
p1

p3

p2

 

p4 
p1 

p3 

p2 
p4p1 p2 p3

p4p1 p2 p3

Traditional Hierarchical Clustering 

Non-traditional Hierarchical Clustering Non-traditional Dendrogram 

Traditional Dendrogram 
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Other Distinctions Between Sets of Clusters 

•  Exclusive versus non-exclusive 
–  In non-exclusive clusterings, points may belong to multiple 

clusters. 
–  Can represent multiple classes or ‘border’ points 

•  Fuzzy versus non-fuzzy 
–  In fuzzy clustering, a point belongs to every cluster with 

some weight between 0 and 1 
–  Weights must sum to 1 
–  Probabilistic clustering has similar characteristics 

•  Partial versus complete 
–  In some cases, we only want to cluster some of the data 

•  Heterogeneous versus homogeneous 
–  Cluster of widely different sizes, shapes, and densities 
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Clustering Algorithms 

•  K-means and its variants 

•  Hierarchical clustering 

•  Density-based clustering 
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K-means Clustering 

•  Partitional clustering approach  
•  Each cluster is associated with a centroid (center point)  
•  Each point is assigned to the cluster with the closest 

centroid 
•  Number of clusters, K, must be specified 
•  The basic algorithm is very simple 
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Interactive Demo   

•  http://home.dei.polimi.it/matteucc/
Clustering/tutorial_html/AppletKM.html 
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K-means Clustering – Details 

•  Initial centroids are often chosen randomly. 
–  Clusters produced vary from one run to another. 

•  The centroid is (typically) the mean of the points in the 
cluster. 

•  ‘Closeness’ is measured by Euclidean distance, cosine 
similarity, correlation, etc. 

•  K-means will converge for common similarity measures 
mentioned above. 

•  Most of the convergence happens in the first few iterations. 
–  Often the stopping condition is changed to‘Until relatively few 

points change clusters’ 
•  Complexity is O( n * K * I * d ) 

–  n = number of points, K = number of clusters,  
I = number of iterations, d = number of attributes 
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Evaluating K-means Clusters 
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•  Most common measure is Sum of Squared Error (SSE) 
–  For each point, the error is the distance to the nearest cluster 
–  To get SSE, we square these errors and sum them. 

 

–  x is a data point in cluster Ci and mi is the representative point for 
cluster Ci  

•  Can show that mi corresponds to the center (mean) of the cluster 
–  Given two clusters, we can choose the one with the smallest error 
–  One easy way to reduce SSE is to increase K, the number of 

clusters 
•   A good clustering with smaller K can have a lower SSE than a   
poor clustering with higher K 22 



Two different K-means Clusterings 
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Importance of Choosing Initial Centroids 
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Importance of Choosing Initial Centroids 
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Importance of Choosing Initial Centroids  
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Importance of Choosing Initial Centroids … 
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Problems with Selecting Initial Points 
•  If there are K ‘real’ clusters then the chance of 

selecting one centroid from each cluster is small.  
–  Chance is relatively small when K is large 
–  If clusters are the same size, n, then 

 
 
 
 
 
–  For example, if K = 10, then probability = 10!/10^10 = 

0.00036 
–  Sometimes the initial centroids will readjust themselves in 
‘right’ way, and sometimes they don’t 

–  Consider an example of five pairs of clusters 
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10 Clusters Example 

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y
Iteration 1

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y
Iteration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y
Iteration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y
Iteration 4

Starting with two initial centroids in one cluster of each pair of clusters 
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10 Clusters Example 
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Starting with two initial centroids in one cluster of each pair of clusters 
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10 Clusters Example 

Starting with some pairs of clusters having three initial centroids, while other have only one. 
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10 Clusters Example 

Starting with some pairs of clusters having three initial centroids, while other have only one. 
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Solutions to Initial Centroids Problem 

•  Multiple runs 
– Helps, but probability is not on your side 

•  Sample and use hierarchical clustering to 
determine initial centroids 

•  Select more than k initial centroids and then 
select among these initial centroids 
– Select most widely separated 

•  Postprocessing 
•  Bisecting K-means 

– Not as susceptible to initialization issues 
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Bisecting K-means 
•  Bisecting K-means algorithm 

–  Variant of K-means that can produce a partitional or a 
hierarchical clustering 
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Bisecting K-means Example 
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Handling Empty Clusters 

•  Basic K-means algorithm can yield empty 
clusters. 

•  Several strategies 
– Choose the replacement centroid as the point 

that is furthest away from any other centroids. 
– Choose a point from the cluster with the highest 

SSE 
•  Splits the clusters. 

–  If there are several empty clusters, the above 
can be repeated several times. 36 



Updating Centers Incrementally 

•  In the basic K-means algorithm, centroids are 
updated after all points are assigned to a 
centroid 

•  An alternative is to update the centroids after 
each assignment (incremental approach) 
–  Each assignment updates zero or two centroids 
–  Never get an empty cluster 
–  Can use “weights” to change the impact 
–  More expensive 
–  Introduces an order dependency 
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Pre-processing and Post-processing 

•  Pre-processing 
– Normalize the data 
– Eliminate outliers 

•  Post-processing 
– Eliminate small clusters that may represent 

outliers 
– Split ‘loose’ clusters, i.e., clusters with 

relatively high SSE 
– Merge clusters that are ‘close’ and that have 

relatively low SSE 
38 



Limitations of K-means 

•  K-means has problems when clusters are of 
differing  
– Sizes 
– Densities 
– Non-globular shapes 

•  K-means has problems when the data 
contains outliers. 
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Limitations of K-means: Differing Sizes 

 

 

Original Points K-means (3 Clusters) 
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Limitations of K-means: Differing Density 

 

 

Original Points K-means (3 Clusters) 
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Limitations of K-means: Non-globular Shapes 

 

 

Original Points K-means (2 Clusters) 
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Overcoming K-means Limitations 

 

 

Original Points     K-means Clusters 

       One solution is to use many clusters. 
Find parts of clusters, but need to put together. 
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Overcoming K-means Limitations 

 

 

Original Points     K-means Clusters 
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Overcoming K-means Limitations 

 

 

Original Points     K-means Clusters 
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Comments on the K-Means Method 
•  Strength  

–  Relatively efficient: O(tknd), where n is # objects, k is # 
clusters, d is the number of features, and t  is # iterations. 
Normally, k, t << n. 

–  Often terminates at a local optimum. The global optimum may 
be found using techniques such as: deterministic annealing and 
genetic algorithms 

•  Weakness 
–  Applicable only when mean is defined, then what about 

categorical data? 
–  Need to specify k, the number of clusters, in advance 
–  Unable to handle noisy data and outliers 
–  Not suitable to discover clusters with non-convex shapes 
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The K-Medoids Clustering Method 

•  Find representative objects, called medoids, in clusters 
•  PAM (Partitioning Around Medoids, 1987) 

–  starts from an initial set of medoids and iteratively replaces 
one of the medoids by one of the non-medoids if it improves 
the total distance of the resulting clustering 

–  PAM works effectively for small data sets, but does not scale 
well for large data sets 
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How can we tell the right number of clusters? 
In general, this is a unsolved problem. However there are many 
approximate methods. In the next few slides we will see an example. 

For our example, we will use the familiar 
katydid/grasshopper dataset. 
 
However, in this case we are imagining that 
we do NOT know the class labels. We are 
only clustering on the X and Y axis values.  
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1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

 When k = 1, the objective function is 873.0 
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1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

 When k = 2, the objective function is 173.1 
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1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

 When k = 3, the objective function is 133.6 
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We can plot the objective function values for k equals 1 to 6… 
 
The abrupt change at k = 2, is highly suggestive of two clusters 
in the data. This technique for determining the number of 
clusters is known as “knee finding” or “elbow finding”. 

Note that the results are not always as clear cut as in this toy example 
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