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What 1s Cluster Analysis?

* Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different from
(or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized

minimized @
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Applications of Cluster Analysis

Discovered Clusters Industry Group

* Un d e r S t a n di n g Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,

1 Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,

_ DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,

Group related documents for \DSC-Comn-DOWNINTEL-DOWNLSILogieDOWN. | echinology1-DOWN

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,
Sun-DOWN

browsing, group genes and
proteins that have similar

functionality, or group stocks Fannie-Ase-DOWN Fod-Home-Loan-DOWN,
. . . . . MBNA-Corp-DOWN,Morgan-Stanley-DOWN
with similar price fluctuations

° °
o Summarlzatlon 10 Precip Clusters usin SNN Clugterng {12 mo. avy, NN=100)

— Reduce the size of large data
sets

Clustering precipitation in
Australiaf
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What 1s not Cluster Analysis?

* Supervised classification

— Have class label information

* Simple segmentation

— Dividing students into different registration groups alphabetically,
by last name

* Results of a query

— QGroupings are a result of an external specification



Notion of a Cluster can be Ambiguous
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Popular Types of Clusterings

 Partitional Clustering

— A division data objects into non-overlapping
subsets (clusters) such that each data object 1s
in exactly one subset

» Hierarchical clustering

— A set of nested clusters organized as a

hierarchical tree
6



Partitional Clustering

Original Points A Partitional Clustering




Hierarchical Clustering

pl
"
pl p2 p3p4

Traditional Hierarchical Clustering Traditional Dendrogram
pl p2  p3p4
Non-traditional Hierarchical Clustering Non-traditional Dendrogram




Other Distinctions Between Sets of Clusters

Exclusive versus non-exclusive

— In non-exclusive clusterings, points may belong to multiple
clusters.

— Can represent multiple classes or ‘border’ points
Fuzzy versus non-fuzzy

— In fuzzy clustering, a point belongs to every cluster with
some weight between 0 and 1

— Weights must sum to 1

— Probabilistic clustering has similar characteristics
Partial versus complete

— In some cases, we only want to cluster some of the data
Heterogeneous versus homogeneous

— Cluster of widely different sizes, shapes, and densities
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Clustering Algorithms

 K-means and its variants
» Hierarchical clustering

* Density-based clustering

18
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K-means Clustering

e Partitional clustering approach

«  Each cluster 1s associated with a (center point)
« Each point 1s assigned to the cluster with the closest
centroid

«  Number of clusters, K, must be specified
*  The basic algorithm 1s very simple

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change

19



Interactive Demo

* http://home.dei.polimi.it/matteucc/
Clustering/tutorial html/AppletKM.html
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K-means Clustering — Details

 Initial centroids are often chosen randomly.
— Clusters produced vary from one run to another.

* The centroid 1s (typically) the mean of the points in the
cluster.

e ‘Closeness is measured by Euclidean distance, cosine
similarity, correlation, etc.

« K-means will converge for common similarity measures
mentioned above.

* Most of the convergence happens in the first few iterations.

— Often the stopping condition is changed to ‘Until relatively few
points change clusters’

« Complexity is O(n * K * [ *d)
— n = number of points, K = number of clusters,
I = number of iterations, d = number of attributes
21



BN .
Evaluating K-means Clusters

* Most common measure 1s Sum of Squared Error (SSE)
— For each point, the error 1s the distance to the nearest cluster
— To get SSE, we square these errors and sum them.

SSE = i Edistz(ml.,x)

=1 xeC,

— x 1s a data point in cluster C, and m;, 1s the representative point for
cluster C.
 Can show that m; corresponds to the center (mean) of the cluster

— (iven two clusters, we can choose the one with the smallest error

— One easy way to reduce SSE is to increase K, the number of
clusters

* A good clustering with smaller K can have a lower SSE than a
poor clustering with higher K )
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Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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N
Problems with Selecting Initial Points

e Ifthere are K ‘real’ clusters then the chance of
selecting one centroid from each cluster 1s small.

— Chance is relatively small when K is large
— If clusters are the same size, n, then

p_ number of ways to select one centroid from each cluster K In& _ K!
B number of ways to select K centroids - (Kn)X KK

— For example, 1f K = 10, then probability = 10!/10*10 =
0.00036

— Sometimes the initial centroids will readjust themselves in
‘right’” way, and sometimes they don’ t

— Consider an example of five pairs of clusters

28
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10 Clusters Example

lteration 4
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X

Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

lteration 4
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X

Starting with some pairs of clusters having three initial centroids, while other have only one.
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lteration 3
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EETT .
10 Clusters Example
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Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

e Multiple runs
— Helps, but probability is not on your side

* Sample and use hierarchical clustering to
determine 1nitial centroids

e Select more than k initial centroids and then
select among these 1nitial centroids

— Select most widely separated
* Postprocessing
* Bisecting K-means
— Not as susceptible to 1nitialization issues

33
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Bisecting K-means

* Bisecting K-means algorithm

— Variant of K-means that can produce a partitional or a
hierarchical clustering

1: Initialize the list of clusters to contain the cluster containing all points.
2: repeat
3:  Select a cluster from the list of clusters
for : = 1 to number_of _iterations do
Bisect the selected cluster using basic K-means
end for
Add the two clusters from the bisection with the lowest SSE to the list of clusters.

until Until the list of clusters contains K clusters

34



BN .
Bisecting K-means Example

lteration 10

35



Handling Empty Clusters

» Basic K-means algorithm can yield empty
clusters.

* Several strategies

— Choose the replacement centroid as the point
that 1s furthest away from any other centroids.

— Choose a point from the cluster with the highest
SSE

 Splits the clusters.

— If there are several empty clusters, the above
can be repeated several times. 36



Updating Centers Incrementally

* In the basic K-means algorithm, centroids are
updated after all points are assigned to a
centroid

* An alternative 1s to update the centroids after
each assignment (incremental approach)
— Each assignment updates zero or two centroids
— Never get an empty cluster
— Can use “weights” to change the impact
— More expensive

— Introduces an order dependency
37



Pre-processing and Post-processing

e Pre-processing
— Normalize the data
— Eliminate outliers

* Post-processing

— Eliminate small clusters that may represent
outliers

— Split ‘loose’ clusters, i.e., clusters with
relatively high SSE

— Merge clusters that are ‘close’ and that have
relatively low SSE .



Limitations of K-means

« K-means has problems when clusters are of
differing
— Sizes
— Densities
— Non-globular shapes

« K-means has problems when the data
contains outliers.

39



Limitations of K-means: Differing Sizes
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Limitations of K-means: Differing Density
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Limitations of K-means: Non-globular Shapes
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Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.
43



Overcoming K-means Limitations
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Overcoming K-means Limitations
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Comments on the K-Means Method

e Strength

— Relatively efficient: O(tknd), where n 1s # objects, k 1s #
clusters, d 1s the number of features, and ¢ 1s # iterations.

Normally, £, t << n.

— Often terminates at a local optimum. The global optimum may
be found using techniques such as: deterministic annealing and
genetic algorithms

e Weakness

— Applicable only when mean 1s defined, then what about
categorical data?

— Need to specity &, the number of clusters, in advance

— Unable to handle noisy data and outliers

— Not suitable to discover clusters with non-convex shapes
46



The K-Medoids Clustering Method

* Find representative objects, called medoids, in clusters
e PAM (Partitioning Around Medoids, 1987)

— starts from an 1nitial set of medoids and iteratively replaces

one of the medoids by one of the non-medoids 1f it improves
the total distance of the resulting clustering

— PAM works effectively for small data sets, but does not scale
well for large data sets

47



How can we tell the right number of clusters?

In general, this 1s a unsolved problem. However there are many
approximate methods. In the next few slides we will see an example.
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When k = 1, the objective function 1s 873.0

1 23456 7 8,910
B0 ...



When k = 2, the objective function 1s 173.1

1 23456 7 8910
B0 ...



3, the objective function 1s 133.6

When k

2 3456 7 8.9 10

1



We can plot the objective function values for k equals 1 to 6...

The abrupt change at k = 2, 1s highly suggestive of two clusters
in the data. This technique for determining the number of
clusters is known as “knee finding” or “elbow finding .
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