CS 584 Data Mining

Data
2/2/16

What is Data?

Tid	Refund	Marital Status	Taxable Income	
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

What is Data?

- Information that can be easily processed.
- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
- Examples: eye color of a person, temperature, etc.
- Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
- Object is also known as record, point, case, sample,
 entity, or instance

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values
- Same attribute can be mapped to different attribute values
- Different attributes can be mapped to the same set of values

Types of Attributes

- There are different types of attributes
- Nominal
- Examples: ID numbers, eye color, zip codes
- Ordinal
- Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in \{tall, medium, short\}
- Interval
- Examples: calendar dates, temperatures in Celsius or Fahrenheit.
- Ratio
- Examples: temperature in Kelvin, length, time, counts

Properties of Attribute Values

- The type of an attribute depends on which of the following properties it possesses:
- Distinctness: $\quad=\neq$
- Order: $<>$
- Addition: + -
- Multiplication: */

Nominal attribute: ?
Ordinal attribute: ?
Interval attribute: ?
Ratio attribute: ?

Attribute Type	Description	Examples	Operations
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: $\{$ male, female $\}$	mode, entropy, contingency correlation, χ^{2} test
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, $>)$	hardness of minerals, \{good, better, best $\},$ grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. $(+,-)$	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, t and F tests
Ratio	For ratio variables, both differences and ratios are meaningful. $(*, /)$	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

$\begin{array}{c}\text { Attribute } \\ \text { Level }\end{array}$	Transformation	Comments
Nominal	Any permutation of values	$\begin{array}{l}\text { If all employee ID numbers } \\ \text { were reassigned, would it } \\ \text { make any difference? }\end{array}$
Ordinal	$\begin{array}{l}\text { An order preserving change of } \\ \text { values, i.e., } \\ \text { new_value }=f(\text { old_value }) \\ \text { where } f \text { is a monotonic function. }\end{array}$	$\begin{array}{l}\text { An attribute encompassing } \\ \text { the notion of good, better } \\ \text { best can be represented } \\ \text { equally well by the values } \\ \{1,2,3\} \text { or by }\{0.5,1,\end{array}$
Interval	$\begin{array}{l}\text { new_value }=a * \text { old_value }+b \\ \text { where a and } \mathrm{b} \text { are constants }\end{array}$	$\begin{array}{l}\text { Thus, the Fahrenheit and } \\ \text { Celsius temperature scales } \\ \text { differ in terms of where }\end{array}$
their zero value is and the		
size of a unit (degree).		

Discrete and Continuous Attributes

- Discrete Attribute
- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented using integer variables.
- Note: binary attributes are a special case of discrete attributes
- Continuous (numeric) Attribute
- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Types of data sets

- Record
- Data Matrix
- Document Data
- Transaction Data
- Graph
- World Wide Web
- Molecular Structures
- Ordered
- Spatial Data
- Temporal Data
- Sequential Data
- Genetic Sequence Data

Record Data

- Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multidimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of \mathbf{x} Load	Projection of \mathbf{y} load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

How would you represent

- Document Data?

Document Data

- Each document becomes a `term' vector,
- each term is a component (attribute) of the vector,

- the value of each component is the number of times the corresponding term occurs in the document.

Transaction Data

- A special type of record data, where
- each record (transaction) involves a set of items.
- For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

- Examples: Generic graph and HTML Links


```
<a href="papers/papers.html#bbbb">
Data Mining </a>
<li>
<a href="papers/papers.htm|#aaaa">
Graph Partitioning </a>
<li>
<a href="papers/papers.htm|#aaaa">
Parallel Solution of Sparse Linear System of Equations </a>
<li>
<a href="papers/papers.htm|#ffff">
N-Body Computation and Dense Linear System Solvers
```


Chemical Data

- Benzene Molecule: $\mathrm{C}_{6} \mathrm{H}_{6}$

Ordered Data

- Sequences of transactions

Items/Events

An element of the sequence

Ordered Data

- Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCCGCGCCGTC GAGAAGGGCCCGCCTGGCGGGCG GGGGGAGGCGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC СССТСТGСТСGGССТАGAССТGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG

Ordered Data

- Time Series

Many Time Series Contain Spatial Information (Trajectories)

- Video tracking / Surveillance
- Visual tracking of body features (2D time-series)
- Sign Language recognition (3D time-series)
- GPS tracking
- Hurricane tracks

Ordered Data

- Spatio-Temporal Data

Jan

Average Monthly Temperature of land and ocean

Image Data

- Can be represented as (color) histograms
- Frequency count of each individual color
- Most commonly used color feature representation

Image

Histogram
Channel: Black

Corresponding histogram

Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?
- Examples of data quality problems:
- Noise and outliers
- missing values
- duplicate data

Noise

(a) Time series.

- Noise refers to modification of original values
- Random collection of error.
- Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen

(b) Time series with noise.

Outliers

- Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set

Missing Values (Think)

- Reasons for missing values?
- Handling missing values (How? Think)

Missing Values (Think)

- Reasons for missing values
- Information is not collected (e.g., people decline to give their age and weight)
- Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values (How? Think)
- Eliminate Data Objects
- Estimate Missing Values
- Ignore the Missing Value During Analysis

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
- Major issue when merging data from heterogeneous sources
- Examples:
- Same person with multiple email addresses
- Data cleaning
- Process of dealing with duplicate data issues

Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Aggregation (LESS IS MORE)

- Combining two or more attributes (or objects) into a single attribute (or object)
- Purpose
- Data reduction
- Reduce the number of attributes or objects
- Change of scale
- Cities aggregated into regions, states, countries, etc
- More "stable" data
- Aggregated data tends to have less variability

Aggregation

Variation of Precipitation in Australia

Standard Deviation of Average Monthly Precipitation

Standard Deviation of Average Yearly Precipitation

Sampling

- Sampling is the main technique employed for data selection.
- It is often used for both the preliminary investigation of the data and the final data analysis.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.

Sampling ...

- The key principle for effective sampling is the following:
- using a sample will work almost as well as using the entire data sets, if the sample is representative
- A sample is representative if it has approximately the same property (of interest) as the original set of data

Types of Sampling

- Simple Random Sampling
- There is an equal probability of selecting any particular item
- Sampling without replacement
- As each item is selected, it is removed from the population
- Sampling with replacement
- Objects are not removed from the population as they are selected for the sample.
- In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
- Split the data into several partitions; then draw random samples from each partition

Sample Size

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Also distances between objects gets skewed
- More dimensions that contribute to the notion of distance or proximity which makes it uniform. This leads to trouble in clustering and classification settings.

Driving the point ..

- Consider a 3-class classification problem.
- In our toy problem, we decide to start with one feature and divide the real line into 3 segments.

- After we have done this, we notice that there exist too much overlap between classes. So we add another feature.
- We decide to preserve the granularity of each axis, so the \# of bins goes from 3 (in 1D) to $3^{2}=9$ (in 2D).
- At this point we are faced with a decision: do we maintain the density of each cell, or do we keep the same number of examples as in 1D?

- Moving to 3 features makes the problem worse.
- The \# of bins becomes $3^{3}=27$ (in 3D).
- For the same density, the number of examples becomes...?
- For the same number of examples, the 3D scatter plot looks almost empty.

Curse of Dimensionality

- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

- Randomly generate 500 points
- Compute difference between max and min distance between any pair of points
- Curse of dimensionality in indexing.

- Recall that if we decide to preserve the granularity of each axis, the \# of bins goes from 3 (in 1D) to $3^{2}=9$ (in 2D) to $3^{3}=27$ (in 3D).
- We can treat this multi-dimensional grid as an index structure. Now suppose that, given a query point (the purple circle in the center cell), we want to find the closest point to the query.
- Obviously, we want to check the cell that the point resides in. The closest point may be in a neighboring cell, so we have to check those too.

Simplified example to illustrate curse of

 dimensionality:How many additional (nonempty) cells must we examine before we are guaranteed to find the best match?

For the one dimensional case, the answer is clearly $2 \ldots$

If we project a query into n dimensional space, how many additional (nonempty) cells must we examine before we are guaranteed to find the best match?

For the one dimensional case, the answer is clearly $2 \ldots$

For the two dimensional
case, the answer is $8 \ldots$

If we project a query into ndimensional space, how many additional (nonempty) cells must we examine before we are guaranteed to find the best match?

For the one dimensional case, the answer is clearly 2 ...

For the two dimensional

More generally, in n-dimension space we must examine $3^{n}-1$ cells

```
n=21 }=>\mathrm{ 10,460,353,201 cells
``` case, the answer is 8 ...

4 *The cells are also known as "MBR" (minimum bounding rectangles) as in R-trees.

\section*{Dimensionality Reduction}
- Purpose:
- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise
- Techniques
- Principle Component Analysis
- Singular Value Decomposition
- Others: supervised and non-linear techniques

\section*{Principal Component Analysis}
- Goal of PCA
- To reduce the number of dimensions.
- Transfer interdependent variables into single and independent components.
- What does PCA do?
- Transforms the data into a lower dimensional space, by constructing dimensions that are linear combinations of the input dimensions/ features.
- Find independent dimensions along which data have the largest variance.

\section*{Dimensionality Reduction: PCA}
- Goal is to find a projection that captures the largest amount of variation in data

\section*{PCA: \#1 Calculate Adjusted Data Set}

\section*{PCA: \#2 Calculate Co-variance matrix, C, from Adjusted Data Set, A}
```

Co-variance Matrix: C

```


Note: Since the means of the dimensions in the adjusted data set, \(\mathbf{A}\), are 0 , the covariance matrix can simply be written as:
\[
C=\left(\mathbf{A A}^{T}\right) /(n-1)
\]
\[
\mathrm{C}_{\mathrm{ij}}=\operatorname{cov}(\mathrm{i}, \mathrm{j})
\]

\section*{PCA: \#3 Calculate eigenvectors and eigenvalues of C}

Eigenvectors

Eigenvalues

Eigenvalues

Eigenvectors

If some eigenvalues are 0 or very small, we can essentially discard those eigenvalues and the corresponding eigenvectors, hence reducing the dimensionality of the new basis.

\section*{PCA: \#4 Transforming data set to the new basis}

Note that the dimensions of the new dataset, \(F\), are less than the data set \(A\)

To recover A from F:
\(\left(E^{T}\right)^{-1} F=\left(E^{T}\right)^{-1} E^{T} A\) \(\left(\mathbf{E}^{\mathbf{T}}\right)^{\mathbf{T}} \mathbf{F}=\mathbf{A}\)
\(\mathbf{E F}=\mathbf{A}\)
* \(\mathbf{E}\) is orthogonal, therefore \(\mathbf{E}^{-1}=\mathbf{E}^{\mathbf{T}}\)

\section*{Feature Subset Selection}
- Another way to reduce dimensionality of data
- Redundant features
- duplicate much or all of the information contained in one or more other attributes
- Example: purchase price of a product and the amount of sales tax paid
- Irrelevant features
- contain no information that is useful for the data mining task at hand
- Example: students' ID is often irrelevant to the task of predicting students' GPA

\section*{Feature Subset Selection}
- Techniques:
- Brute-force approach:
- Try all possible feature subsets as input to data mining algorithm
- Embedded approaches:
- Feature selection occurs naturally as part of the data mining algorithm
- Filter approaches:
- Features are selected before data mining algorithm is run
- Wrapper approaches:
- Use the data mining algorithm as a black box to find best subset of attributes
- Feature Weighting

\section*{Filter Approach}

\section*{Feature Creation}
- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
- Feature Extraction
- domain-specific
- Mapping Data to New Space
- Feature Construction
- combining features

\section*{Mapping Data to a New Space}
- Fourier transform
- Wavelet transform

Two Sine Waves

Frequency

\section*{Discretization}

\section*{Without using class labels (unsupervised)}

Equal frequency

Equal interval width

\section*{Discretization Using Class Labels}
- Entropy based approach:
- If you have class labels, compute the entropy per discretized bin, and then try to minimize the same.
- The entropy \(e_{i}\) for the \(i^{\text {th }}\) bin is given by \((k=\#\) of classes \()\) :
\[
e_{i}=\sum_{j=1}^{k} p_{i j} \log _{2} p_{i j}
\]
where \(\mathrm{p}_{\mathrm{ij}}=\operatorname{prob}\) (class j in the \(\mathrm{i}^{\text {th }}\) interval)
- If entropy \(=0\) then it is a pure grouping
- Total entropy: weighted average of all \(e_{i}\)
\[
e=\sum_{i=1}^{n} w_{i} e_{i}
\]
where n is the number of intervals

\section*{Attribute Transformation}
- A function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
- Simple functions: \(\mathrm{x}^{\mathrm{k}}, \log (\mathrm{x}), \mathrm{e}^{\mathrm{x}},|\mathrm{x}|\)
- Standardization and Normalization

\section*{Dangers of Dimensionality Reduction}
- https://cs.gmu.edu/~jessica/

DimReducDanger.htm

\section*{What is Similarity?}

\section*{The quality or state of being similar; likeness;} resemblance; as, a similarity of features. webster's Dictionary

Similarity is hard to define, but...
"We know it when we see it"

The real meaning of similarity is a philosophical question.

We will take a more pragmatic approach.

\section*{Similarity and Dissimilarity}
- Similarity
- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]
- Dissimilarity
- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- Proximity refers to a similarity or dissimilarity

\section*{Similarity/Dissimilarity for Simple Attributes}
\(p\) and \(q\) are the attribute values for two data objects.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Attribute \\
Type
\end{tabular} & Dissimilarity & Similarity \\
\hline Nominal & \(d= \begin{cases}0 & \text { if } p=q \\
1 & \text { if } p \neq q\end{cases}\) & \(s= \begin{cases}1 & \text { if } p=q \\
0 & \text { if } p \neq q\end{cases}\) \\
\hline Ordinal & \begin{tabular}{l}
\(d=\frac{|p-q|}{n-1}\) \\
(values mapped to integers 0 to \(n-1\), \\
where \(n\) is the number of values)
\end{tabular} & \(s=1-\frac{|p-q|}{n-1}\) \\
\hline Interval or Ratio & \(d=|p-q|\) & \begin{tabular}{l}
\(s=-d, s=\frac{1}{1+d}\) or \\
\(s=1-\frac{d-m i n-d}{\text { max- } d-\text { min }-d}\)
\end{tabular} \\
\hline
\end{tabular}

Table 5.1. Similarity and dissimilarity for simple attributes

\section*{Defining Distance Measures}

Definition: Let \(\mathrm{O}_{1}\) and \(\mathrm{O}_{2}\) be two objects from the universe of possible objects. The distance (dissimilarity) is denoted by \(D\left(\mathrm{O}_{1}, \mathrm{O}_{2}\right)\)

What properties should a distance measure have?
- \(D(\mathrm{~A}, \mathrm{~B})=D(\mathrm{~B}, \mathrm{~A})\)
- \(D(\mathrm{~A}, \mathrm{~A})=0\)
- \(D(\mathrm{~A}, \mathrm{~B})=0\) Iff \(\mathrm{A}=\mathrm{B}\)
- \(D(\mathrm{~A}, \mathrm{~B}) \leq D(\mathrm{~A}, \mathrm{C})+D(\mathrm{~B}, \mathrm{C})\)

\author{
Symmetry \\ Constancy of Self-Similarity \\ Positivity \\ Triangular Inequality
}

Measures for which all properties hold are referred to as distance metrics.

\section*{Intuitions behind desirable distance measure properties I}
\(D(\mathrm{~A}, \mathrm{~B})=D(\mathrm{~B}, \mathrm{~A})\)
Symmetry

Otherwise you could claim:
"Fairfax is close to D.C., but D.C is not close to
Fairfax."

\section*{Intuitions behind desirable distance measure properties II}

\section*{\(D(\mathrm{~A}, \mathrm{~A})=0\) \\ Constancy of Self-Similarity}

Otherwise you could claim:
"Fairfax is closer to D.C than D.C. itself! ".

\section*{Intuitions behind desirable distance measure properties III}

\section*{\(D(\mathrm{~A}, \mathrm{~B})=0\) iff \(\mathrm{A}=\mathrm{B} \quad\) Positivity}

Otherwise you could claim:
"Fairfax is exactly at the same location as DC"

\section*{Intuitions behind desirable distance measure properties IIII}

\section*{\(D(\mathrm{~A}, \mathrm{~B}) \leq D(\mathrm{~A}, \mathrm{C})+D(\mathrm{~B}, \mathrm{C})\) Triangular Inequality}

Otherwise you could claim:
"My house is very close to Fairfax, your house is very close to Fairfax, but my house is very far from your house".

\section*{Why is the Triangular Inequality so Important?}

Virtually all techniques to index data require the triangular inequality to hold.

Suppose I am looking for the closest point to Q , in a database of 3 objects.

Further suppose that the triangular inequality holds, and that we have pre-computed a table of distances between all the items in the database.

\section*{Why is the Triangular Inequality so Important?}

Virtually all techniques to index data require the triangular inequality to hold.
I find \(\mathbf{a}\) and calculate that it is 2 units from Q , it becomes my best-so-far. I find \(\mathbf{b}\) and calculate that it is 7.81 units away from Q .
I don't have to calculate the distance from Q to \(\mathbf{c}\) !

I know
\[
D(\mathrm{Q}, \mathbf{b}) \leq D(\mathrm{Q}, \mathbf{c})+D(\mathbf{b}, \mathbf{c})
\]
\[
D(\mathrm{Q}, \mathbf{b})-D(\mathrm{~b}, \mathbf{c}) \leq D(\mathrm{Q}, \mathbf{c})
\]
\[
7.81-2.30 \leq D(\mathrm{Q}, \mathrm{c})
\]
\[
5.51 \leq D(\mathrm{Q}, \mathbf{c})
\]

So I know that \(\mathbf{c}\) is at least 5.51 units away, but my best-so-far is only 2 units away.
\begin{tabular}{|c|c|c|c|}
\hline & a & b & c \\
\hline a & & 6.70 & 7.07 \\
\hline b & & & 2.30 \\
\hline c & & & \\
\hline
\end{tabular}

\section*{Euclidean Distance}
- Euclidean Distance
\[
d i s t=\sqrt{\sum_{k=1}^{n}\left(p_{k}-q_{k}\right)^{2}}
\]

Where \(n\) is the number of dimensions (attributes) and \(p_{k}\) and \(q_{k}\) are, respectively, the \(\mathrm{k}^{\text {th }}\) attributes (components) or data objects \(p\) and \(q\).
- Standardization or normalization is necessary, if scales differ.
- Min-max normalization
- Z-normalization

\section*{Euclidean Distance}

\begin{tabular}{|c|c|c|}
\hline point & \(\mathbf{x}\) & \(\mathbf{y}\) \\
\hline \(\mathbf{p 1}\) & 0 & 2 \\
\hline \(\mathbf{p 2}\) & 2 & 0 \\
\hline \(\mathbf{p 3}\) & 3 & 1 \\
\hline \(\mathbf{p 4}\) & 5 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|r|}
\hline & \multicolumn{1}{|c|}{\(\mathbf{p 1}\)} & \(\mathbf{p 2}\) & \(\mathbf{p 3}\) & \multicolumn{1}{|c|}{\(\mathbf{p 4}\)} \\
\hline \(\mathbf{p 1}\) & 0 & 2.828 & 3.162 & 5.099 \\
\hline \(\mathbf{p 2}\) & 2.828 & 0 & 1.414 & 3.162 \\
\hline \(\mathbf{p 3}\) & 3.162 & 1.414 & 0 & 2 \\
\hline \(\mathbf{p 4}\) & 5.099 & 3.162 & 2 & 0 \\
\hline
\end{tabular}

Distance Matrix

\section*{Minkowski Distance}
- Minkowski Distance is a generalization of Euclidean Distance
\[
\operatorname{dist}=\left(\sum_{k=1}^{n}\left|p_{k}-q_{k}\right|^{r}\right)^{\frac{1}{r}}
\]

Where \(r\) is a parameter, \(n\) is the number of dimensions (attributes) and \(p_{k}\) and \(q_{k}\) are, respectively, the kth attributes (components) or data objects \(p\) and \(q\).

\section*{Minkowski Distance: Examples}
- \(\mathrm{r}=1\). City block (Manhattan, taxicab, L1 norm) distance.
- A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- \(r=2\). Euclidean distance
- \(\mathrm{r} \rightarrow \infty\). "supremum" (Lmax norm, \(\mathrm{L} \infty\) norm) distance.
- This is the maximum difference between any component of the vectors
- Do not confuse r with n , i.e., all these distances are defined for all numbers of dimensions.

\section*{Minkowski Distance}
\begin{tabular}{|c|c|c|c|c|}
\hline L1 & \(\mathbf{p 1}\) & \(\mathbf{p 2}\) & \(\mathbf{p 3}\) & \(\mathbf{p 4}\) \\
\hline \(\mathbf{p 1}\) & 0 & 4 & 4 & 6 \\
\hline \(\mathbf{p 2}\) & 4 & 0 & 2 & 4 \\
\hline \(\mathbf{p 3}\) & 4 & 2 & 0 & 2 \\
\hline \(\mathbf{p 4}\) & 6 & 4 & 2 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline point & \(\mathbf{x}\) & \(\mathbf{y}\) \\
\hline \(\mathbf{p 1}\) & 0 & 2 \\
\hline \(\mathbf{p 2}\) & 2 & 0 \\
\hline \(\mathbf{p 3}\) & 3 & 1 \\
\hline \(\mathbf{p 4}\) & 5 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|r|}
\hline \(\mathbf{L 2}\) & \multicolumn{1}{|c|}{\(\mathbf{p 1}\)} & \(\mathbf{p 2}\) & \multicolumn{1}{c|}{\(\mathbf{p 3}\)} & \multicolumn{1}{|c|}{\(\mathbf{p 4}\)} \\
\hline \(\mathbf{p 1}\) & 0 & 2.828 & 3.162 & 5.099 \\
\hline \(\mathbf{p 2}\) & 2.828 & 0 & 1.414 & 3.162 \\
\hline \(\mathbf{p 3}\) & 3.162 & 1.414 & 0 & 2 \\
\hline \(\mathbf{p 4}\) & 5.099 & 3.162 & 2 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|r|r|r|}
\hline \(\mathbf{L}_{\infty}\) & \(\mathbf{p 1}\) & \(\mathbf{p 2}\) & \(\mathbf{p 3}\) & \multicolumn{1}{|c|}{\(\mathbf{p 4}\)} \\
\hline \(\mathbf{p 1}\) & 0 & 2 & 3 & 5 \\
\hline \(\mathbf{p 2}\) & 2 & 0 & 1 & 3 \\
\hline \(\mathbf{p 3}\) & 3 & 1 & 0 & 2 \\
\hline \(\mathbf{p 4}\) & 5 & 3 & 2 & 0 \\
\hline
\end{tabular}

Distance Matrix

\section*{Mahalanobis Distance}
\[
\text { *mahalanobis }(p, q)=(p-q) \Sigma^{-1}(p-q)^{T}
\]

\(\Sigma\) is the covariance matrix of the input data \(X\)
\[
\Sigma_{j, k}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i j}-\bar{X}_{j}\right)\left(X_{i k}-\bar{X}_{k}\right)
\]

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6 .

\section*{Mahalanobis Distance}

Covariance Matrix:
\[
\Sigma=\left[\begin{array}{ll}
0.3 & 0.2 \\
0.2 & 0.3
\end{array}\right]
\]

A: \((0.5,0.5)\)
B: \((0,1)\)
C: \((1.5,1.5)\)

Mahal \((A, B)=5\)
\(\operatorname{Mahal}(\mathrm{A}, \mathrm{C})=4\)

\section*{Common Properties of Similarity}
- Similarities also have some well known properties.
\(-s(p, q)=1\) (or maximum similarity) only if \(p=\) q.
\(-\mathrm{s}(\mathrm{p}, \mathrm{q})=\mathrm{s}(\mathrm{q}, \mathrm{p})\) for all p and q . (Symmetry)
where \(s(p, q)\) is the similarity between points (data objects), p and q .

\section*{Similarity Between Binary Vectors}
- Common situation is that objects, \(p\) and \(q\), have only binary attributes
- Compute similarities using the following quantities
\(\mathrm{M}_{01}=\) the number of attributes where p was 0 and q was 1
\(\mathrm{M}_{10}=\) the number of attributes where p was 1 and q was 0
\(\mathrm{M}_{00}=\) the number of attributes where p was 0 and q was 0
\(\mathrm{M}_{11}=\) the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients

SMC \(=\) number of matches \(/\) number of attributes
\[
=\left(\mathrm{M}_{11}+\mathrm{M}_{00}\right) /\left(\mathrm{M}_{01}+\mathrm{M}_{10}+\mathrm{M}_{11}+\mathrm{M}_{00}\right)
\]
\(\mathrm{J}=\) number of 11 matches \(/\) number of not-both-zero attributes values
\[
=\left(\mathrm{M}_{11}\right) /\left(\mathrm{M}_{01}+\mathrm{M}_{10}+\mathrm{M}_{11}\right)
\]

\section*{SMC versus Jaccard: Example}
\[
\begin{gathered}
p=100000100000 \\
q= \\
=0
\end{gathered} 0000000110001
\]
\(M_{01}=2\) (the number of attributes where p was 0 and q was 1)
\(\mathrm{M}_{10}=1\) (the number of attributes where p was 1 and q was 0)
\(\mathrm{M}_{00}=7\) (the number of attributes where p was 0 and q was 0)
\(\mathrm{M}_{11}=0\) (the number of attributes where p was 1 and q was 1)
\(\mathrm{SMC}=\left(\mathrm{M}_{11}+\mathrm{M}_{00}\right) /\left(\mathrm{M}_{01}+\mathrm{M}_{10}+\mathrm{M}_{11}+\mathrm{M}_{00}\right)=(0+7) /(2+1+0+7)=0.7\)
\(\mathrm{J}=\left(\mathrm{M}_{11}\right) /\left(\mathrm{M}_{01}+\mathrm{M}_{10}+\mathrm{M}_{11}\right)=0 /(2+1+0)=0\)

\section*{Cosine Similarity}
- If \(d_{1}\) and \(d_{2}\) are two document vectors, then
\[
\cos \left(d_{1}, d_{2}\right)=\left(d_{1} \bullet d_{2}\right) /\left(\left\|d_{1}\right\|\left\|d_{2}\right\|\right),
\]
where \(\bullet\) indicates vector dot product and \(\|d\|\) is the length of vector \(d\).
- Example:
\[
\begin{aligned}
& d_{1}=3205000200 \\
& d_{2}=1000000102 \\
& d_{1} \cdot d_{2}=3 * 1+2 * 0+0 * 0+5 * 0+0 * 0+0 * 0+0 * 0+2 * 1+0 * 0+0 * 2=5 \\
& \left\|d_{1}\right\|=(3 * 3+2 * 2+0 * 0+5 * 5+0 * 0+0 * 0+0 * 0+2 * 2+0 * 0+0 * 0)^{0.5}=(42)^{0.5}=6.481 \\
& \left\|d_{2}\right\|=(1 * 1+0 * 0+0 * 0+0 * 0+0 * 0+0 * 0+0 * 0+1 * 1+0 * 0+2 * 2)^{0.5}=(6)^{0.5}=2.45 \\
& \cos \left(d_{1}, d_{2}\right)=.3150
\end{aligned}
\]

\section*{Cosine Similarity}

\[
\begin{aligned}
& D_{1}=(0.8,0.3) \\
& D_{2}=(0.2,0.7) \\
& Q=(0.4,0.8) \\
& \cos \alpha_{1}=0.74 \\
& \cos \alpha_{2}=0.98
\end{aligned}
\]

\section*{Extended Jaccard Coefficient (Tanimoto)}
- Variation of Jaccard for continuous or count attributes
- Reduces to Jaccard for binary attributes
\[
T(p, q)=\frac{p \bullet q}{\|p\|^{2}+\|q\|^{2}-p \bullet q}
\]

\section*{Correlation}

Correlation measures the linear relationship between objects
\[
\begin{aligned}
\operatorname{corr}(x, y) & =\frac{\operatorname{Covariance}(x, y)}{\operatorname{standard} _\operatorname{dev}(\mathrm{x}) * \operatorname{standard} _\operatorname{dev}(\mathrm{y})} \\
& =\frac{S_{x y}}{S_{x} S_{y}}
\end{aligned}
\]

\section*{Correlation (cont.)}
\(\operatorname{covariance}(\mathrm{x}, \mathrm{y})=\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)\left(y_{k}-\bar{y}\right)\)
\(\operatorname{standard} _\operatorname{dev}(\mathrm{x})=\mathrm{S}_{\mathrm{x}}=\sqrt{\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)^{2}}\)
standard_dev \((\mathrm{y})=\mathrm{S}_{\mathrm{y}}=\sqrt{\frac{1}{n-1} \sum_{k=1}^{n}\left(y_{k}-\bar{y}\right)^{2}}\)

\section*{Exercise}
- \(\mathrm{x}=\left(\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right)\)), \(\mathrm{y}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)\). Compute their correlation.

\section*{Visually Evaluating Correlation}

\section*{General Approach for Combining Similarities}
- Sometimes attributes are of many different types, but an overall similarity is needed.
1. For the \(k^{t h}\) attribute, compute a similarity, \(s_{k}\), in the range \([0,1]\).
2. Define an indicator variable, \(\delta_{k}\), for the \(k_{t h}\) attribute as follows:
\[
\delta_{k}= \begin{cases}0 & \text { if the } k^{t h} \text { attribute is a binary asymmetric attribute and both objects have } \\ & \text { a value of } 0, \text { or if one of the objects has a missing values for the } k^{t h} \text { attribute } \\ 1 & \text { otherwise }\end{cases}
\]
3. Compute the overall similarity between the two objects using the following formula:
\[
\operatorname{similarity}(p, q)=\frac{\sum_{k=1}^{n} \delta_{k} s_{k}}{\sum_{k=1}^{n} \delta_{k}}
\]

\section*{Using Weights to Combine Similarities}
- May not want to treat all attributes the same.
- Use weights wk which are between 0 and 1 and sum to 1 .
\[
\begin{aligned}
& \operatorname{similarity}(p, q)=\frac{\sum_{k=1}^{n} w_{k} \delta_{k} s_{k}}{\sum_{k=1}^{n} \delta_{k}} \\
& \operatorname{distance}(p, q)=\left(\sum_{k=1}^{n} w_{k}\left|p_{k}-q_{k}\right|^{r}\right)^{1 / r}
\end{aligned}
\]

\section*{Which similarity function to use ?}
- Depends on the application.
- Analyze the attributes.
- See their properties, min, max, etc
- See their dependency on other attributes
- Do you need similarity or distance?
- Do you need a metric ?
- Try several functions.
- Combine/merge.
- Active area of research!```

