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Today 

•  Additional classifiers 
– Naïve Bayes classifier 
– Support Vector Machine 
– Ensemble methods 

•  Clustering 
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Recall: Bayesian Classifiers 
•  Approach: 

–  compute the posterior probability P(C | A1, A2, …, An) for all 
values of C using the Bayes theorem 

 
–  Choose value of C that maximizes  

  P(C | A1, A2, …, An) 
 

–  Equivalent to choosing value of C that maximizes 
      P(A1, A2, …, An|C) P(C) 

 
•  How to estimate P(A1, A2, …, An | C )? 

)(
)()|()|(

21

21

21

n

n

n AAAP
CPCAAAPAAACP

…
…

… =



How to Estimate Probabilities from Data? 
•  Class:  P(C) = Nc/N 

–  i.e.,  P(No) = 7/10,  
      P(Yes) = 3/10 

 

•  For discrete attributes: 
   
     P(Ai | Ck) = |Aik|/ Nc  

–  where |Aik| is number of 
instances having attribute Ai 
and belongs to class Ck 

–  Examples: 
 

 P(MaritalStatus=Married|No) = 4/7 
P(HomeOwner=Yes|Yes)=0 

Tid Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
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•  To simplify the task, naïve Bayesian classifiers assume 
attributes have independent distributions, and thereby estimate 

P(A|C) = P(A1|C) * P(A2|C) * ….* P(An|C) 
 
 

The probability of class C 
generating instance A, 
equals….  
 

The probability of class C 
generating the observed 
value for feature 1, 
multiplied by.. The probability of class C 

generating the observed 
value for feature 2, 
multiplied by.. 



How to Estimate Probabilities from Data? 

•  For continuous attributes:  
– Discretize the range into bins  

•   one ordinal attribute per bin 
•   violates independence assumption 

– Two-way split:  (A < v) or (A > v) 
•   choose only one of the two splits as new attribute 

– Probability density estimation: 
•   Assume attribute follows a normal distribution 
•   Use data to estimate parameters of distribution  

   (e.g., mean and standard deviation) 
•   Once probability distribution is known, can use it to 

estimate the conditional probability P(Ai|C) 
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How to Estimate Probabilities from Data? 
•  Normal distribution: 

–  One for each (Ai, C) pair 

•  For (Income, Class=No): 
–  If Class=No 

•   sample mean = 110 
•   sample variance = 2975 
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Tid Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
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More Example 

P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0

For taxable income:
If class=No: sample mean=110

sample variance=2975
If class=Yes: sample mean=90

sample variance=25

naive Bayes Classifier:

X = (HomeOwner =No,Married,Income =120K)

  P(X|Class=No) = P(HomeOwner=No|Class=No) 
   × P(Married| Class=No) 
   × P(Income=120K| Class=No) 
               = 4/7 × 4/7 × 0.0072 = 0.0024 

 

  P(X|Class=Yes) = P(HomeOwner=No| Class=Yes) 
                      × P(Married| Class=Yes) 
                      × P(Income=120K| Class=Yes) 

                = 1 × 0 × 1.2 × 10-9 = 0 
 

Since P(X|No)P(No) > P(X|Yes)P(Yes) 
Therefore P(No|X) > P(Yes|X) 

      => Class = No 

Given a Test Record: 

P(HomeOwner=Yes|No) = 3/7 
P(HomeOwner = No|No) = 4/7 
P(HomeOwner = Yes|Yes) = 0 
P(HomeOwner = No|Yes) = 1 

2/3 
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Naïve Bayes Classifier 

•  If one of the conditional probability is zero, 
then the entire expression becomes zero 

•  Probability estimation: 
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Nc = # of samples from class c 

Nic = # of sample from class c 
that takes on value i 

c: number of classes 

p: prior probability of P 

m: parameter, measured in # 
of samples, it says how 
confident we’re of our prior 
estimate of p. 

 



P(A1|C)        P(A2|C)                      P(An|C) 

C 
The Naive Bayes classifiers is often 
represented as this type of graph… 
 
Note the direction of the arrows, 
which state that each class causes 
certain features, with a certain 
probability 
 
 

… 



Naïve Bayes is fast and 
space efficient 
 
We can compute all the probabilities 
with a single scan of the database and 
store them in a (small) table… 

Sex Over190cm 

Male Yes 0.15 

No 0.85 

Female Yes 0.01 

No 0.99 

C 

… P(A1|C)        P(A2|C)                      P(An|C) 

Sex Long Hair 

Male Yes 0.05 

No 0.95 

Female Yes 0.70 

No 0.30 

Sex 

Male 

Female 



Naïve Bayes is NOT sensitive to irrelevant features... 
 
 
Suppose we are trying to classify a person’s sex based on several features, 
including eye color. (Of course, eye color is completely irrelevant to a 
persons gender) 

 
p(Jessica | Female) =  9,000/10,000        *  9,975/10,000   * …. 
p(Jessica | Male)    =  9,001/10,000         *  2/10,000          * …. 

P(Jessica |C) = P(eye = brown|C) * P(wears_dress = yes|C) * …. 

However, this assumes that we have good enough estimates of the probabilities, so 
the more data the better.   

Almost the same! 



Problem! 
 
Naïve Bayes assumes 
independence of features… 

Sex Over 6 
foot 

Male Yes 0.15 

No 0.85 

Female Yes 0.01 

No 0.99 

Sex Over 200 
pounds 

Male Yes 0.11 

No 0.80 

Female Yes 0.05 

No 0.95 

C 

… P(A1|C)        P(A2|C)                      P(An|C) 



Solution  
 
Consider the relationships 
between attributes… 

Sex Over 6 
foot 

Male Yes 0.15 

No 0.85 

Female Yes 0.01 

No 0.99 

Sex Over 200 pounds 

Male Yes and Over 6 foot 0.11 

No and Over 6 foot 0.59 

Yes and NOT Over 6 foot 0.05 

No and NOT Over 6 foot 0.35 

Female Yes and Over 6 foot 0.01 

C 

… P(A1|C)        P(A2|C)                      P(An|C) 



Solution  
 
Consider the relationships 
between attributes… 

But how do we find the set of connecting arcs?? 
 
Use Bayesian Belief Networks 
 
 
 

C 

… P(A1|C)        P(A2|C)                      P(An|C) 
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The Naïve Bayesian Classifier has a quadratic 
decision boundary 



•  Advantages: 
–  Fast to train (single scan). Fast to classify  
–  Not sensitive to irrelevant features 
–  Robust to isolated noise points 
–  Handles real and discrete data 
–  Handles streaming data well 
–  Handle missing values by ignoring the instance during 

probability estimate calculations 

•  Disadvantages: 
–  Independence assumption may not hold for some 

attributes 
–  Use other techniques such as Bayesian Belief Networks  

Advantages/Disadvantages of Naïve Bayes 



Support Vector Machines 

•  Find a linear hyperplane (decision boundary) that will separate the data 
20 



Support Vector Machines 

•  One Possible Solution 

B1
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Support Vector Machines 

•  Another possible solution 

B2
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Support Vector Machines 

•  Other possible solutions 

B2
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Support Vector Machines 

•  Which one is better? B1 or B2? 
•  How do you define better? 

B1

B2
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Support Vector Machines 

•  Find hyperplane that maximizes the margin => B1 is better than B2 

B1

B2

b11

b12

b21
b22

margin
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Support Vector Machines 
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Support Vector Machines 
•  We want to maximize: 

–  Which is equivalent to minimizing: 

–  But subjected to the following constraints: 

•   This is a constrained optimization problem 
–  Numerical approaches to solve it (e.g., quadratic 

programming) 
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Support Vector Machines 
•  What if the problem is not linearly separable? 
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Support Vector Machines 

•  What if the problem is not linearly 
separable? 
–  Introduce slack variables 

•   Need to minimize: 

•   Subject to:  
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Nonlinear Support Vector Machines 
•  What if decision boundary is not linear? 

30 



Nonlinear Support Vector Machines 

•  Transform data into higher dimensional space 

31 



Why SVMs?   

•  Convex Convex Convex 
– No trapping in local minima 

•  SVMs work for categorical and continuous 
data. 

•  Can control the model complexity by 
providing the control on cost function, 
margin parameters to use. 

•  Kernel Trick (Not discussed) extends it to 
non-linear spaces. 
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Ensemble Methods 

•  Construct a set of classifiers from the 
training data 

•  Predict class label of previously unseen 
records by aggregating predictions made by 
multiple classifiers 

33 



General Idea 
Original

Training data

....D1 D2 Dt-1 Dt

D

Step 1:
Create Multiple

Data Sets

C1 C2 Ct -1 Ct

Step 2:
Build Multiple

Classifiers

C*
Step 3:

Combine
Classifiers
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Why does it work? 
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•  Suppose there are 25 base classifiers 
– Each classifier has error rate, ε = 0.35 
– Assume classifiers are independent 
– Probability that the ensemble classifier makes a wrong 

prediction: 

– Two important conditions for an ensemble classifier to 
perform better than a single classifier: 

•  The base classifiers should be independent of each other 
•  The base classifiers should do better than random guessing. 



Examples of Ensemble Methods 

•  How to generate an ensemble of classifiers? 
– Bagging 

– Boosting 

 

36 



Bagging   
•  Bootstrap Aggregation 

–  Create classifiers by drawing samples of size equal to 
the original dataset. (Appx 63% of data will be chosen) 

–  Learn classifier using these samples. 
–  Vote on them. 

•  Why does this help ? 
–  If there is a high variance i.e. classifier is unstable, 

bagging will help to reduce errors due to fluctuations in 
the training data. 

–  If the classifier is stable i.e. error of the ensemble is 
primarily by bias in the base classifier -> may degrade 
the performance. 
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Boosting 

•  An iterative procedure to adaptively change 
distribution of training data by focusing 
more on previously misclassified records 
–  Initially, all N records are assigned equal 

weights 
– Unlike bagging, weights may change at the end 

of boosting round 
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Adaboost (Freund et. al. 1997)   
•  Given a set of n class-labeled tuples (x1,y1) … (xn,yn) i.e T 
•  Initially all weights of tuples are set to same (1/n) 
•  Generate k classifiers in k rounds.  At the i-th round 

–  Tuples from T are sampled from T  to form training set Ti 

–  Each tuple’s chance of selection depends on its weight. 
–  Learn a model Mi from Ti 
–  Compute error rate using Ti 

–  If tuple is misclassified its weight is increased. 
•  During prediction use the error of the classifier as a weight 

(vote) on each of the models 
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Why boosting/bagging?  

•  Improves the variance of unstable 
classifiers. 
– Unstable Classifiers 

•  Neural nets, decision trees 
– Stable Classifiers 

•  K-NN 

•  May lead to results that are not explanatory. 
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