CS 584
Data Mining

Classification 4




Today

* Additional classifiers
— Naive Bayes classifier
— Support Vector Machine

— Ensemble methods

* Clustering
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Recall: Bayesian Classifiers

» Approach:

— compute the posterior probability P(C | A, A,, ..., A,) for all
values of C using the Bayes theorem

— Choose value of C that maximizes
P(C|A, A, ..., A)

— Equivalent to choosing value of C that maximizes
P(A,, A,, ..., A |C) P(C)

* How to estimate P(A,, A,, ..., A,| C)?
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How to Estimate Probabilities from Data?

- I e Class: P(C)=N_/N

Owner Status Income Defaulted - i.e., P(NO) = 7/109
P(Yes) = 3/10

1 Yes Single 125K No

2 No Married |100K No . .

s Ino  lsinge |70k |Ne * For discrete attributes:

4 Yes Married |120K No

5 |No Divorced | 95K Yes P( Ai | Ck) = | Aik' / NC

6 No Married |60K No

7 |Yes |Divorced |220k  |No — where |A; | 1s number of

B Single | 85K . instances having attribute A.
o ™ n and belongs to class C,

10 |No Single  |90K Yes — Examples:

P(MaritalStatus=Married|No) = 4/7
P(HomeOwner=Yes|Yes)=0



« To simplify the task, naive Bayesian classifiers assume
attributes have independent distributions, and thereby estimate

P(A|C) = P(4,|C) * P(4,|C) * ....* P(A|C)
[ t

The probability of class C
generating instance A4,
equals....

The probability of class C
generating the observed
value for feature 1,
multiplied by..

The probability of class C
generating the observed
value for feature 2,
multiplied by..
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How to Estimate Probabilities from Data?

 For continuous attributes:

— Discretize the range into bins

 one ordinal attribute per bin K

« violates independence assumption
— Two-way split: (A <v)or(A>vV)

* choose only one of the two splits as new attribute
— Probability density estimation:

« Assume attribute follows a normal distribution

« Use data to estimate parameters of distribution
(e.g., mean and standard deviation)

* Once probability distribution i1s known, can use it to
estimate the conditional probability P(A.|C)



B @ T
How to Estimate Probabilities from Data?

Tid |Home

Owner

Yes
No
No
Yes
No
No
Yes
No
No
No
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Marital
Status

Single
Married
Single
Married
Divorced
Married
Divorced
Single
Married

Single

Annual
Income

125K
100K
70K
120K
95K
60K
220K
85K
75K
90K

Defaulted

No
No
No
No
Yes
No
No
Yes
No

Yes

e Normal distribution:

_ (Al —HUij )2
1 e 205
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— One for each (A,, C) pair

P(A1C)=

* For (Income, Class=No):
— If Class=No

e sample mean =110

« sample variance = 2975

1 _(120-110)

P(Income =120 | No) = J2n(54.54) e 77 =0.0072
7 (54.
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More Example

Given a Test Record:

X = (HomeOwner = No,Married Income = 120K)

naive Bayes Classifier:

P(HomeOwner=Yes|No) = 3/7 ® P(X|Class=No) = P(HomeOwner=No|Class=No)

Egnomegwner = $°|’|\$) 7 4/(; x P(Married| Class=No)
omewner = res|res) = x P(Income=120K| Class=No)

P(HomeOwner = NofYes) = 1 = 4/7 x 4/7 x 0.0072 = 0.0024

P(Marital Status=Single|No) = 2/7

P(Marital Status=Divorced|No)=1/7

P(Marital Status=Married|No) = 4/7 ® P(X|Class=Yes) = P(HomeOwner=No| Class=Yes)

P(Marital Status=Single|Yes) = 2/3 x P(Married| Class=Yes)

P(Marital Status=Divorced|Yes)= 1/3 x P(Income=120K| Class=Yes)

P(Marital Status=Married|Yes) = U =1x0x12x10°=0

For taxable income:

If class=No:  sample mean=110 Since P(X|No)P(No) > P(X[Yes)P(Yes)
sample variance=2975 | Therefore P(No|X) > P(Yes|X)

If class=Yes: sample mean=90
sample variance=25 => (Class = No




Naive Bayes Classifier

 If one of the conditional probability 1s zero,
then the entire expression becomes zero

* Probability estimation:

N, =# of samples from class c

o N N N, = # of sample from class ¢
Original: P(4; |C) = N that takes on value i
Nc i1 c: number of classes
Laplace: P(4, |C) = Nlc iy p: prior probability of P
‘ N + m: parameter, measured in #
m - estimate : P(4, |C) = —- P of samples, it says how

N_. +m confident we’re of our prior
estimate of p.



The Naive Bayes classifiers is often

represented as this type of graph... (
Note the direction of the arrows,
which state that each class causes

certain features, with a certain
probability

P(A,/C)  P(4,/C) P(4,|C)



Naive Bayes 1s fast and

space efficient

We can compute all the probabilities
with a single scan of the database and

store them in a (small) table...

P(4,[C)

P(4,/C)

/TN

P(4,/C)

Sex

Male

Sex Over190_, Sex Long Hair

Male Yes 0.15 Male Yes 0.05
No 0.85 No 0.95

Female | Yes 0.01 Female | Yes 0.70
No 0.99 No 0.30

Female




Naive Bayes is NOT sensitive to irrelevant features...

Suppose we are trying to classify a person’s sex based on several features,
including eye color.

P(Jessica |C) = P(eye = brown|C) * P(wears dress = yes|C) * ....

p(Jessica | Female) = 9,000/10,000 * 9,975/10,000 * ....
p(Jessica | Male) = 9,001/10,000

Almost the same!

However, this assumes that we have good enough estimates of the probabilities, so
the more data the better.




Problem!

Naive Bayes assumes

independence of features. . // \

PA|C)  P(4,/C) P(4,|C)

Sex Over 6 Sex Over 200
foot pounds

Male Yes 0.15 Male Yes 0.11
No 0.85 No 0.80

Female | Yes 0.01 Female | Yes 0.05
No 0.99 No 0.95




Solution

Consider the relationships
between attributes. ..

P(4,(C)

JIN

P(4,/C)

Sex Over 6
foot

Male Yes 0.15
No 0.85

Female | Yes 0.01
No 0.99

Sex Over 200 pounds

Male Yes and Over 6 foot 0.11
No and Over 6 foot 0.59
Yes and NOT Over 6 foot 0.05
No and NOT Over 6 foot 0.35

Female | Yes and Over 6 foot 0.01

P(4,|C)




Solution

Consider the relationships

between attributes... //

PA|C)  P(4,/C) P(4,|C)
A

But how do we find the set of connecting arcs??

Use Bayesian Belief Networks




The Naive Bayesian Classifier has a quadratic

decision boundary
10
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Advantages/Disadvantages of Naive Bayes

* Advantages:
— Fast to train (single scan). Fast to classify
— Not sensitive to irrelevant features
— Robust to 1solated noise points
— Handles real and discrete data
— Handles streaming data well
— Handle missing values by ignoring the instance during
probability estimate calculations
* Disadvantages:

— Independence assumption may not hold for some
attributes

— Use other techniques such as Bayesian Belief Networks



Support Vector Machines
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* Find a linear hyperplane (decision boundary) that will separate the data
20



Support Vector Machines
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* One Possible Solution
21
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Support Vector Machines

O
O O
O
O
B, — __ O
T O
. sssss
O
O
O
O
O O

* Another possible solution
22



Support Vector Machines

Other possible solutions

23
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Support Vector Machines
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*  Which one is better? B1 or B2?

* How do you define better?
24
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Support Vector Machines
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* Find hyperplane that maximizes the margin => B1 is better than B2
25
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Support Vector Machines

B1 -
o
O O
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Classify a point into: L] b,,
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_ b
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X) = L Margin =
1 ifWwex+b=-1 BT
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Support Vector Machines

* We want to maximize: . 2
Margin = —
lw i
— Which 1s equivalent to minimizing: [w |
L(w)=—

2

— But subjected to the following constraints:

1 1fwex +b=1

F(%) = {

-1 ifwex +b=-1

 This is a constrained optimization problem

— Numerical approaches to solve it (e.g., quadratic

programming) .



Support Vector Machines
* What if the problem 1s not linearly separable?
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Support Vector Machines

* What if the problem is not linearly
separable?

— Introduce slack variables

 Need to minimize; L(W) _ VT/ + C(iffc)

1=1

* Subject to:

ifwex. +b=1-§&

) 1
f(x")={—1 ifWex +b=—1+&

29
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Nonlinear Support Vector Machines

* What if decision boundary 1s not linear?

12

10 +

30
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Nonlinear Support Vector Machines

* Transform data into higher dimensional space

x 10"

4
(X, +X,)

L 0O a4 N W A~ O N o
I L L L D ) ———

1 3]
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Why SVMs?

e Convex Convex Convex

— No trapping in local minima

 SVMs work for categorical and continuous
data.

* Can control the model complexity by
providing the control on cost function,
margin parameters to use.

« Kernel Trick (Not discussed) extends it to
non-linear spaces.

32



Ensemble Methods

 Construct a set of classifiers from the
training data

* Predict class label of previously unseen
records by aggregating predictions made by
multiple classifiers

33



General Idea

Original
D Training data

y

Step 1: ‘ ‘ * *

Create Multiple D, D, mEes D D

Data Sets i t
Step 2:

Build Multiple C
Classifiers ‘
Step 3:

Combine

Classifiers

34
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Why does 1t work?

* Suppose there are 25 base classifiers
— Each classifier has error rate, € = 0.35
— Assume classifiers are independent

— Probability that the ensemble classifier makes a wrong

prediction:
2> 25\ | .
E( ,)g’a-g)”-l =0.06
l

i=13

— Two 1mportant conditions for an ensemble classifier to
perform better than a single classifier:
» The base classifiers should be independent of each other
* The base classifiers should do better than random guessing.



Examples of Ensemble Methods

 How to generate an ensemble of classifiers?
— Bagging

— Boosting

36
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Bagging

» Bootstrap Aggregation

— Create classifiers by drawing samples of size equal to
the original dataset. (Appx 63% of data will be chosen)

— Learn classifier using these samples.

— Vote on them.

 Why does this help ?

— If there 1s a high variance 1.e. classifier is unstable,
bagging will help to reduce errors due to fluctuations in
the training data.

— [If the classifier is stable 1.e. error of the ensemble 1s
primarily by bias in the base classifier -> may degrade

the performance.
37



Boosting

* An 1terative procedure to adaptively change
distribution of training data by focusing
more on previously misclassified records

— Initially, all N records are assigned equal
weights

— Unlike bagging, weights may change at the end
of boosting round

38



Adaboost (Freund et. al. 1997)

* (@iven a set of n class-labeled tuples (x;,y;) ... (X,,y) 1.6 T
 Initially all weights of tuples are set to same (1/n)
* Generate k classifiers in k rounds. At the 1-th round
— Tuples from T are sampled from T to form training set T,
— Each tuple’ s chance of selection depends on its weight.
— Learn a model M, from T,
— Compute error rate using T,
— If tuple 1s misclassified its weight is increased.

* During prediction use the error of the classifier as a weight
(vote) on each of the models

39
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Why boosting/bagging?

* Improves the variance of unstable
classifiers.

— Unstable Classifiers

* Neural nets, decision trees

— Stable Classitiers
e K-NN

* May lead to results that are not explanatory.

40



