
CS 584
Data Mining

Classification 2

Example of a Decision Tree

Home
Owner

Marital

Income

YES NO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model: Decision Tree

Tid Home
Owner

Marital
Status

Annual
Income Defaulted

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Another Example of Decision Tree

Marital

Home
Owner

Income

YES NO

NO

NO

Yes No

Married
Single,

Divorced

< 80K > 80K

There could be more than one tree that fits
the same data!

Tid Home
Owner

Marital
Status

Annual
Income Defaulted

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Decision Tree Classification Task

Apply
Model

Induction

Deduction

Learn
Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

 Test Set

Tree
Induction
algorithm

Training Set
Decision Tree

Apply Model to Test Data

Home
Owner

Marital

Income

YES NO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Home
Owner

Marital
Status

Annual
Income Defaulted

No Married 80K ?
10

Test Data
Start from the root of tree.

Apply Model to Test Data
Test Data

Home
Owner

Marital

Income

YES NO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Home
Owner

Marital
Status

Annual
Income Defaulted

No Married 80K ?
10

Apply Model to Test Data

Married

Test Data
Home
Owner

Marital
Status

Annual
Income Defaulted

No Married 80K ?
10

Home
Owner

Marital

Income

YES NO

NO

NO

Yes No

Single, Divorced

< 80K > 80K

Apply Model to Test Data
Test Data

Married

Home
Owner

Marital
Status

Annual
Income Defaulted

No Married 80K ?
10

Home
Owner

Marital

Income

YES NO

NO

NO

Yes No

Single, Divorced

< 80K > 80K

Apply Model to Test Data

Home
Owner

Marital

Income

YES NO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Test Data
Home
Owner

Marital
Status

Annual
Income Defaulted

No Married 80K ?
10

Apply Model to Test Data

Home
Owner

MarSt

Income

YES NO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Test Data

Assign Defaulted to “No”

Home
Owner

Marital
Status

Annual
Income Defaulted

No Married 80K ?
10

Decision Tree Classification Task

Apply
Model

Induction

Deduction

Learn
Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Tree
Induction
algorithm

Training Set
Decision Tree

Decision Tree Induction

•  Many Algorithms:
– Hunt’s Algorithm (one of the earliest)
– CART
–  ID3, C4.5
– SLIQ, SPRINT

General Structure of Hunt’s Algorithm

•  Let Dt be the set of training records
that reach a node t

•  General Procedure:
–  If Dt contains records that belong the

same class yt, then t is a leaf node
labeled as yt

–  If Dt is an empty set, then t is a leaf
node labeled by the default class, yd

–  If Dt contains records that belong to
more than one class, use an attribute
test to split the data into smaller
subsets. Recursively apply the
procedure to each subset.

Dt

?

Tid Home
Owner

Marital
Status

Annual
Income Defaulted

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Hunt’s Algorithm

Defaulted = No

Home
Owner

Defaulted = No

Yes No

Marital
Status

Defaulted = No Defaulted

Single,
Divorced Married

Tid Home
Owner

Marital
Status

Annual
Income Defaulted

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Home
Owner

Defaulted = No

Yes No

Defaulted = No

Home
Owner

Yes No

Marital
Status

Defaulted

Single,
Divorced

Married

Annual
Income

< 80K >= 80K

Defaulted = No

Defaulted = No

Defaulted = No

Tree Induction

•  Greedy strategy.
– Split the records based on an attribute test that

optimizes certain criterion.

•  Issues
– Determine how to split the records

•  How to specify the attribute test condition?
•  How to determine the best split?

– Determine when to stop splitting

Tree Induction
•  Greedy strategy.

– Split the records based on an attribute test that
optimizes certain criterion.

•  Issues
– Determine how to split the records

•  How to specify the attribute test condition?
•  How to determine the best split?

– Determine when to stop splitting

How to Specify Test Condition?

•  Depends on attribute types
– Nominal
– Ordinal
– Continuous

•  Depends on number of ways to split
–  2-way split
– Multi-way split

Splitting Based on Nominal Attributes

•  Multi-way split: Use as many partitions as
distinct values.

•  Binary split: Divides values into two subsets.
Need to find optimal partitioning.

CarType
Family

Sports
Luxury

CarType
{Family,
Luxury} {Sports}

CarType
{Sports,
Luxury} {Family}

OR

Splitting Based on Ordinal Attributes
•  Multi-way split: Use as many partitions as distinct

values.

•  Binary split: Divides values into two subsets.
Need to find optimal partitioning.

•  What about this split?

Size
Small

Medium
Large

Size
{Medium,

Large} {Small}
Size

{Small,
Medium} {Large} OR

Size
{Small,
Large} {Medium}

Splitting Based on Continuous Attributes

•  Different ways of handling
– Discretization to form an ordinal categorical

attribute
•  Static – discretize once at the beginning
•  Dynamic – ranges can be found by equal interval
 bucketing, equal frequency bucketing (percentiles),
 or clustering.

– Binary Decision: (A < v) or (A ≥ v)
•  consider all possible splits and finds the best cut
•  can be more compute intensive

Splitting Based on Continuous Attributes

Taxable
Income
> 80K?

Yes No

Taxable
Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K

Tree Induction

•  Greedy strategy.
– Split the records based on an attribute test that

optimizes certain criterion.

•  Issues
– Determine how to split the records

•  How to specify the attribute test condition?
•  How to determine the best split?

– Determine when to stop splitting

How to determine the Best Split

Own
Car?

C0: 6
C1: 4

C0: 4
C1: 6

C0: 1
C1: 3

C0: 8
C1: 0

C0: 1
C1: 7

Car
Type?

C0: 1
C1: 0

C0: 1
C1: 0

C0: 0
C1: 1

Student
ID?

...

Yes No Family

Sports

Luxury c1
c10

c20

C0: 0
C1: 1

...

c11

Before Splitting: 10 records of class 0,
 10 records of class 1

Which test condition is the best?

How to determine the Best Split

C0: 5
C1: 5

•  Greedy approach:
– Nodes with homogeneous class distribution are

preferred
•  Need a measure of node impurity:

C0: 9
C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Measures of Node Impurity

•  Gini Index

•  Entropy

•  Misclassification error

How to Find the Best Split

C0 N10
C1 N11

B?

Yes No

Node N3 Node N4

A?

Yes No

Node N1 Node N2

Before Splitting:

C0 N20
C1 N21

C0 N30
C1 N31

C0 N40
C1 N41

C0 N00
C1 N01

M0

M1 M2 M3 M4

M12 M34
Gain = M0 – M12 vs M0 – M34

Measure of Impurity: GINI
•  Gini Index for a given node t :

(NOTE: p(j | t) is the relative frequency of class j at node t).

–  Maximum (1 - 1/nc) when records are equally distributed
among all classes, implying least interesting information

–  Minimum (0.0) when all records belong to one class,
implying most interesting information

∑−=
j

tjptGINI 2)]|([1)(

C1 0
C2 6
Gini=0.000

C1 2
C2 4
Gini=0.444

C1 3
C2 3
Gini=0.500

C1 1
C2 5
Gini=0.278

Examples for computing GINI

C1 0
C2 6

C1 2
C2 4

C1 1
C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0

∑−=
j

tjptGINI 2)]|([1)(

P(C1) = 1/6 P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6 P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444

Splitting Based on GINI

•  Used in CART, SLIQ, SPRINT.
•  When a node p is split into k partitions (children), the quality of

split is computed as,

 where, ni = number of records at child i,
 n = number of records at node p.

∑
=

=
k

i

i
split iGINI

n
nGINI

1

)(

Binary Attributes: Computing GINI Index
•  Splits into two partitions
•  Effect of Weighing partitions:

-  Larger and purer partitions are sought for.

B?

Yes No

Node N1 Node N2

 Parent
C1 6

C2 6
Gini = 0.500

 N1 N2
C1 5 1
C2 2 4
Gini=0.371

Gini(N1)
= 1 – (5/7)2 – (2/7)2
= 0.408

Gini(N2)
= 1 – (1/5)2 – (4/5)2
= 0.32

Gini(Children)
= 7/12 * 0.408 +
 5/12 * 0.32
= 0.371

Categorical Attributes: Computing Gini Index

•  For each distinct value, gather counts for each class in the
dataset

•  Use the count matrix to make decisions

Multi-way split Two-way split
(find best partition of values)

Continuous Attributes: Computing Gini Index
•  Use Binary Decisions based on one value
•  Several Choices for the splitting value

–  Number of possible splitting values
= Number of distinct values

•  Each splitting value has a count matrix
associated with it
–  Class counts in each of the partitions, A

< v and A ≥ v
•  Simple method to choose best v

–  For each v, scan the database to gather
count matrix and compute its Gini
index

–  Computationally Inefficient! Repetition
of work.

Taxable
Income
> 80K?

Yes No

Tid Home
Owner

Marital
Status

Annual
Income Defaulted

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Continuous Attributes: Computing Gini Index...
•  For efficient computation: for each attribute,

–  Sort the attribute on values
–  Linearly scan these values, each time updating the count matrix and

computing gini index
–  Choose the split position that has the least gini index

Defaulted No No No Yes Yes Yes No No No No
 Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions
Sorted Values

Alternative Splitting Criteria based on INFO
•  Entropy at a given node t:

(NOTE: p(j | t) is the relative frequency of class j at node t).
– Measures homogeneity of a node.

•  Maximum (log nc) when records are equally distributed
among all classes implying least information

•  Minimum (0.0) when all records belong to one class,
implying most information

– Entropy based computations are similar to the GINI
index computations

∑−=
j

tjptjptEntropy)|(log)|()(

Entropy

0

0.5

1

H
(X

) Pr(X = good) = p
then Pr(X = bad) = 1 − p
the entropy of X is given by

0 1
binary entropy function
attains its maximum value
when p = 0.5

I have a box of apples…

Examples for computing Entropy

C1 0
C2 6

C1 2
C2 4

C1 1
C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0

P(C1) = 1/6 P(C2) = 5/6

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (5/6) = 0.65

P(C1) = 2/6 P(C2) = 4/6

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92

∑−=
j

tjptjptEntropy)|(log)|()(
2

Splitting Based on INFO...
•  Information Gain:

 Parent Node, p is split into k partitions;
 ni is number of records in partition i

–  Measures Reduction in Entropy achieved because of the split.
Choose the split that achieves most reduction (maximizes GAIN)

–  Used in ID3 and C4.5
–  Disadvantage: Tends to prefer splits that result in large number of

partitions, each being small but pure.

⎟
⎠
⎞

⎜
⎝
⎛−= ∑

=

k

i

i

split
iEntropy

n
npEntropyGAIN

1
)()(

Gain(split) = E(Parent set)−∑ E(all child sets)

Ross Quinlan

A
nt

en
na

 L
en

gt
h

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

Abdomen Length

Abdomen Length > 7.1?

no yes

Katydid Antenna Length > 6.0?

no yes

Katydid Grasshopper

Back To Our Insect Problem

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

100

10 20 30 40 50 60 70 80 90 100

10
20
30
40
50
60
70
80
90

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

Which of the “Pigeon Problems” can be
solved by a Decision Tree?

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

100

10 20 30 40 50 60 70 80 90 100

10
20
30
40
50
60
70
80
90

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

Which of the “Pigeon Problems” can be
solved by a Decision Tree?

Deep Bushy Tree
Useless
Deep Bushy Tree

The Decision Tree
has a hard time with
correlated attributes ?

Person Hair
Length

Weight Age Class

 Homer 0” 250 36 M
Marge 10” 150 34 F

Bart 2” 90 10 M
Lisa 6” 78 8 F

Maggie 4” 20 1 F
Abe 1” 170 70 M

Selma 8” 160 41 F
Otto 10” 180 38 M

Krusty 6” 200 45 M

Comic 8” 290 38 ?

Hair Length <= 5?
yes no

Entropy(4F,5M) = -(4/9)log2(4/9) - (5/9)log2(5/9)
 = 0.9911

Entropy(1F,3M) = -(1/4)log2(1/4) - (3/4)log2(3/4)

 = 0.8113

Entropy(3F,2M) = -(3/5)log2(3/5) - (2/5)log2(2/5)

 = 0.9710

Gain(Hair Length <= 5) = 0.9911 – (4/9 * 0.8113 + 5/9 * 0.9710) = 0.0911

)()()(setschildallEsetCurrentEAGain ∑−=

Let us try splitting
on Hair length

∑−=
j

tjptjptEntropy)|(log)|()(

Weight <= 160?
yes no

Entropy(4F,5M) = -(4/9)log2(4/9) - (5/9)log2(5/9)
 = 0.9911

Entropy(4F,1M) = -(4/5)log2(4/5) - (1/5)log2(1/5)

 = 0.7219

Entropy(0F,4M) = -(0/4)log2(0/4) - (4/4)log2(4/4)

 = 0

Gain(Weight <= 160) = 0.9911 – (5/9 * 0.7219 + 4/9 * 0) = 0.5900

)()()(setschildallEsetCurrentEAGain ∑−=

Let us try splitting
on Weight

∑−=
j

tjptjptEntropy)|(log)|()(

age <= 40?
yes no

Entropy(4F,5M) = -(4/9)log2(4/9) - (5/9)log2(5/9)
 = 0.9911

Entropy(3F,3M) = -(3/6)log2(3/6) - (3/6)log2(3/6)

 = 1

Entropy(1F,2M) = -(1/3)log2(1/3) - (2/3)log2(2/3)

 = 0.9183

Gain(Age <= 40) = 0.9911 – (6/9 * 1 + 3/9 * 0.9183) = 0.0183

)()()(setschildallEsetCurrentEAGain ∑−=

Let us try splitting
on Age

∑−=
j

tjptjptEntropy)|(log)|()(

Weight <= 160?
yes no

Hair Length <= 2?
yes no

Of the 3 features we had, Weight
was best. But while people who
weigh over 160 are perfectly
classified (as males), the under 160
people are not perfectly
classified… So we simply recurse!

This time we find that we
can split on Hair length, and
we are done!

We’ll talk more about stopping criteria later.

Splitting Based on INFO...
•  Gain Ratio:

Parent Node, p is split into k partitions
ni is the number of records in partition i

–  Adjusts Information Gain by the entropy of the partitioning
(SplitINFO). Higher entropy partitioning (large number of
small partitions) is penalized!

–  Used in C4.5
–  Designed to overcome the disadvantage of Information Gain

SplitINFO
GAIN

GainRATIO Split

split
= ∑

=
−=

k

i

ii

n
n

n
nSplitINFO

1
log

Splitting Criteria based on Classification Error

•  Classification error at a node t :

•  Measures misclassification error made by a node.
•  Maximum (1 - 1/nc) when records are equally distributed

among all classes, implying least interesting information
•  Minimum (0.0) when all records belong to one class, implying

most interesting information

€

Error(t) =1−max
j
P(j | t)

Examples for Computing Error

C1 0
C2 6

C1 2
C2 4

C1 1
C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Error = 1 – max (0, 1) = 1 – 1 = 0

P(C1) = 1/6 P(C2) = 5/6

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

P(C1) = 2/6 P(C2) = 4/6

Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3

)|(max1)(tiPtError
i

−=

Comparison among Splitting Criteria
For a 2-class problem:

P refers to the fraction of records that belong to one of the two classes

Tree Induction

•  Greedy strategy.
– Split the records based on an attribute test that

optimizes certain criterion.

•  Issues
– Determine how to split the records

•  How to specify the attribute test condition?
•  How to determine the best split?

– Determine when to stop splitting

Stopping Criteria for Tree Induction

•  Stop expanding a node when all the records
belong to the same class

•  Stop expanding a node when all the records
have similar attribute values

•  Early termination (to be discussed later)

Decision Tree Based Classification

•  Advantages:
–  Inexpensive to construct
– Extremely fast at classifying unknown records
– Easy to interpret for small-sized trees
– Accuracy is comparable to other classification

techniques for many simple data sets

Weight <= 160?

yes no

Hair Length <= 2?

yes no

We don’t need to keep the data
around, just the test conditions.

Male

Male Female

How would
these people
be classified?

Decision tree for a typical shared-care setting applying
the system for the diagnosis of prostatic obstructions.

Once we have learned the decision tree, we don’t even need a computer!

This decision tree is attached to a medical machine, and is designed to help
nurses make decisions about what type of doctor to call.

Grasshopper

Antennae shorter than body?

Cricket

Foretiba has ears?

Katydids Camel Cricket

Yes

Yes

Yes

No

No

3 Tarsi?

No

Decision trees predate computers

Example: C4.5

•  Simple depth-first construction.
•  Uses Information Gain
•  Sorts Continuous Attributes at each node.
•  Needs entire data to fit in memory.
•  Unsuitable for Large Datasets.

– Needs out-of-core sorting.

Practical Issues of Classification

•  Underfitting and Overfitting

•  Missing Values

•  Costs of Classification

Wears green?
Yes No

The previous examples we have
seen were performed on small
datasets. However with small
datasets there is a great danger of
overfitting the data…

When you have few data points,
there are many possible splitting
rules that perfectly classify the
data, but will not generalize to
future datasets.

For example, the rule “Wears green?” perfectly classifies the data, so does
“Mother’s name is Jacqueline?”, so does “Has blue shoes”…

Male Female

Suppose we need to solve a classification problem

We are not sure if we should use the..

•  Simple linear classifier
 or the
•  Simple quadratic classifier

How do we decide which to use?

We do cross validation (discussed later)
and choose the best one.

100

10 20 30 40 50 60 70 80 90 100

10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60 70 80 90 100

10
20
30
40
50
60
70
80
90

•  Simple linear classifier gets 81% accuracy
•  Simple quadratic classifier gets 99% accuracy

•  Simple linear classifier gets 96% accuracy
•  Simple quadratic classifier 97% accuracy

 This problem is greatly exacerbated by having too little
data

•  Simple linear classifier gets 90% accuracy
•  Simple quadratic classifier 95% accuracy

What happens as we have more and more training examples?

The accuracy for all models goes up!
The chance of making a mistake goes down
The cost of the mistake (if made) goes down

•  Simple linear 70% accuracy
•  Simple quadratic 90% accuracy

•  Simple linear 90% accuracy
•  Simple quadratic 95% accuracy

•  Simple linear 99% accuracy
•  Simple quadratic 99% accuracy

One Solution: Charge Penalty for complex models

•  For example, for the simple {polynomial} classifier, we could
charge 1% for every increase in the degree of the polynomial

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

Accuracy = 90.5% Accuracy = 97.0% Accuracy = 97.05%

•  Simple linear classifier gets 90.5% accuracy, minus 0, equals 90.5%
•  Simple quadratic classifier 97.0% accuracy, minus 1, equals 96.0%
•  Simple cubic classifier 97.05% accuracy, minus 2, equals 95.05%

One Solution: Charge Penalty for complex models

•  For example, for the simple {polynomial} classifier, we could charge 1% for
every increase in the degree of the polynomial.

•  There are more principled ways to charge penalties
•  In particular, there is a technique called Minimum Description
Length (MDL)

Underfitting and Overfitting (Example)

500 circular and 500
triangular data points.

Circular points:

0.5 ≤ sqrt(x1
2+x2

2) ≤ 1

Triangular points:

sqrt(x1
2+x2

2) > 0.5 or

sqrt(x1
2+x2

2) < 1

The Fitting Curve: Overfitting vs. Underfitting
Overfitting

Underfitting: when model is too simple, both training and test errors are large

Overfitting due to Noise

Decision boundary is distorted by noise point

Overfitting due to Insufficient Examples

Lack of data points in the lower half of the diagram makes it difficult to predict
correctly the class labels of that region

- Insufficient number of training records in the region causes the decision tree
to predict the test examples using other training records that are irrelevant to
the classification task

Notes on Overfitting

•  Overfitting results in decision trees that are
more complex than necessary

•  Training error no longer provides a good
estimate of how well the tree will perform
on previously unseen records

•  Need new ways for estimating errors

Estimating Generalization Errors

•  Re-substitution errors: error on training
(Σ e(t))

•  Generalization errors: error on testing

(Σ e’(t))

Occam’s Razor
•  Given two models of similar generalization errors,

one should prefer the simpler model over the more
complex model

•  For complex models, there is a greater chance that
it was fitted accidentally by errors in data

•  Therefore, one should include model complexity
when evaluating a model

How to Address Overfitting
•  Pre-Pruning (Early Stopping Rule)

–  Stop the algorithm before it becomes a fully-grown
tree

–  Typical stopping conditions for a node:
•  Stop if all instances belong to the same class
•  Stop if all the attribute values are the same

–  More restrictive conditions:
•  Stop if number of instances is less than some user-

specified threshold
•  Stop if class distribution of instances are independent of

the available features (e.g., using χ 2 test)

•  Stop if expanding the current node does not improve
impurity measures (e.g., Gini or information gain).

How to Address Overfitting…

•  Post-pruning
– Grow decision tree to its entirety
– Trim the nodes of the decision tree in a bottom-

up fashion
–  If generalization error improves after trimming,

replace sub-tree by a leaf node.
– Class label of leaf node is determined from

majority class of instances in the sub-tree

Handling Missing Attribute Values

•  Missing values affect decision tree
construction in three different ways:
– Affects how impurity measures are computed
– Affects how to distribute instance with missing

value to child nodes
– Affects how a test instance with missing value is

classified

Distribute Instances

Class=Yes 0 + 3/9

Class=No 3

Tid Home
Owner

Marital
Status

Annual
Income Class

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No
10

Home
Owner Yes No

Class=Yes 0

Class=No 3

Class=Yes 2

Class=No 4

Home
Owner Yes

Tid Home
Owner

Marital
Status

Annual
Income Class

10 ? Single 90K Yes
10

No

Class=Yes 2 + 6/9

Class=No 4

Probability that Home_Owner=Yes is 3/9

Probability that Home_Owner=No is 6/9

Assign record to the left child with weight =
3/9 and to the right child with weight = 6/9

Other Issues

•  Data Fragmentation
•  Search Strategy
•  Expressiveness
•  Tree Replication

Data Fragmentation

•  Number of instances gets smaller as you
traverse down the tree

•  Number of instances at the leaf nodes could
be too small to make any statistically
significant decision

Search Strategy

•  Finding an optimal decision tree is NP-hard

•  The algorithm presented so far uses a
greedy, top-down, recursive partitioning
strategy to induce a reasonable solution

•  Other strategies?
– Bottom-up
– Bi-directional

Expressiveness
•  Decision tree provides expressive representation for

learning discrete-valued function
–  But they do not generalize well to certain types of

Boolean functions
•  Example: parity function:

–  Class = 1 if there is an even number of Boolean attributes with
truth value = True

–  Class = 0 if there is an odd number of Boolean attributes with
truth value = True

•  For accurate modeling, must have a complete tree

•  Not expressive enough for modeling continuous variables
–  Particularly when test condition involves only a single

attribute at a time

Decision Boundary

y < 0.33?

 : 0
 : 3

 : 4
 : 0

y < 0.47?

 : 4
 : 0

 : 0
 : 4

x < 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

•  Border line between two neighboring regions of different classes
is known as decision boundary

•  Decision boundary is parallel to axes because test condition
involves a single attribute at-a-time

Oblique Decision Trees

x + y < 1

Class = + Class =

•  Test condition may involve multiple attributes

•  More expressive representation

•  Finding optimal test condition is computationally expensive

Tree Replication
P

Q R

S 0 1

0 1

Q

S 0

0 1

•  Same subtree appears in multiple branches

