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Example of a Decision Tree 

Home 
Owner 

Marital 

Income 

YES NO 

NO 

NO 

Yes No 

Married  Single, Divorced 

< 80K > 80K 

Splitting Attributes 

Training Data Model:  Decision Tree 

Tid Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 



Another Example of Decision Tree 

Marital 

Home 
Owner 

Income 

YES NO 

NO 

NO 

Yes No 

Married  
Single, 

Divorced 

< 80K > 80K 

There could be more than one tree that fits 
the same data! 

Tid Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 



Decision Tree Classification Task 

Apply 
Model

Induction

Deduction

Learn 
Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 Test Set

Tree
Induction
algorithm

Training Set
Decision Tree 



Apply Model to Test Data 

Home 
Owner 

Marital 

Income 

YES NO 

NO 

NO 

Yes No 

Married  Single, Divorced 

< 80K > 80K 

Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

No Married 80K ? 
10 

 

Test Data 
Start from the root of tree. 



Apply Model to Test Data 
Test Data 

Home 
Owner 

Marital 

Income 

YES NO 

NO 

NO 

Yes No 

Married  Single, Divorced 

< 80K > 80K 

Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

No Married 80K ? 
10 

 



Apply Model to Test Data 

Married  

Test Data 
Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

No Married 80K ? 
10 

 

Home 
Owner 

Marital 

Income 

YES NO 

NO 

NO 

Yes No 

Single, Divorced 

< 80K > 80K 



Apply Model to Test Data 
Test Data 

Married  

Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

No Married 80K ? 
10 

 

Home 
Owner 

Marital 

Income 

YES NO 

NO 

NO 

Yes No 

Single, Divorced 

< 80K > 80K 



Apply Model to Test Data 

Home 
Owner 

Marital 

Income 

YES NO 

NO 

NO 

Yes No 

Married  Single, Divorced 

< 80K > 80K 

Test Data 
Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

No Married 80K ? 
10 

 



Apply Model to Test Data 

Home 
Owner 

MarSt 

Income 

YES NO 

NO 

NO 

Yes No 

Married  Single, Divorced 

< 80K > 80K 

Test Data 

Assign Defaulted to “No”  

Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

No Married 80K ? 
10 

 



Decision Tree Classification Task 

Apply 
Model

Induction

Deduction

Learn 
Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 
Test Set

Tree
Induction
algorithm

Training Set
Decision Tree 



Decision Tree Induction 

•  Many Algorithms: 
– Hunt’s Algorithm (one of the earliest) 
– CART 
–  ID3, C4.5 
– SLIQ, SPRINT 



General Structure of Hunt’s Algorithm 

•  Let Dt be the set of training records 
that reach a node t 

•  General Procedure: 
–  If Dt contains records that belong the 

same class yt, then t is a leaf node 
labeled as yt 

–  If Dt is an empty set, then t is a leaf 
node labeled by the default class, yd 

–  If Dt contains records that belong to 
more than one class, use an attribute 
test to split the data into smaller 
subsets. Recursively apply the 
procedure to each subset. 

Dt 

? 

Tid Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 



Hunt’s Algorithm 

Defaulted = No 

Home 
Owner 

Defaulted = No 

Yes No 

Marital 
Status 

Defaulted = No Defaulted 

Single, 
Divorced Married 

Tid Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Home 
Owner 

Defaulted = No 

Yes No 

Defaulted = No 

Home 
Owner 

Yes No 

Marital 
Status 

Defaulted 

Single, 
Divorced 

Married 

Annual 
Income 

< 80K >= 80K 

Defaulted = No 

Defaulted = No 

Defaulted = No 



Tree Induction 

•  Greedy strategy. 
– Split the records based on an attribute test that 

optimizes certain criterion. 

•  Issues 
– Determine how to split the records 

•  How to specify the attribute test condition? 
•  How to determine the best split? 

– Determine when to stop splitting 



Tree Induction 
•  Greedy strategy. 

– Split the records based on an attribute test that 
optimizes certain criterion. 

•  Issues 
– Determine how to split the records 

•  How to specify the attribute test condition? 
•  How to determine the best split? 

– Determine when to stop splitting 



How to Specify Test Condition? 

•  Depends on attribute types 
– Nominal 
– Ordinal 
– Continuous 

•  Depends on number of ways to split 
–  2-way split 
– Multi-way split 



Splitting Based on Nominal Attributes 

•  Multi-way split: Use as many partitions as 
distinct values.  

•  Binary split:  Divides values into two subsets. 
Need to find optimal partitioning. 

CarType 
Family 

Sports 
Luxury 

CarType 
{Family,  
Luxury} {Sports} 

CarType 
{Sports, 
Luxury} {Family} 

OR 



Splitting Based on Ordinal Attributes 
•  Multi-way split: Use as many partitions as distinct 

values.  

•  Binary split:  Divides values into two subsets.  
Need to find optimal partitioning. 

•  What about this split? 

Size 
Small 

Medium 
Large 

Size 
{Medium,  

Large} {Small} 
Size 

{Small, 
Medium} {Large} OR 

Size 
{Small, 
Large} {Medium} 



Splitting Based on Continuous Attributes 
 

•  Different ways of handling 
– Discretization to form an ordinal categorical 

attribute 
•   Static – discretize once at the beginning 
•   Dynamic – ranges can be found by equal interval 
    bucketing, equal frequency bucketing (percentiles), 
    or clustering. 

– Binary Decision: (A < v) or (A ≥ v) 
•   consider all possible splits and finds the best cut 
•   can be more compute intensive 



Splitting Based on Continuous Attributes 

Taxable
Income
> 80K?

Yes No

Taxable
Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K



Tree Induction 

•  Greedy strategy. 
– Split the records based on an attribute test that 

optimizes certain criterion. 

•  Issues 
– Determine how to split the records 

•  How to specify the attribute test condition? 
•  How to determine the best split? 

– Determine when to stop splitting 



How to determine the Best Split 

Own
Car?

C0: 6
C1: 4

C0: 4
C1: 6

C0: 1
C1: 3

C0: 8
C1: 0

C0: 1
C1: 7

Car
Type?

C0: 1
C1: 0

C0: 1
C1: 0

C0: 0
C1: 1

Student
ID?

...

Yes No Family

Sports

Luxury c1
c10

c20

C0: 0
C1: 1

...

c11

Before Splitting: 10 records of class 0, 
                  10 records of class 1 

Which test condition is the best? 



How to determine the Best Split 

C0: 5
C1: 5

•  Greedy approach:  
– Nodes with homogeneous class distribution are 

preferred 
•  Need a measure of node impurity: 

 
C0: 9
C1: 1

Non-homogeneous, 

High degree of impurity 

Homogeneous, 

Low degree of impurity 



Measures of Node Impurity 

•  Gini Index 

•  Entropy 

•  Misclassification error 



How to Find the Best Split 

C0 N10 
C1 N11 

 

 

B? 

Yes No 

Node N3 Node N4 

A? 

Yes No 

Node N1 Node N2 

Before Splitting: 

C0 N20 
C1 N21 

 

 

C0 N30 
C1 N31 

 

 

C0 N40 
C1 N41 

 

 

C0 N00 
C1 N01 

 

 

M0 

M1 M2 M3 M4 

M12 M34 
Gain = M0 – M12 vs  M0 – M34 



Measure of Impurity: GINI 
•  Gini Index for a given node t : 

 
 

 
(NOTE: p( j | t) is the relative frequency of class j at node t). 

 

–  Maximum (1 - 1/nc) when records are equally distributed 
among all classes, implying least interesting information 

–  Minimum (0.0) when all records belong to one class, 
implying most interesting information 

∑−=
j

tjptGINI 2)]|([1)(

C1 0
C2 6
Gini=0.000

C1 2
C2 4
Gini=0.444

C1 3
C2 3
Gini=0.500

C1 1
C2 5
Gini=0.278



Examples for computing GINI 

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1 

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0  

∑−=
j

tjptGINI 2)]|([1)(

P(C1) = 1/6          P(C2) = 5/6 

Gini = 1 – (1/6)2 – (5/6)2 = 0.278 

P(C1) = 2/6          P(C2) = 4/6 

Gini = 1 – (2/6)2 – (4/6)2 = 0.444 



Splitting Based on GINI 

•  Used in CART, SLIQ, SPRINT. 
•  When a node p is split into k partitions (children), the quality of 

split is computed as, 

  
 

 where,  ni = number of records at child i, 
       n  = number of records at node p. 

∑
=

=
k

i

i
split iGINI

n
nGINI

1

)(



Binary Attributes: Computing GINI Index 
•  Splits into two partitions 
•  Effect of Weighing partitions:  

-  Larger and purer partitions are sought for. 

B? 

Yes No 

Node N1 Node N2 

 Parent 
C1 6 

C2 6 
Gini = 0.500 

 

 N1 N2 
C1 5 1 
C2 2 4 
Gini=0.371 

 

 

Gini(N1)  
= 1 – (5/7)2 – (2/7)2  
= 0.408  

Gini(N2)  
= 1 – (1/5)2 – (4/5)2  
= 0.32 

Gini(Children)  
= 7/12 * 0.408 +  
   5/12 * 0.32 
= 0.371 



Categorical Attributes: Computing Gini Index 

•  For each distinct value, gather counts for each class in the 
dataset 

•  Use the count matrix to make decisions 

Multi-way split Two-way split  
(find best partition of values) 



Continuous Attributes: Computing Gini Index 
•  Use Binary Decisions based on one value 
•  Several Choices for the splitting value 

–  Number of possible splitting values  
= Number of distinct values 

•  Each splitting value has a count matrix 
associated with it 
–  Class counts in each of the partitions, A 

< v and A ≥ v 
•  Simple method to choose best v 

–  For each v, scan the database to gather 
count matrix and compute its Gini 
index 

–  Computationally Inefficient! Repetition 
of work. 

Taxable
Income
> 80K?

Yes No

Tid Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 



Continuous Attributes: Computing Gini Index... 
•  For efficient computation: for each attribute, 

–  Sort the attribute on values 
–  Linearly scan these values, each time updating the count matrix and 

computing gini index 
–  Choose the split position that has the least gini index 

Defaulted No No No Yes Yes Yes No No No No 
 Income 

60 70 75 85 90 95 100 120 125 220 
 55 65 72 80 87 92 97 110 122 172 230 

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= > 

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0 

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0 

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420 
 

Split Positions 
Sorted Values 



Alternative Splitting Criteria based on INFO 
•  Entropy at a given node t: 

(NOTE: p( j | t) is the relative frequency of class j at node t). 
– Measures homogeneity of a node.  

•  Maximum (log nc) when records are equally distributed 
among all classes implying least information 

•  Minimum (0.0) when all records belong to one class, 
implying most information 

– Entropy based computations are similar to the GINI 
index computations 

∑−=
j

tjptjptEntropy )|(log)|()(



 
Entropy 

 

0 

0.5 

1 

H
(X

) Pr(X = good) = p  
then Pr(X = bad) = 1 − p  
the entropy of X is given by  

0 1 
binary entropy function 
attains its maximum value 
when p = 0.5  

I have a box of apples… 



Examples for computing Entropy 

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1 

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0  

P(C1) = 1/6          P(C2) = 5/6 

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (5/6) = 0.65 

P(C1) = 2/6          P(C2) = 4/6 

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92 

∑−=
j

tjptjptEntropy )|(log)|()(
2



Splitting Based on INFO... 
•  Information Gain:  

 
 

   Parent Node, p is split into k partitions;  
    ni is number of records in partition i 

–  Measures Reduction in Entropy achieved because of the split. 
Choose the split that achieves most reduction (maximizes GAIN) 

–  Used in ID3 and C4.5 
–  Disadvantage: Tends to prefer splits that result in large number of 

partitions, each being small but pure. 

⎟
⎠
⎞

⎜
⎝
⎛−= ∑

=

k

i

i

split
iEntropy

n
npEntropyGAIN

1
)()(

Gain(split) = E(Parent set)−∑ E(all child sets)



Ross Quinlan 
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10 

1 2 3 4 5 6 7 8 9 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Abdomen Length 

Abdomen Length > 7.1? 

no yes 

Katydid Antenna  Length > 6.0? 

no yes 

Katydid Grasshopper 

Back To Our Insect Problem 



10 

1 2 3 4 5 6 7 8 9 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

100 

10 20 30 40 50 60 70 80 90 100 

10 
20 
30 
40 
50 
60 
70 
80 
90 

10 

1 2 3 4 5 6 7 8 9 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Which of the “Pigeon Problems” can be 
solved by a Decision Tree? 



10 

1 2 3 4 5 6 7 8 9 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

100 

10 20 30 40 50 60 70 80 90 100 

10 
20 
30 
40 
50 
60 
70 
80 
90 

10 

1 2 3 4 5 6 7 8 9 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Which of the “Pigeon Problems” can be 
solved by a Decision Tree? 

Deep Bushy Tree 
Useless 
Deep Bushy Tree 

The Decision Tree 
has a hard time with 
correlated attributes ? 



Person Hair 
Length 

Weight Age Class 

            Homer 0” 250 36 M 
Marge 10” 150 34 F 

Bart 2” 90 10 M 
Lisa 6” 78 8 F 

Maggie 4” 20 1 F 
Abe 1” 170 70 M 

Selma 8” 160 41 F 
Otto 10” 180 38 M 

Krusty 6” 200 45 M 

Comic 8” 290 38 ? 



Hair Length <= 5? 
yes no 

Entropy(4F,5M) = -(4/9)log2(4/9) - (5/9)log2(5/9) 
             =  0.9911   

Entropy(1F,3M) = -(1/4)log2(1/4) - (3/4)log2(3/4) 

             =  0.8113 

Entropy(3F,2M) = -(3/5)log2(3/5) - (2/5)log2(2/5) 

             =  0.9710 

Gain(Hair Length <= 5) = 0.9911 – (4/9 * 0.8113 + 5/9 * 0.9710 ) = 0.0911 

)()()( setschildallEsetCurrentEAGain ∑−=

Let us try splitting 
on Hair length 

∑−=
j

tjptjptEntropy )|(log)|()(



Weight <= 160? 
yes no 

Entropy(4F,5M) = -(4/9)log2(4/9) - (5/9)log2(5/9) 
             =  0.9911   

Entropy(4F,1M) = -(4/5)log2(4/5) - (1/5)log2(1/5) 

             =  0.7219 

Entropy(0F,4M) = -(0/4)log2(0/4) - (4/4)log2(4/4) 

             =  0 

Gain(Weight <= 160) = 0.9911 – (5/9 * 0.7219 + 4/9 * 0 ) = 0.5900 

)()()( setschildallEsetCurrentEAGain ∑−=

Let us try splitting 
on Weight 

∑−=
j

tjptjptEntropy )|(log)|()(



age <= 40? 
yes no 

Entropy(4F,5M) = -(4/9)log2(4/9) - (5/9)log2(5/9) 
             =  0.9911   

Entropy(3F,3M) = -(3/6)log2(3/6) - (3/6)log2(3/6) 

             =  1 

Entropy(1F,2M) = -(1/3)log2(1/3) - (2/3)log2(2/3) 

             =  0.9183 

Gain(Age <= 40) = 0.9911 – (6/9 * 1 + 3/9 * 0.9183 ) = 0.0183 

)()()( setschildallEsetCurrentEAGain ∑−=

Let us try splitting 
on Age 

∑−=
j

tjptjptEntropy )|(log)|()(



Weight <= 160? 
yes no 

Hair Length <= 2? 
yes no 

Of the 3 features we had, Weight 
was best. But while people who 
weigh over 160 are perfectly 
classified (as males), the under 160 
people are not perfectly 
classified… So we simply recurse! 

This time we find that we 
can split on Hair length, and 
we are done! 

We’ll talk more about stopping criteria later. 



Splitting Based on INFO... 
•  Gain Ratio:  

Parent Node, p is split into k partitions 
ni is the number of records in partition i 
 

–  Adjusts Information Gain by the entropy of the partitioning 
(SplitINFO). Higher entropy partitioning (large number of 
small partitions) is penalized! 

–  Used in C4.5 
–  Designed to overcome the disadvantage of Information Gain 

SplitINFO
GAIN

GainRATIO Split

split
= ∑

=
−=

k

i

ii

n
n

n
nSplitINFO

1
log



Splitting Criteria based on Classification Error 

•  Classification error at a node t : 

•  Measures misclassification error made by a node.  
•  Maximum (1 - 1/nc) when records are equally distributed 

among all classes, implying least interesting information 
•  Minimum (0.0) when all records belong to one class, implying 

most interesting information 

€ 

Error(t) =1−max
j
P( j | t)



Examples for Computing Error 

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1 

Error = 1 – max (0, 1) = 1 – 1 = 0  

P(C1) = 1/6          P(C2) = 5/6 

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6 

P(C1) = 2/6          P(C2) = 4/6 

Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3 

)|(max1)( tiPtError
i

−=



Comparison among Splitting Criteria 
For a 2-class problem: 

P refers to the fraction of records that belong to one of the two classes 



Tree Induction 

•  Greedy strategy. 
– Split the records based on an attribute test that 

optimizes certain criterion. 

•  Issues 
– Determine how to split the records 

•  How to specify the attribute test condition? 
•  How to determine the best split? 

– Determine when to stop splitting 



Stopping Criteria for Tree Induction 

•  Stop expanding a node when all the records 
belong to the same class 

•  Stop expanding a node when all the records 
have similar attribute values 

•  Early termination (to be discussed later) 



Decision Tree Based Classification 

•  Advantages: 
–  Inexpensive to construct 
– Extremely fast at classifying unknown records 
– Easy to interpret for small-sized trees 
– Accuracy is comparable to other classification 

techniques for many simple data sets 



Weight <= 160? 

yes no 

Hair Length <= 2? 

yes no 

We don’t need to keep the data 
around, just the test conditions. 

Male 

Male Female 

How would 
these people 
be classified? 



Decision tree for a typical shared-care setting applying 
the system for the diagnosis of prostatic obstructions. 

Once we have learned the decision tree, we don’t even need a computer! 

This decision tree is attached to a medical machine, and is designed to help 
nurses make decisions about what type of doctor to call.  



Grasshopper 

Antennae shorter than body? 

Cricket 

Foretiba has ears? 

Katydids Camel Cricket 

Yes 

Yes 

Yes 

No 

No 

3 Tarsi? 

No 

Decision trees predate computers 



Example: C4.5 

•  Simple depth-first construction. 
•  Uses Information Gain 
•  Sorts Continuous Attributes at each node. 
•  Needs entire data to fit in memory. 
•  Unsuitable for Large Datasets. 

– Needs out-of-core sorting. 



Practical Issues of Classification 

•  Underfitting and Overfitting 

•  Missing Values 

•  Costs of Classification 



Wears green? 
Yes No 

The previous examples we have 
seen were performed on small 
datasets. However with small 
datasets there is a great danger of 
overfitting the data… 
 
When you have few data points, 
there are many possible splitting 
rules that perfectly classify the 
data, but will not generalize to 
future datasets. 

For example, the rule “Wears green?” perfectly classifies the data, so does 
“Mother’s name is Jacqueline?”, so does “Has blue shoes”… 

Male Female 



Suppose we need to solve a classification problem 
 
We are not sure if we should use the..  
 
•  Simple linear classifier 
 or the  
•  Simple quadratic classifier 

How do we decide which to use? 
 
We do cross validation (discussed later) 
and choose the best one. 
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•  Simple linear classifier gets 81% accuracy  
•  Simple quadratic classifier gets 99% accuracy  
 



•  Simple linear classifier gets 96% accuracy  
•  Simple quadratic classifier 97% accuracy  



 This problem is greatly exacerbated by having too little 
data 

•  Simple linear classifier gets 90% accuracy  
•  Simple quadratic classifier 95% accuracy  



What happens as we have more and more training examples? 
 
The accuracy for all models goes up! 
The chance of making a mistake goes down 
The cost of the mistake (if made) goes down 
 
 

•  Simple linear 70% accuracy  
•  Simple quadratic 90% accuracy  

•  Simple linear 90% accuracy  
•  Simple quadratic 95% accuracy  

•  Simple linear 99% accuracy  
•  Simple quadratic 99% accuracy  



One Solution: Charge Penalty for complex models 

•  For example, for the simple {polynomial} classifier, we could 
charge 1% for every increase in the degree of the polynomial    
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Accuracy = 90.5%  Accuracy = 97.0%  Accuracy = 97.05%  

•  Simple linear classifier gets 90.5%  accuracy, minus 0, equals 90.5%   
•  Simple quadratic classifier 97.0%  accuracy, minus 1, equals 96.0%  
•  Simple cubic classifier  97.05%   accuracy, minus 2, equals 95.05%  
   



One Solution: Charge Penalty for complex models 

•  For example, for the simple {polynomial} classifier, we could charge 1% for 
every increase in the degree of the polynomial. 

•  There are more principled ways to charge penalties 
•  In particular, there is a technique called Minimum Description 
Length (MDL)  
    

 



Underfitting and Overfitting (Example) 

500 circular and 500 
triangular data points. 

 

Circular points: 

0.5 ≤ sqrt(x1
2+x2

2) ≤ 1 

 

Triangular points: 

sqrt(x1
2+x2

2) > 0.5 or 

sqrt(x1
2+x2

2) < 1 



The Fitting Curve: Overfitting vs. Underfitting 
Overfitting 

Underfitting: when model is too simple, both training and test errors are large  



Overfitting due to Noise  

Decision boundary is distorted by noise point 



Overfitting due to Insufficient Examples 

Lack of data points in the lower half of the diagram makes it difficult to predict 
correctly the class labels of that region  

- Insufficient number of training records in the region causes the decision tree 
to predict the test examples using other training records that are irrelevant to 
the classification task 



Notes on Overfitting 

•  Overfitting results in decision trees that are 
more complex than necessary 

•  Training error no longer provides a good 
estimate of how well the tree will perform 
on previously unseen records 

•  Need new ways for estimating errors 



Estimating Generalization Errors 

•  Re-substitution errors: error on training 
(Σ e(t) ) 

 
•  Generalization errors: error on testing 

(Σ e’(t)) 



Occam’s Razor 
•  Given two models of similar generalization errors,  

one should prefer the simpler model over the more 
complex model 

•   For complex models, there is a greater chance that 
it was fitted accidentally by errors in data 

•   Therefore, one should include model complexity 
when evaluating a model 



How to Address Overfitting 
•  Pre-Pruning (Early Stopping Rule) 

–  Stop the algorithm before it becomes a fully-grown 
tree 

–  Typical stopping conditions for a node: 
•   Stop if all instances belong to the same class 
•   Stop if all the attribute values are the same 

–  More restrictive conditions: 
•   Stop if number of instances is less than some user-

specified threshold 
•   Stop if class distribution of instances are independent of 

the available features (e.g., using χ 2 test) 

•   Stop if expanding the current node does not improve 
impurity measures (e.g., Gini or information gain). 



How to Address Overfitting… 

•  Post-pruning 
– Grow decision tree to its entirety 
– Trim the nodes of the decision tree in a bottom-

up fashion 
–  If generalization error improves after trimming, 

replace sub-tree by a leaf node. 
– Class label of leaf node is determined from 

majority class of instances in the sub-tree 



Handling Missing Attribute Values 

•  Missing values affect decision tree 
construction in three different ways: 
– Affects how impurity measures are computed 
– Affects how to distribute instance with missing 

value to child nodes 
– Affects how a test instance with missing value is 

classified 



Distribute Instances 

Class=Yes 0 + 3/9 

Class=No 3 
 

 

Tid Home 
Owner 

Marital 
Status 

Annual 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 
10 

 

Home 
Owner Yes No 

Class=Yes 0 

Class=No 3 
 

 

Class=Yes 2 

Class=No 4 
 

 

Home 
Owner Yes 

Tid Home 
Owner 

Marital 
Status 

Annual 
Income Class 

10 ? Single 90K Yes 
10 

 

No 

Class=Yes 2 + 6/9 

Class=No 4 
 

 

Probability that Home_Owner=Yes is 3/9 

Probability that Home_Owner=No is 6/9 

Assign record to the left child with weight = 
3/9 and to the right child with weight = 6/9 



Other Issues 

•  Data Fragmentation 
•  Search Strategy 
•  Expressiveness 
•  Tree Replication 



Data Fragmentation 

•  Number of instances gets smaller as you 
traverse down the tree 

•  Number of instances at the leaf nodes could 
be too small to make any statistically 
significant decision 



Search Strategy 

•  Finding an optimal decision tree is NP-hard 

•  The algorithm presented so far uses a 
greedy, top-down, recursive partitioning 
strategy to induce a reasonable solution 

•  Other strategies? 
– Bottom-up 
– Bi-directional 



Expressiveness 
•  Decision tree provides expressive representation for 

learning discrete-valued function 
–  But they do not generalize well to certain types of 

Boolean functions 
•   Example: parity function:  

–  Class = 1 if there is an even number of Boolean attributes with 
truth value = True 

–  Class = 0 if there is an odd number of Boolean attributes with 
truth value = True 

•   For accurate modeling, must have a complete tree 

•  Not expressive enough for modeling continuous variables 
–  Particularly when test condition involves only a single 

attribute at a time 



Decision Boundary 

y < 0.33?
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     : 3

     : 4
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y < 0.47?
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x < 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

•  Border line between two neighboring regions of different classes 
is known as decision boundary 

•  Decision boundary is parallel to axes because test condition 
involves a single attribute at-a-time 



Oblique Decision Trees 

x + y < 1 

Class = +  Class =      

•  Test condition may involve multiple attributes 

•  More expressive representation 

•  Finding optimal test condition is computationally expensive 



Tree Replication 
P

Q R

S 0 1

0 1

Q

S 0

0 1

•  Same subtree appears in multiple branches 


