CS 584
 Data Mining

Association Rule Mining 2

Recall from last time: Frequent Itemset Generation

 Strategies- Reduce the number of candidates (M)
- Complete search: $\mathrm{M}=2^{\mathrm{d}}$
- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
- Reduce size of N as the size of itemset increases
- Used by vertical-based mining algorithms
- Reduce the number of comparisons (NM)
- Use efficient data structures to store the candidates or transactions
- No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$
\forall X, Y:(X \subseteq Y) \Rightarrow s(X) \geq s(Y)
$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Reducing Number of Comparisons

- Candidate counting:
- Scan the database of transactions to determine the support of each candidate itemset
- To reduce the number of comparisons, store the candidates in a hash structure
- Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Subset Operation (Enumeration)

Given a transaction t, what are the possible subsets of size 3 ?

Transaction, t

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:
$\{145\},\{124\},\{457\},\{125\},\{458\},\{159\},\{136\},\{234\},\{567\}$, $\{345\},\{356\},\{357\},\left\{\begin{array}{ll}6 & 9\end{array}\right\},\{367\},\{368\}$

You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Factors Affecting Complexity

- Choice of minimum support threshold
- Lowering support threshold results in more frequent itemsets
- This may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
- More space is needed to store support count of each item
- If number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
- Since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
- Transaction width increases with denser data sets
- This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Compact Representation of Frequent Itemsets

- Some itemsets are redundant because they have identical support as their supersets

TID	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0		0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1		1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		1		1		1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		1		1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

- Number of frequent itemsets $=3 \times \sum_{k=1}^{10}\binom{10}{k}$
- Need a compact representation

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is

Closed Itemset

- An itemset is closed if none of its immediate supersets has the same support as the itemset. Using the closed itemset support, we can find the support for the non-closed itemsets.

TID	Items
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, B, C, D\}$
4	$\{A, B, D\}$
5	$\{A, B, C, D\}$

Itemset	Support
$\{A\}$	4
$\{B\}$	5
$\{C\}$	3
$\{D\}$	4
$\{A, B\}$	4
$\{A, C\}$	2
$\{A, D\}$	3
$\{B, C\}$	3
$\{B, D\}$	4
$\{C, D\}$	3

Itemset	Support
$\{A, B, C\}$	2
$\{A, B, D\}$	3
$\{A, C, D\}$	2
$\{B, C, D\}$	3
$\{A, B, C, D\}$	2

Maximal vs Closed Itemsets

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

Not supported by any transactions

Maximal vs Closed Frequent Itemsets

Determining support for non-closed itemsets

Closed Frequent Itemset

- An itemset is closed frequent itemset if it is closed and it support is greater than or equal to "minsup".
- Useful for removing redundant rules
- A rules X -> Y is redundant if there exists another rule X^{\prime}-> Y^{\prime} where X is a subset of X^{\prime} and Y is a subset of Y^{\prime}, such that the support/confidence for both rules are identical

Maximal vs Closed Itemsets

Apriori Problems

- High I/O
- Poor performance for dense datasets because of increasing width of dimensions.

Alternative Methods for Frequent Itemset Generation

- Traversal of Itemset Lattice
- General-to-specific vs Specific-to-general

(a) General-to-specific

(b) Specific-to-general

(c) Bidirectional

Alternative Methods for Frequent Itemset Generation

- Traversal of Itemset Lattice
- Equivalent Classes based on prefix or suffix
- Consider frequent itemsets from these classes.

(a) Prefix tree

(b) Suffix tree

Alternative Methods for Frequent Itemset Generation

- Traversal of Itemset Lattice
- Breadth-first vs Depth-first

(a) Breadth first

(b) Depth first

Figure 6.22. Generating candidate itemsets using the depth-first approach.

Alternative Methods for Frequent Itemset Generation

- Representation of Database
- horizontal vs vertical data layout

Horizontal
Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C, E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	B

Vertical Data Layout

A	B	C	D	E
1	1	2	2	1
4	2	3	4	3
5	5	4	5	6
6	7	8	9	
7	8	9		
8	10			
9				

FP-growth Algorithm

- Use a compressed representation of the database using an FP-tree
- Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

FP-tree construction

FP-Tree Construction

Transaction Data Set	
TID Items 1 $\{\mathrm{a}, \mathrm{b}\}$ 2 $\{\mathrm{~b}, \mathrm{c}, \mathrm{d}\}$ 3 $\{\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ 4 $\{\mathrm{a}, \mathrm{d}, \mathrm{e}\}$ 5 $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ 6 $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ 7 $\{\mathrm{a}\}$ 8 $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ 9 $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$ 10 $\{\mathrm{~b}, \mathrm{c}, \mathrm{e}\}$	

(iv) After reading TID=10

Pointers are used to assist frequent itemset generation

FP-Growth

- Divide-and-conquer: decompose the frequent itemset generation problem into multiple subproblems.
- The algorithm works in bottom-up fashion: it looks for frequent itemsets ending in e first, followed by $\mathrm{d}, \mathrm{c}, \mathrm{b}$, and then a .

(b) Paths containing node d
(d) Paths containing node b
(e) Paths containing node a
Update support
(e.g. $\{b: 2, \mathrm{c}: 2, \mathrm{e}: 1\}$
minsup $=2$
$\sup (\mathrm{e})=3$

$\sup (d e)=2$
(a) Prefix paths ending in e

(c) Prefix paths ending in de

b is removed because it has support of 1 .

Also remove e.
$\mathrm{c}: 1^{1}$ Frequent itemsets: those ending in de, ce , ae
(b) Conditional FP-tree for e
c is removed because it has support of 1 . ade is frequent
(d) Conditional FP-tree for de

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
- Many of them are uninteresting or redundant
- Redundant if $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \rightarrow\{\mathrm{D}\}$ and $\{\mathrm{A}, \mathrm{B}\} \rightarrow\{\mathrm{D}\}$ have same support \& confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support \& confidence are the only measures used

Subjective Interestingness Measure

- Objective measure:
- Rank patterns based on statistics computed from data
- e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).
- Subjective measure:
- Rank patterns according to user's interpretation
- A pattern is subjectively interesting if it contradicts the expectation of a user
- A pattern is subjectively interesting if it is actionable

Computing Interestingness Measure

- Given a rule $\mathrm{X} \rightarrow \mathrm{Y}$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $\mathrm{X} \rightarrow \mathrm{Y}$

	Y	\bar{Y}	
X	f_{11}	f_{10}	f_{1+}
\bar{X}	f_{01}	f_{00}	$f_{0^{+}}$
	f_{+1}	f_{+0}	$\|T\|$

f_{11} : support of X and Y f_{10} : support of X and \bar{Y} f_{01} : support of \bar{X} and Y f_{00} : support of $\overline{\mathrm{X}}$ and $\overline{\mathrm{Y}}$

Used to define various measures

- support, confidence, lift, Gini, J-measure, etc.

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
$\overline{\mathrm{Tea}}$	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence $=\mathrm{P}($ Coffee \mid Tea $)=0.75$
but $\mathrm{P}($ Coffee $)=0.9$
\Rightarrow Although confidence is high, rule is misleading
$\Rightarrow \mathrm{P}($ Coffee $\mid \overline{\mathrm{Tea}})=0.9375$

Statistical Independence

- Population of 1000 students
- 600 students know how to swim (S)
- 700 students know how to bike (B)
- 420 students know how to swim and bike (S,B)
$-\mathrm{P}(\mathrm{S} \wedge \mathrm{B})=420 / 1000=0.42$
$-\mathrm{P}(\mathrm{S}) \times \mathrm{P}(\mathrm{B})=0.6 \times 0.7=0.42$
$-\mathrm{P}(\mathrm{S} \wedge \mathrm{B})=\mathrm{P}(\mathrm{S}) \times \mathrm{P}(\mathrm{B})=>$ Statistical independence
$-P(S \wedge B)>P(S) \times P(B)=>$ Positively correlated
$-\mathrm{P}(\mathrm{S} \wedge \mathrm{B})<\mathrm{P}(\mathrm{S}) \times \mathrm{P}(\mathrm{B})=>$ Negatively correlated

Statistical-based Measures

- Measures that take into account statistical dependence
$\operatorname{Lift}(X->Y)=\frac{\operatorname{conf}(X->Y)}{P(Y)}=\frac{P(Y \mid X)}{P(Y)}$

InterestFactor $=\frac{P(X, Y)}{P(X) P(Y)} \longleftarrow$
Lift is equivalent to Interest Factor for binary variables.

Leverage $=P(X, Y)-P(X) P(Y)$
$\varphi-$ coefficient $=\frac{P(X, Y)-P(X) P(Y)}{\sqrt{P(X)[1-P(X)] P(Y)[1-P(Y)]}}$

Interestingness Measure: Lift

- play basketball \Rightarrow eat cereal $[40 \%, 66.7 \%]$ is misleading
- The overall $\%$ of students eating cereal is $75 \%>66.7 \%$.
- play basketball \Rightarrow not eat cereal $[20 \%, 33.3 \%]$ is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift (= Interest Factor)

$$
\text { lift }=\frac{P(A \cup B)}{P(A) P(B)}
$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

$$
\operatorname{lift}(B, C)=\frac{2000 / 5000}{3000 / 5000 * 3750 / 5000}=0.89 \quad \operatorname{lift}(B, \neg C)=\frac{1000 / 5000}{3000 / 5000 * 1250 / 5000}=1.33
$$

Example: Lift/Interest Factor

	Coffee	Coffee	
Tea	15	5	20
$\overline{\text { Tea }}$	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence $=\mathrm{P}($ Coffee \mid Tea $)=0.75$
but $\mathrm{P}($ Coffee $)=0.9$
\Rightarrow Lift $=0.75 / 0.9=0.8333(<1$, therefore is negatively associated $)$

Drawback of Lift \& Interest Factor

	Y	$\overline{\mathrm{Y}}$	
X	10	0	10
$\overline{\mathrm{X}}$	0	90	90
	10	90	100

Lift $=\frac{0.1}{(0.1)(0.1)}=10$

	Y	$\overline{\mathrm{Y}}$	
X	90	0	90
$\overline{\mathrm{X}}$	0	10	10
	90	10	100

$$
\text { Lift }=\frac{0.9}{(0.9)(0.9)}=1.11
$$

Statistical independence:
If $\mathrm{P}(\mathrm{X}, \mathrm{Y})=\mathrm{P}(\mathrm{X}) \mathrm{P}(\mathrm{Y})=>\mathrm{Lift}=1$

There are lots of measures proposed in the literature

Some measures are good for certain applications, but not for others

What criteria should we use to determine whether a measure is good or bad?

What about Apriori-style support based pruning? How does it affect these measures?

\#	Measure	Formula
1	中-coefficient	$\frac{P(A, B)-P(A) P(B)}{}$
	Goodman-Kruskal's (J)	
2	Goodman-Kruskal's (λ)	$\frac{\sum_{j} \max _{k} P\left(A_{j}, B_{k}\right)+\sum_{k} \max _{j} P\left(A_{j}, B_{k}\right)-\max _{j} P\left(A_{j}\right)-\operatorname{maxk}_{k} P\left(B_{k}\right)}{3-\max _{j} P\left(A_{j}\right)-\max _{k} P\left(B_{k}\right)}$
3	Odds ratio (α)	$\frac{P(A, B) P(\bar{A}, \bar{B})}{P(A, \bar{B}) P(\bar{A}, B)}$
4	Yule's Q	$\frac{P(A, B) P(\overline{A B})-P(A, \bar{B}) P(\bar{A}, B)}{P(\bar{B})}=\underline{\alpha-1}$
4	Yte's Q	$\frac{P(A, B) P(\overline{A B})+P(A, \bar{B}) P(\bar{A}, B)}{}=\frac{\alpha}{\alpha+1}$
5	Yule's Y	$\sqrt{P(A, B) P(\overline{A B})}-\sqrt{P(A, \bar{B}) P(\bar{A}, B)}=\sqrt{\alpha}-1$
5	Yte's Y	
6	Kappa (s)	
	Mutual Information (M)	$\begin{aligned} & 1-P(A) P(B)-P(\bar{A}) P(\bar{B})_{\left.A_{i}, B_{j}\right)} \\ & \sum_{i} \sum_{j} P\left(A_{i}, B_{j}\right) \log \frac{P\left(A_{i}\right) P\left(B_{j}\right)}{P\left(\left(B_{i}\right)\right.} \end{aligned}$
7	Mutual Information (M)	$\overline{\min \left(-\sum_{i} P\left(A_{i}\right) \log P\left(A_{i}\right),-\sum_{j} P\left(B_{j}\right) \log P\left(B_{j}\right)\right)}$
8	J-Measure (J)	$\begin{array}{r} \max \left(P(A, B) \log \left(\frac{P(B \mid A)}{P(B)}\right)+P(A \bar{B}) \log \left(\frac{P(\bar{B} \mid A)}{P(\bar{B})}\right),\right. \\ \left.P(A, B) \log \left(\frac{P(A \mid B)}{P(A)}\right)+P(\bar{A} B) \log \left(\frac{P(\bar{A} \mid B)}{P(\bar{A})}\right)\right) \end{array}$
9	Gini index (G)	$\begin{gathered} \max \left(P(A)\left[P(B \mid A)^{\mathrm{a}}+P(\bar{B} \mid A)^{\mathrm{a}}\right]+P(\bar{A})\left[P(B \mid \bar{A})^{\mathrm{a}}+P(\bar{B} \mid \bar{A})^{\mathrm{a}}\right]\right. \\ \quad-P(B)^{\mathrm{a}}-P(\bar{B})^{\mathrm{a}} \\ P(B)\left[P(A \mid B)^{\mathrm{a}}+P(\bar{A} \mid B)^{\mathrm{a}}\right]+P(\bar{B})\left[P(A \mid \bar{B})^{\mathrm{a}}+P(\bar{A} \mid \bar{B})^{\mathrm{a}}\right] \\ \left.\quad-P(A)^{\mathrm{a}}-P(\bar{A})^{\mathrm{a}}\right) \end{gathered}$
10	Support (s)	$P(A, B)$
11	Confidence (c)	$\max (P(B \mid A), P(A \mid B))$
12	Laplace (L)	$\max \left(\frac{N P(A, B)+1}{N P(A)+2}, \frac{N P(A, B)+1}{N P(B)+a}\right)$
13	Conviction (V)	$\max \left(\frac{P(A) P(\bar{B})}{P(A \bar{B})}, \frac{P(B) P(\bar{A})}{P(B \bar{B})}\right)$
14	Interest (I)	$\frac{P(A, B)}{P(A) P(B)}$
15	cosine ($I S$)	$\frac{P(A, B)}{\sqrt{P(A) P(B)}}$
		$\sqrt{P}(A) P(B)$ $P(A, B)$
16	Piatetsky-Shapiro's (PS)	$P(A, B)-P(A) P(B)$
17	Certainty factor (F)	$\max \left(\frac{P(B \mid A)-P(B)}{1-P(B)}, \frac{P(A \mid B)-P(A)}{1-P(A)}\right)$
18	Added Value ($A V$)	$\max (P(B \mid A)-P(B), P(A \mid B)-P(A))$
19	Collective strength (S)	$\frac{P(A, B)+P(\overline{A B})}{P(A) P(B)+P(\bar{A}) P(\bar{B})} \times \frac{1-P(A) P(B)-P(\bar{A}) P(\bar{B})}{1-P(A, B)-P(\overline{A B})}$
20	Jaccard (ζ)	$P(A, B)$
20	Jaccard	$\overline{P(A)+P(B)-P(A, B)}$
21	Klosgen (K)	$\sqrt{P(A, B)} \max (P(B \mid A)-P(B), P(A \mid B)-P(A))$

Properties of Objective Measures

- Symmetric/Asymmetric
- Scaling Property
- Inversion property
- Null Addition Property

Property under Variable Permutation

	\mathbf{A}	$\overline{\mathbf{A}}$
\mathbf{B}	p	r
$\overline{\mathbf{B}}$	q	s

$$
\text { Does } \mathrm{M}(\mathrm{~A}, \mathrm{~B})=\mathrm{M}(\mathrm{~B}, \mathrm{~A}) ?
$$

Symmetric measures:

- support, lift, collective strength, cosine, Jaccard, etc

Asymmetric measures:

- confidence, conviction, Laplace, J-measure, etc

Property under Row/Column Scaling

Grade-Gender Example (Mosteller, 1968):

	Male	Female	
High	2	3	5
Low	1	4	5
	3	7	10

	Male	Female	
High	4	30	34
Low	2	40	42
	6	70	76

Mosteller:
Underlying association should be independent of the relative number of male and female students in the samples

Property under Inversion Operation

Example: ϕ-Coefficient

- ϕ-coefficient is analogous to correlation coefficient for continuous variables

	Y	\bar{Y}	
X	60	10	70
\bar{X}	10	20	30
	70	30	100

	Y	\bar{Y}	
\mathbf{X}	20	10	30
\bar{X}	10	60	70
	30	70	100

$$
\begin{aligned}
\phi & =\frac{0.6-0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}} & \phi & =\frac{0.2-0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}} \\
& =0.5238 & & =0.5238
\end{aligned}
$$

ϕ Coefficient is the same for both tables

Property under Null Addition

Invariant measures:

- support, cosine, Jaccard, etc

Non-invariant measures:

- correlation, Gini, mutual information, odds ratio, etc

Resources

- Good summary of interestingness measures:
http://michael.hahsler.net/research/ association rules/measures.html

