CS 584 Data Mining

Association Rule Mining 1

Motivation

Association Rules

(market basket analysis)

- Retail shops are often interested in associations between different items that people buy.
 - e.g. Someone who buys bread is quite likely also to buy milk
- Associations information is used beyond market basket analysis.
 - e.g. medicine, recommender systems (online stores, movies, news articles, Facebook "Likes", etc.
- Association rules:

Association Rule Discovery: Application 1

- Marketing and Sales Promotion:
 - Let the rule discovered be

{Bagels, ... } --> {Potato Chips}

- Potato Chips as consequent => Can be used to determine what should be done to boost its sales.
- Bagels in the antecedent => Can be used to see which products would be affected if the store discontinues selling bagels.
- Bagels in antecedent and Potato chips in consequent => Can be used to see what products should be sold with Bagels to promote sale of Potato chips!

Association Rule Discovery: Application 2

- Supermarket shelf management.
 - Goal: To identify items that are bought together by sufficiently many customers.
 - Wal-mart, Target, and departmental store managers are big into this.

Association Rule Discovery: Application 3

- Online Shopping
 - Goal: Help customers find what they might be interested.
 - Amazon's "Customers who bought this item also bought..." and "Frequently bought together"
 - Netflix's movie recommender system

Case Study: Mining Manufacturing Data

- Goal: Identify potential causes of defective chips.
 - Find associations between certain test outcomes

and attributes/values

Y	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	
14								0	0	0	0	11									
13						0	0	0	0	0	0	0	0	12							
12					0	0	0	0	0	0	0	0	0	0	0						
11				0	0	1	0	0	0	0	0	0	0	0	0	0					
10			0	0	0	0	0	0	0	0	0	0	0	0	0	0	13				
9		_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
8		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
7		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3		
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		
1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	
-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	
-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-4	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		
-5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-6	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0		0	0	0		
-7		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-8		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
-9			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
-10			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
-11				0	0	0	0	0	0	0	0	0	0	0	0	0					
-12					0	0	0	0	1	0	0	0	0	0	0						
-13					0	0	0	0	0	0	0	0	0	0	0						
-14							0	0	0	0	0	0	0	0							
-15								0	0	0	0	1									

Bizarre and Surprising Rules

(From "Predictive Analytics" by Eric Siegel)

- (Osco Drug) Customers who buy diapers are more likely to also buy beer.
 - Daddy needs a beer.
- (Walmart) 60% of customers who buy a Barbie doll buy one of three types of candy bars.
 - Kids come along for errands.
- (Some large retailer) The purchase of a stapler often accompanies the purchase of paper, waste baskets, scissors, paper clips, folders, and so on.
 - New hires?
- (Orbitz) Mac users book more expensive hotels.
 - Classification problem and association analysis.
- (Car insurance) Low credit rating, more car accidents.
- Music taste and political affiliation.

Association Rule Mining

• Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 ${Diaper} \rightarrow {Beer},$ ${Milk, Bread} \rightarrow {Eggs, Coke},$ ${Beer, Bread} \rightarrow {Milk},$

Implication means co-occurrence, not causality!

Market-Basket transactions

Definition: Frequent Itemset

• Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support
 - Fraction of transactions that contain an itemset
 - E.g. $s({Milk, Bread, Diaper}) = 2/5$
- Frequent Itemset
 - An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

• Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example: {Milk, Diaper} \rightarrow {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example: {Milk, Diaper} \Rightarrow Beer $s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$

$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support \geq *minsup* threshold
 - confidence \geq *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds

⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{Milk, Diaper\} \rightarrow \{Beer\} (s=0.4, c=0.67) \\ \{Milk, Beer\} \rightarrow \{Diaper\} (s=0.4, c=1.0) \\ \{Diaper, Beer\} \rightarrow \{Milk\} (s=0.4, c=0.67) \\ \{Beer\} \rightarrow \{Milk, Diaper\} (s=0.4, c=0.67) \\ \{Diaper\} \rightarrow \{Milk, Beer\} (s=0.4, c=0.5) \\ \{Milk\} \rightarrow \{Diaper, Beer\} (s=0.4, c=0.5) \\ \}$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate

- Complexity ~ O(NMw) => Expensive since $M = 2^d !!!$

Computational Complexity

- Given d unique items:
 - Total number of itemsets $= 2^d$
 - Total number of possible association rules:

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support $_{19}$

Illustrating Apriori Principle

Item	Count	Items (1	Items (1-itemsets)								
Bread	4										
Coke	2		Itemset	Count							
Milk	4		{Bread,Milk}	3	sets)						
Beer	3		{Bread,Beer}	2							
Diaper	4		{Bread,Diaper}	3	(No need to g	enerate					
Eggs	1		{Milk,Beer}	2	candidates in	volving Coke	e				
	or Eggs)	C									
			{Beer,Diaper} 3								
Minimun	n Support =	= 3			Triple	ts (3-itemset	ts)				
If every su	ubset is con	nsidered.	[Itemset		Count					
				{Bread,Milk,Diaper} 3							
$\binom{6}{1} + \binom{6}{2}$	$+\binom{6}{3}=6$	5 + 15 +		••••							

With support-based pruning, 6+6+1=13

Apriori Algorithm

- Method:
 - Let k=1
 - Generate frequent itemsets of length 1
 - Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Candidate Generation for Frequent Itemsets

- Three basic approaches:
 - Brute-force method
 - $F_{k-1} \mathbf{x} F_1$ method
 - $F_{k-1} \mathbf{x} F_{k-1}$ method
- The next three slides demonstrate how each method generates candidate 3-itemsets

Brute-Force Method

Candidate Generation

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Min support count = 3 (minsup = 60%)

Candidate Pruning

ltemset
{Bread, Diapers, Milk}

Figure 6.6. A brute-force method for generating candidate 3-itemsets.

Figure 6.7. Generating and pruning candidate k-itemsets by merging a frequent (k - 1)-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

Figure 6.8. Generating and pruning candidate k-itemsets by merging pairs of frequent (k-1)-itemsets.

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

• ABC →D,	ABD →C,	ACD →B,	BCD →A,
A →BCD,	B →ACD,	C →ABD,	D →ABC
AB →CD,	$AC \rightarrow BD$,	$AD \rightarrow BC$,	BC →AD,
$BD \rightarrow AC$,	CD →AB,		

If |L| = k, then there are 2^k – 2 candidate association rules (ignoring L → Ø and Ø → L)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property
 c(ABC →D) can be larger or smaller than c(AB →D)
 - But confidence of rules generated from the same itemset has an anti-monotone property
 - $e.g., L = {A,B,C,D}:$
 - $-c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$
 - Confidence is anti-monotone w.r.t. number of items on the RHS of the rule 29

Theorem

If Rule X → Y – X does not satisfy the confidence threshold then any rule X' → Y – X' where X' is a subset of X does not satisfy the confidence threshold as well.

Rule Generation for Apriori Algorithm

Rule Generation for Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD=>AB,BD=>AC) would produce the candidate rule D => ABC
- Prune rule D=>ABC if its super-set AD=>BC does not have high confidence

Reducing Number of Comparisons

- Candidate counting:
 - Scan the database of transactions to determine the support of each candidate itemset
 - To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Subset Operation (Enumeration)

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:

```
\{1 \ 4 \ 5\}, \{1 \ 2 \ 4\}, \{4 \ 5 \ 7\}, \{1 \ 2 \ 5\}, \{4 \ 5 \ 8\}, \{1 \ 5 \ 9\}, \{1 \ 3 \ 6\}, \{2 \ 3 \ 4\}, \{5 \ 6 \ 7\}, \{3 \ 4 \ 5\}, \{3 \ 5 \ 6\}, \{3 \ 5 \ 7\}, \{6 \ 8 \ 9\}, \{3 \ 6 \ 7\}, \{3 \ 6 \ 8\}
```

You need:

• Hash function

• Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

41

Factors Affecting Complexity

- Choice of minimum support threshold
 - Lowering support threshold results in more frequent itemsets
 - This may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - More space is needed to store support count of each item
 - If number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - Since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - Transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Compact Representation of Frequent Itemsets

• Some itemsets are redundant because they have identical support as their supersets

TID	A1	A2	A 3	A 4	A5	A6	A7	A 8	A9	A10	B1	B2	B 3	B4	B5	B6	B7	B 8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C 8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

• Number of frequent itemsets

$$= 3 \times \sum_{k=1}^{10} \binom{10}{k}$$

• Need a compact representation

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent

Closed Itemset

• An itemset is closed if none of its immediate supersets has the same support as the itemset. Using the closed itemset support, we can find the support for the non-closed itemsets.

TID	Items
1	{A,B}
2	{B,C,D}
3	{A,B,C,D}
4	{A,B,D}
5	{A,B,C,D}

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
{A,B,C}	2
{A,B,D}	3
{A,C,D}	2
{B,C,D}	3
{A,B,C,D}	2

Maximal vs Closed Itemsets

Maximal vs Closed Frequent Itemsets

Determining support for non-closed itemsets

Closed Frequent Itemset

- An itemset is closed frequent itemset if it is closed and it support is greater than or equal to "minsup".
- Useful for removing redundant rules
 - A rules X -> Y is redundant if there exists another rule X' -> Y' where X is a subset of X' and Y is a subset of Y', such that the support/confidence for both rules are identical

Maximal vs Closed Itemsets

