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Hierarchical Clustering  

•  Produces a set of nested clusters organized 
as a hierarchical tree 

•  Can be visualized as a dendrogram 
– A tree like diagram that records the sequences 

of merges or splits 
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What is a natural grouping among these objects?"



A Useful Tool for Summarizing Similarity Measurements  

Dendrogram: 
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The similarity between two objects in a 
dendrogram is represented as the height of 
the lowest internal node they share. 



(Bovine:0.69395,(Gibbon:0.36079,(Orangutan:
0.33636,(Gorilla:0.17147,(Chimp:
0.19268,Human:0.11927):0.08386):0.06124):

0.15057):0.54939); 
 



Business & Economy 

B2B  Finance  Shopping  Jobs 

Aerospace Agriculture…  Banking Bonds…  Animals Apparel  Career Workspace  

Note that hierarchies are 
commonly used to 
organize information, for 
example in a web portal. 
 
Yahoo’s hierarchy is 
manually created, we will 
focus on automatic 
creation of hierarchies in 
data mining. 



We can look at the dendrogram to determine the “correct” number of clusters. In this case, the 
two highly separated subtrees are highly suggestive of two clusters. (Things are rarely this 
clear cut, unfortunately) 



Outlier 

One potential use of a dendrogram is to detect 
outliers 

The single isolated branch is suggestive of a data point that is 
very different to all others 



Strengths of Hierarchical Clustering 

•  Do not have to assume any particular 
number of clusters 
– Any desired number of clusters can be obtained 

by ‘cutting’ the dendrogram at the proper level 
 
•  They may correspond to meaningful 

taxonomies 
– Example in biological sciences (e.g., animal 

kingdom, phylogeny reconstruction, …) 



Hierarchical Clustering 

The number of dendrograms with n 
leafs  = (2n -3)!/[(2(n -2)) (n -2)!] 

 
Number  Number of Possible 
of Leafs  Dendrograms  
2   1 
3   3 
4   15 
5   105 
...   … 
10    34,459,425 
 

Since we cannot test all possible trees 
we will have to heuristic search of all 
possible trees. We could do this.. 
 
Bottom-Up (agglomerative): Starting 
with each item in its own cluster, find 
the best pair to merge into a new 
cluster. Repeat until all clusters are 
fused together.  
 
Top-Down (divisive): Starting with all 
the data in a single cluster, consider 
every possible way to divide the cluster 
into two. Choose the best division and 
recursively operate on both sides. 
 
 



Agglomerative Clustering Algorithm 

•  More popular hierarchical clustering technique 

•  Basic algorithm is straightforward 
–  Compute the proximity matrix 
–  Let each data point be a cluster 
–  Repeat 

•  Merge the two closest clusters 
•  Update the proximity matrix 

–  Until only a single cluster remains 
–    

•  Key operation is the computation of the proximity of 
two clusters 
–  Different approaches to defining the distance between 

clusters distinguish the different algorithms 
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We begin with a distance matrix which 
contains the distances between every pair 
of objects in our database. 
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Starting Situation  

...
p1 p2 p3 p4 p9 p10 p11 p12

•  Start with clusters of individual points and a 
proximity matrix 
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Intermediate Situation 

...
p1 p2 p3 p4 p9 p10 p11 p12

•  After some merging steps, we have some clusters  
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Intermediate Situation 

...
p1 p2 p3 p4 p9 p10 p11 p12

•  We want to merge the two closest clusters (C2 and C5)  and update 
the proximity matrix.  
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After Merging 

...
p1 p2 p3 p4 p9 p10 p11 p12

•  The question is “How do we update the proximity matrix?”  
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We know how to measure the distance between two 
objects, but defining the distance between an object 
and a cluster, or defining the distance between two 
clusters is non obvious.   

•  MIN or Single linkage (nearest neighbor): In this method the distance between two 
clusters is determined by the distance of the two closest objects (nearest neighbors) in 
the different clusters. 
•  MAX or Complete linkage (furthest neighbor): In this method, the distances 
between clusters are determined by the greatest distance between any two objects in the 
different clusters (i.e., by the "furthest neighbors").  
•  Group average linkage: In this method, the distance between two clusters is 
calculated as the average distance between all pairs of objects in the two different 
clusters. 
•  Distance between centroids: In this method, the distance between two clusters is 
determined by the distance between their respective centroids. 
•  Wards Linkage: In this method, we try to minimize the variance of the merged 
clusters 
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How to Define Inter-Cluster Similarity 
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  MIN (single linkage) 
  MAX (complete linkage) 
  Group Average 
  Distance Between Centroids 
  Other methods driven by an objective 

function 
–  Ward’s Method uses squared error 

Proximity Matrix 
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How to Define Inter-Cluster Similarity 
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Cluster Similarity: MIN or Single Link  
•  Similarity of two clusters is based on the 

two most similar (closest) points in the 
different clusters 
– Determined by one pair of points, i.e., by one 

link in the proximity graph. 
I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5 



Hierarchical Clustering: MIN 

Nested Clusters Dendrogram 
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Strength of MIN 

Original Points Two Clusters 

•  Can handle non-elliptical shapes 



Limitations of MIN 

Original Points Two Clusters 

•  Sensitive to noise and outliers 


