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Handling Empty Clusters

« Basic K-means algorithm can yield empty
clusters.

* Several strategies

— Choose the replacement centroid as the point
that 1s furthest away from any other centroids.

— Choose a point from the cluster with the highest
SSE

* Splits the clusters.

— If there are several empty clusters, the above
can be repeated several times.



Updating Centers Incrementally

* In the basic K-means algorithm, centroids are
updated after all points are assigned to a
centroid

* An alternative 1s to update the centroids after
each assignment (incremental approach)

— Each assignment updates zero or two centroids
— Never get an empty cluster

— Can use “weights” to change the impact

— More expensive

— Introduces an order dependency



Pre-processing and Post-processing

e Pre-processing
— Normalize the data
— Eliminate outliers

* Post-processing

— Eliminate small clusters that may represent
outliers

— Split ‘loose’ clusters, i.e., clusters with
relatively high SSE

— Merge clusters that are ‘close’ and that have
relatively low SSE



Limitations of K-means

« K-means has problems when clusters are of
differing
— Sizes
— Densities
— Non-globular shapes

« K-means has problems when the data
contains outliers.



Differing Sizes

Limitations of K-means

K-means (3 Clusters)
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Limitations of K-means: Differing Density
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Limitations of K-means: Non-globular Shapes
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Overcoming K-means Limitations
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One solution is to use many clusters.
Find parts of clusters, but need to put together.
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Overcoming K-means Limitations
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BN .
Comments on the K-Means Method

e Strength

— Relatively efficient: O(tknd), where n 1s # objects, k 1s #
clusters, d 1s the number of features, and ¢ is # iterations.

Normally, £, t << n.

— Often terminates at a local optimum. The global optimum may
be found using techniques such as: deterministic annealing and
genetic algorithms

e Weakness

— Applicable only when mean 1s defined, then what about
categorical data?

— Need to specify &, the number of clusters, in advance

— Unable to handle noisy data and outliers
— Not suitable to discover clusters with non-convex shapes



The K-Medoids Clustering Method

* Find representative objects, called medoids, in clusters
* PAM (Partitioning Around Medoids, 1987)

— starts from an 1nitial set of medoids and iteratively replaces

one of the medoids by one of the non-medoids if it improves
the total distance of the resulting clustering

— PAM works effectively for small data sets, but does not scale
well for large data sets



How can we tell the right number of clusters?

In general, this 1s a unsolved problem. However there are many
approximate methods. In the next few slides we will see an example.
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When k = 1, the objective function is 873.0
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When k = 2, the objective function is 173.1
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3, the objective function 1s 133.6

When k
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We can plot the objective function values for k equals 1 to 6...

The abrupt change at k = 2, 1s highly suggestive of two clusters
in the data. This technique for determining the number of
clusters is known as “knee finding” or “elbow finding .
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Note that the results are not alwais as clear cut as in this toi examﬁle



