# CS 484 Data Mining 

Clustering 2

## Handling Empty Clusters

- Basic K-means algorithm can yield empty clusters.
- Several strategies
- Choose the replacement centroid as the point that is furthest away from any other centroids.
- Choose a point from the cluster with the highest SSE
- Splits the clusters.
- If there are several empty clusters, the above can be repeated several times.


## Updating Centers Incrementally

- In the basic K-means algorithm, centroids are updated after all points are assigned to a centroid
- An alternative is to update the centroids after each assignment (incremental approach)
- Each assignment updates zero or two centroids
- Never get an empty cluster
- Can use "weights" to change the impact
- More expensive
- Introduces an order dependency


## Pre-processing and Post-processing

- Pre-processing
- Normalize the data
- Eliminate outliers
- Post-processing
- Eliminate small clusters that may represent outliers
- Split 'loose' clusters, i.e., clusters with relatively high SSE
- Merge clusters that are 'close' and that have relatively low SSE


## Limitations of K-means

- K-means has problems when clusters are of differing
- Sizes
- Densities
- Non-globular shapes
- K-means has problems when the data contains outliers.


## Limitations of K-means: Differing Sizes



Original Points


K-means (3 Clusters)

## Limitations of K-means: Differing Density



Original Points


K-means (3 Clusters)

## Limitations of K-means: Non-globular Shapes



Original Points


K-means (2 Clusters)

## Overcoming K-means Limitations




Original Points
K-means Clusters
One solution is to use many clusters.
Find parts of clusters, but need to put together.

## Overcoming K-means Limitations



Original Points


K-means Clusters

## Overcoming K-means Limitations



Original Points


K-means Clusters

## Comments on the $K$-Means Method

- Strength
- Relatively efficient: $O(t k n d)$, where $n$ is \# objects, $k$ is \# clusters, d is the number of features, and $t$ is \# iterations. Normally, $k, t \ll n$.
- Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms
- Weakness
- Applicable only when mean is defined, then what about categorical data?
- Need to specify $k$, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes


## The $K$-Medoids Clustering Method

- Find representative objects, called medoids, in clusters
- PAM (Partitioning Around Medoids, 1987)
- starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
- PAM works effectively for small data sets, but does not scale well for large data sets


## How can we tell the right number of clusters?

In general, this is a unsolved problem. However there are many approximate methods. In the next few slides we will see an example.


For our example, we will use the familiar katydid/grasshopper dataset.

However, in this case we are imagining that we do NOT know the class labels. We are only clustering on the X and Y axis values.

When $\mathrm{k}=1$, the objective function is 873.0


When $\mathrm{k}=2$, the objective function is 173.1


When $\mathrm{k}=3$, the objective function is 133.6


We can plot the objective function values for k equals 1 to $6 \ldots$
The abrupt change at $\mathrm{k}=2$, is highly suggestive of two clusters in the data. This technique for determining the number of clusters is known as "knee finding" or "elbow finding".


