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What 1s Cluster Analysis?

* Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different from
(or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized

minimized @
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Applications of Cluster Analysis

Discovered Clusters Industry Group

* Un d e r S t a n di n g Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,

1 Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,

_ DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,

Group related documents for \DSC-Comn-DOWNINTEL-DOWNLSILogieDOWN. | echinology1-DOWN

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,
Sun-DOWN

browsing, group genes and
proteins that have similar

functionality, or group stocks Fannie-Ase-DOWN Fod-Home-Loan-DOWN,
. . . . . MBNA-Corp-DOWN,Morgan-Stanley-DOWN
with similar price fluctuations

° °
o Summarlzatlon 10 Precip Clusters usin SNN Clugterng {12 mo. avy, NN=100)

— Reduce the size of large data
sets

Clustering precipitation in
Australiaf
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What 1s not Cluster Analysis?

* Supervised classification

— Have class label information

* Simple segmentation

— Dividing students into different registration groups alphabetically,
by last name

* Results of a query

— QGroupings are a result of an external specification



Notion of a Cluster can be Ambiguous
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Popular Types of Clusterings

 Partitional Clustering

— A division data objects into non-overlapping
subsets (clusters) such that each data object 1s
in exactly one subset

» Hierarchical clustering

— A set of nested clusters organized as a
hierarchical tree



Partitional Clustering

Original Points A Partitional Clustering




Hierarchical Clustering
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Traditional Hierarchical Clustering Traditional Dendrogram
pl p2  p3p4

Non-traditional Hierarchical Clustering Non-traditional Dendrogram




Other Distinctions Between Sets of Clusters

Exclusive versus non-exclusive

— In non-exclusive clusterings, points may belong to multiple
clusters.

— Can represent multiple classes or ‘border’ points
Fuzzy versus non-fuzzy

— In fuzzy clustering, a point belongs to every cluster with
some weight between 0 and 1

— Weights must sum to 1

— Probabilistic clustering has similar characteristics
Partial versus complete

— In some cases, we only want to cluster some of the data
Heterogeneous versus homogeneous

— Cluster of widely different sizes, shapes, and densities



Types of Clusters

« Well-separated clusters
« Center-based clusters
« Contiguous clusters

* Density-based clusters

Property or Conceptual

Described by an Objective Function



Types of Clusters: Well-Separated

« Well-Separated Clusters:

— A cluster is a set of points such that any point in a cluster 1s
closer (or more similar) to every other point in the cluster than
to any point not in the cluster.

3 well-separated clusters
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Types of Clusters: Center-Based

 Center-based

— A cluster 1s a set of objects such that an object in a cluster 1s closer
(more similar) to the “center” of a cluster, than to the center of any
other cluster

— The center of a cluster is often a centroid, the average of all the
points in the cluster, or a medoid, the most “representative” point of
a cluster

4 center-based clusters




Types of Clusters: Contiguity-Based

* Contiguous Cluster (Nearest neighbor or Transitive)

— A cluster 1s a set of points such that a point in a cluster 1s
closer (or more similar) to one or more other points in the
cluster than to any point not in the cluster.

.......

.o
.......

8 contiguous clusters
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Types of Clusters: Density-Based

* Density-based

— A cluster i1s a dense region of points, which is separated by low-
density regions, from other regions of high density.

— Used when the clusters are irregular or intertwined, and when noise
and outliers are present.

6 density-based clusters
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Types of Clusters: Conceptual Clusters

* Shared Property or Conceptual Clusters

— Finds clusters that share some common property or represent a
particular concept.

2 Overlapping Circles



EEETT ",
Types of Clusters: Objective Function

* Clusters Defined by an Objective Function

— Finds clusters that minimize or maximize an objective
function.

— Enumerate all possible ways of dividing the points into
clusters and evaluate the "goodness' of each potential set of
clusters by using the given objective function. (NP Hard)

— Can have global or local objectives.
» Hierarchical clustering algorithms typically have local objectives

 Partitional algorithms typically have global objectives

— A variation of the global objective function approach is to fit
the data to a parameterized model.

* Parameters for the model are determined from the data.

e Mixture models assume that the data is a ‘mixture' of a number of statistical
distributions.



Types of Clusters: Objective Function

* Map the clustering problem to a different domain
and solve a related problem 1n that domain

— Proximity matrix defines a weighted graph, where the
nodes are the points being clustered, and the weighted
edges represent the proximities between points

— Clustering 1s equivalent to breaking the graph into
connected components, one for each cluster.

— Want to minimize the edge weight between clusters and
maximize the edge weight within clusters



Clustering Algorithms

 K-means and its variants
» Hierarchical clustering

* Density-based clustering
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K-means Clustering

e Partitional clustering approach

«  Each cluster 1s associated with a (center point)
« Each point 1s assigned to the cluster with the closest
centroid

«  Number of clusters, K, must be specified
*  The basic algorithm 1s very simple

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change




Interactive Demo

* http://home.dei.polimi.it/matteucc/
Clustering/tutorial html/AppletKM.html




K-means Clustering — Details

 Initial centroids are often chosen randomly.
— Clusters produced vary from one run to another.

* The centroid 1s (typically) the mean of the points in the
cluster.

e ‘Closeness is measured by Euclidean distance, cosine
similarity, correlation, etc.

« K-means will converge for common similarity measures
mentioned above.
* Most of the convergence happens in the first few iterations.

— Often the stopping condition is changed to ‘Until relatively few
points change clusters’

. Complexity isO(n*K *1*d)

— n = number of points, K = number of clusters,
I = number of iterations, d = number of attributes
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Evaluating K-means Clusters

* Most common measure 1s Sum of Squared Error (SSE)
— For each point, the error 1s the distance to the nearest cluster
— To get SSE, we square these errors and sum them.

SSE = i Edistz(ml.,x)

=1 xeC,

— x 1s a data point in cluster C, and m;, 1s the representative point for
cluster C.
 Can show that m; corresponds to the center (mean) of the cluster

— (iven two clusters, we can choose the one with the smallest error

— One easy way to reduce SSE is to increase K, the number of
clusters

* A good clustering with smaller K can have a lower SSE than a
poor clustering with higher K



Two different K-means Clusterings

3 ¢ o
25 . 0‘ : L ]
] 93
¢ *
* b L RS o o 0
2L
R K Original Points
*
G N
1.5} oo ¢ **
* " » *
> ¢ * N
10 .
° ¢
0.5}
.‘: ]
0 Copd o ﬁ_‘
®
. , "ns
2 15 - 05 0 05 1 15 2
X
3 3 .
. *»
2.5} 25 XA R
‘% 0&‘}
2p 2 .
* .‘
(AL
15} 15} R
> R > $
1} 1} .
° ¢ ° ¢
0.5 0.5}
[ ] 4 [ ] 4
[ ] [ [ ]
of .‘l'". o ﬂ'_‘ ol Cogpd o .;..."_‘
[ ] u [ ] '
| ] | ]
. . - . . . ol . . . - . . . rE
2 15 -1 05 0 05 1 15 2 2 15 -1 05 0 05 1 15 2

Optimal Clustering Sub-optimal Clustering



Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids

lteration 5
3.
25L
; ¢
oL L)
'S “:0 “ Q
RO
1.5} ’0 *e %o A
11 ¢
° ¢
0.5}
°® ([ )
. " =y
e ® [
e
’. L -.
I I @ I I I - u
2 1.5 -1 0.5 0 0.5 1 1.5 2
X



I
Importance of Choosing Initial Centroids ...
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Problems with Selecting Initial Points

e Ifthere are K ‘real’ clusters then the chance of
selecting one centroid from each cluster 1s small.

— Chance is relatively small when K is large
— If clusters are the same size, n, then

p_ number of ways to select one centroid from each cluster K In& _ K!
B number of ways to select K centroids - (Kn)X KK

— For example, 1f K = 10, then probability = 10!/10*10 =
0.00036

— Sometimes the initial centroids will readjust themselves in
‘right’” way, and sometimes they don’ t

— Consider an example of five pairs of clusters
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10 Clusters Example

lteration 4
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X

Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

lteration 1

0 5 10 15 20

lteration 2

Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

lteration 4
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X

Starting with some pairs of clusters having three initial centroids, while other have only one.



5 1rq 15 20
lteration 3

F

EETT .
10 Clusters Example

lteration 1 Iteration 2
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Starting with some pairs of clusters having three initial centroids, while other have only one.



Solutions to Initial Centroids Problem

e Multiple runs
— Helps, but probability is not on your side

* Sample and use hierarchical clustering to
determine 1nitial centroids

e Select more than k initial centroids and then
select among these 1nitial centroids

— Select most widely separated
* Postprocessing
* Bisecting K-means
— Not as susceptible to 1nitialization issues
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Bisecting K-means

* Bisecting K-means algorithm

— Variant of K-means that can produce a partitional or a
hierarchical clustering

1: Initialize the list of clusters to contain the cluster containing all points.
2: repeat
3:  Select a cluster from the list of clusters
for : = 1 to number_of _iterations do
Bisect the selected cluster using basic K-means
end for
Add the two clusters from the bisection with the lowest SSE to the list of clusters.

until Until the list of clusters contains K clusters
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Bisecting K-means Example
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