CS 484 Data Mining

Introduction

9/3/2015

Classification Example

7	Гid	Refund	Marital Status	Taxable Income	Cheat
1	1	Yes	Single	125K	No
2	2	No	Married	100K	No
3	3	No	Single	70K	No
4	1	Yes	Married	120K	No
5	5	No	Divorced	95K	Yes
6	6	No	Married	60K	No
7	7	Yes	Divorced	220K	No
8	3	No	Single	85K	Yes
ĉ)	No	Married	75K	No
1	0	No	Single	90K	Yes

Refund	Marital Status	Taxable Income	Cheat		
No	Single	75K	?		
Yes	Married	50K	?		
No	Married	150K	?	N	
Yes	Divorced	90K	?		
No	Single	40K	?		
No	Married	80K	?		Test

Classification: Definition

- Given a collection of records (*training set*)
 - Each record contains a set of *attributes*, one of the attributes is the *class*.
- Find a *model* for class attribute as a function of the values of other attributes.
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.
 - A *test set* is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.
- *Supervised* learning

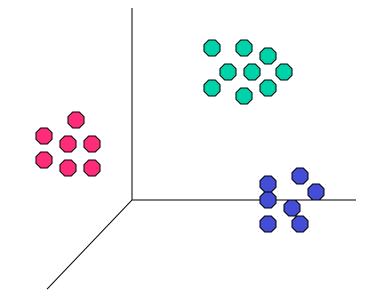
Classification: Direct Marketing

- Direct Marketing
 - Goal: Reduce cost of mailing by *targeting* a set of consumers likely to buy a new cell-phone product.
 - Approach:
 - Use the data for a similar product introduced before.
 - We know which customers decided to buy and which decided otherwise. This *{buy, don't buy}* decision forms the *class attribute*.
 - Collect various demographic, lifestyle, and company-interaction related information about all such customers.
 - Type of business, where they stay, how much they earn, etc.
 - Use this information as input attributes to learn a classifier model.

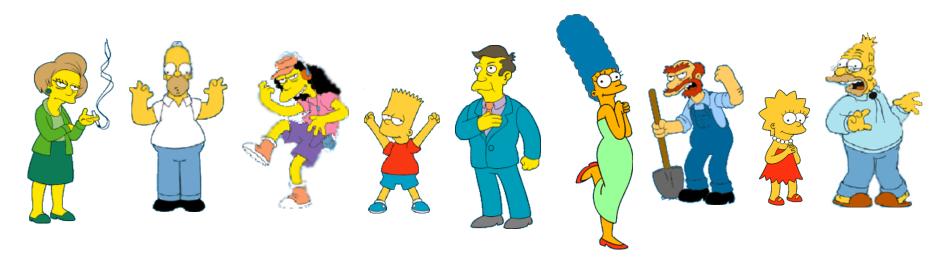
Classification: Fraud Detection

- Fraud Detection
 - Goal: Predict fraudulent cases in credit card transactions.
 - Approach:

Classification: Your Turn


- Churn prediction
 - Goal: Predict which customers will terminate contracts soon after they expire
 - Approach:

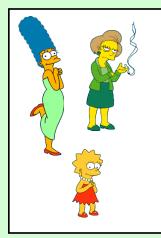
• Can you think of 3 more applications for classification?


Clustering

- Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that
 - Data points in one cluster are more similar to one another.
 - Data points in separate clusters are less similar to one another.

Illustrating Clustering

What is a natural grouping among these objects?


Clustering is subjective

Simpson's Family

School Employees

Females

Males

Think point ?

• Differences between classification and clustering?

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection;
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Urban Legend

- Classic Association Rule Example:
 - If a customer buys diaper and milk, then he is very likely to buy beer.
 - Any plausible explanations ? \odot

Association Rule Discovery: Application 1

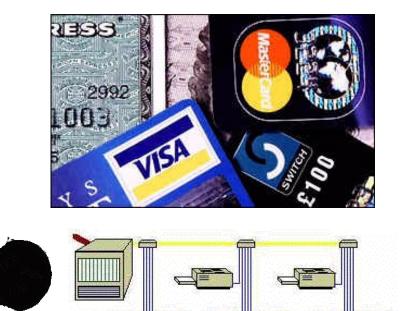
- Marketing and Sales Promotion:
 - Let the rule discovered be

{Bagels, ... } --> {Potato Chips}

- Potato Chips as consequent => Can be used to determine what should be done to boost its sales.
- Bagels in the antecedent => Can be used to see which products would be affected if the store discontinues selling bagels.
- Bagels in antecedent and Potato chips in consequent => Can be used to see what products should be sold with Bagels to promote sale of Potato chips!

Association Rule Discovery: Application 2

- Supermarket shelf management.
 - Goal: To identify items that are bought together by sufficiently many customers.
 - Approach: Process the point-of-sale data collected with barcode scanners to find dependencies among items.
 - Wal-mart, Target, and departmental store managers are big into this.
 - All your transactions gets processed & analyzed in a warehouse.


Regression

- Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
- Also called density estimation.
- Greatly studied in statistics, neural network fields.
- Examples:
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Use personal income to predict auto sales

Deviation/Anomaly Detection

Internet

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud
 Detection
 - Network Intrusion
 Detection

"Twitter and Facebook can't predict the election, but they did predict what you're going to have for lunch: a tuna salad sandwich. You're having the wrong sandwich."

What else can Data Mining do?

Dilbert

Challenges of Data Mining

- Scalability
- Dimensionality
- Complex and Heterogeneous Data
- Data Quality
- Data Ownership and Distribution
- Privacy Preservation
- Streaming Data

Data

What is Data?

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

What is Data?

- Information that can be easily processed.
- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

	(r Tid	Refund	Marital Status	Taxable Income	Cheat
		1	Yes	Single	125K	No
		2	No	Married	100K	No
		3	No	Single	70K	No
)	4	Yes	Married	120K	No
Objects \prec	\ \	5	No	Divorced	95K	Yes
		6	No	Married	60K	No
		7	Yes	Divorced	220K	No
		8	No	Single	85K	Yes
		9	No	Married	75K	No
	$\overline{}$	10	No	Single	90K	Yes

Know your data...

Somebody is given a data file (patients' records) that looks like this:

- 012 232 33.5 0 10.7
- 020 120 16.9 2 210.1
- $027 \ 165 \ 21.0 \ 0 \ 427.6$

And asked to mine the data

Later on...

The following dialogue takes place:
A: So, you got the data?
B: Yes, and I found a few interesting results!

Field 1 is a great predictor of field5!

Punch line

- A: But field 1 is just an ID!
- B: oh?
- A: Ah, now I remember, we sorted the file according to field 5, and give each record a (sequential id). That correlation is meaningless!
- B: (total embarrassment) 🟵

MORALE of the story: it's easy to do bad data mining. You have to know your data and interpret the results! 26

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Different attributes can be mapped to the same set of values

Types of Attributes

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, time, counts

Properties of Attribute Values

- The type of an attribute depends on which of the following properties it possesses:
 - Distinctness: $= \neq$
 - Order: < >
 - Addition: + -
 - Multiplication: * /

Nominal attribute: ? Ordinal attribute: ? Interval attribute: ? Ratio attribute: ?

Attribute Type	Description	Examples	Operations
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: { <i>male, female</i> }	mode, entropy, contingency correlation, χ^2 test
Ordinal	The values of an ordinal attribute provide enough information to order objects. $(<, >)$	hardness of minerals, {good, better; best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests
Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation
			30

Attribute Level	Transformation	Comments
Nominal	Any permutation of values	If all employee ID numbers were reassigned, would it make any difference?
Ordinal	An order preserving change of values, i.e., <i>new_value = f(old_value)</i> where <i>f</i> is a monotonic function.	An attribute encompassing the notion of good, better best can be represented equally well by the values $\{1, 2, 3\}$ or by $\{0.5, 1, 10\}$.
Interval	$new_value = a * old_value + b$ where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Ratio	<i>new_value</i> = <i>a</i> * <i>old_value</i>	Length can be measured in meters or feet.

Discrete and Continuous Attributes

- Discrete Attribute
 - Has only a finite or countably infinite set of values
 - Examples: zip codes, counts, or the set of words in a collection of documents
 - Often represented using integer variables.
 - Note: binary attributes are a special case of discrete attributes
- Continuous Attribute
 - Has real numbers as attribute values
 - Examples: temperature, height, or weight.
 - Practically, real values can only be measured and represented using a finite number of digits.
 - Continuous attributes are typically represented as floating-point variables.

Types of data sets

- Record
 - Data Matrix
 - Document Data
 - Transaction Data
- Graph
 - World Wide Web
 - Molecular Structures
- Ordered
 - Spatial Data
 - Temporal Data
 - Sequential Data
 - Genetic Sequence Data

Record Data

• Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

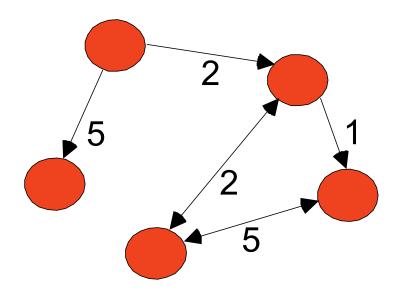
Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multidimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

How would you represent

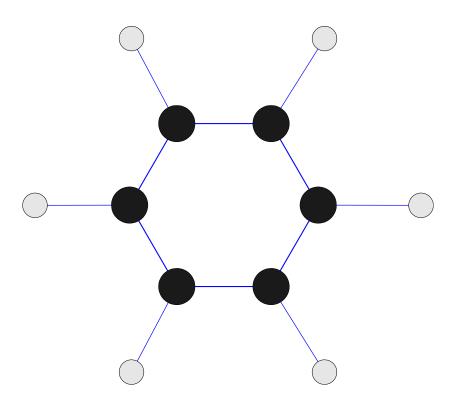
• Document Data ?


Transaction Data

- A special type of record data, where
 - each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

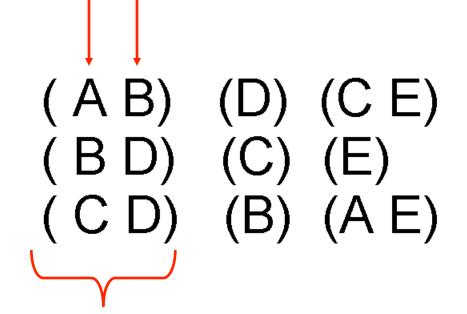

• Examples: Generic graph and HTML Links

Data Mining

Graph Partitioning

Parallel Solution of Sparse Linear System of Equations

N-Body Computation and Dense Linear System Solvers


Chemical Data

• Benzene Molecule: C_6H_6

Ordered Data

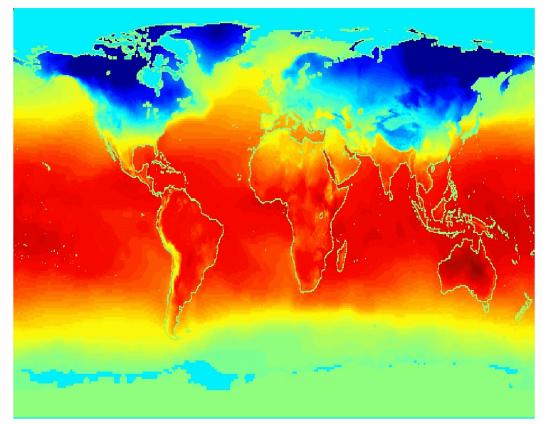
• Sequences of transactions Items/Events



An element of the sequence

Ordered Data

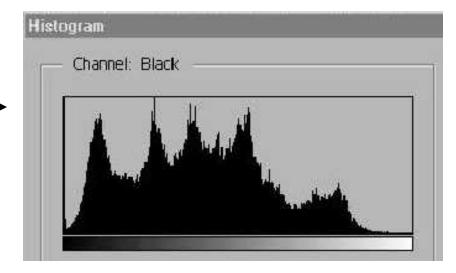
• Genomic sequence data


GGTTCCGCCTTCAGCCCGCGCGCC CGCAGGGCCCGCCCGCGCGCGTC GAGAAGGGCCCGCCTGGCGGGGCG GGGGGAGGCGGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC

Ordered Data

• Spatio-Temporal Data

Jan



Average Monthly Temperature of land and ocean

Image Data

- Can be represented as (color) histograms
- Frequency count of each individual color
- Most commonly used color feature representation

Corresponding histogram

Image