CS 484 Data Mining

Data

Dimensionality Reduction

- Purpose:
 - Avoid curse of dimensionality
 - Reduce amount of time and memory required by data mining algorithms
 - Allow data to be more easily visualized
 - May help to eliminate irrelevant features or reduce noise
- Techniques
 - Principle Component Analysis
 - Singular Value Decomposition
 - Others: supervised and non-linear techniques

Principal Component Analysis

- Goal of PCA
 - To reduce the number of dimensions.
 - Transfer interdependent variables into single and independent components.
- What does PCA do ?
 - Transforms the data into a lower dimensional space, by constructing dimensions that are linear combinations of the input dimensions/ features.
 - Find independent dimensions along which data have the largest variance.

Goal is to find a projection that captures the largest amount of variation in data

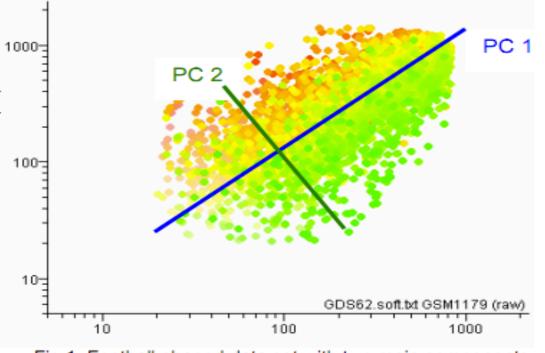


Fig 1: Football-shaped data set with two main components.

http://www.chem.agilent.com/cag/bsp/sig/downloads/pdf/pca.pdf

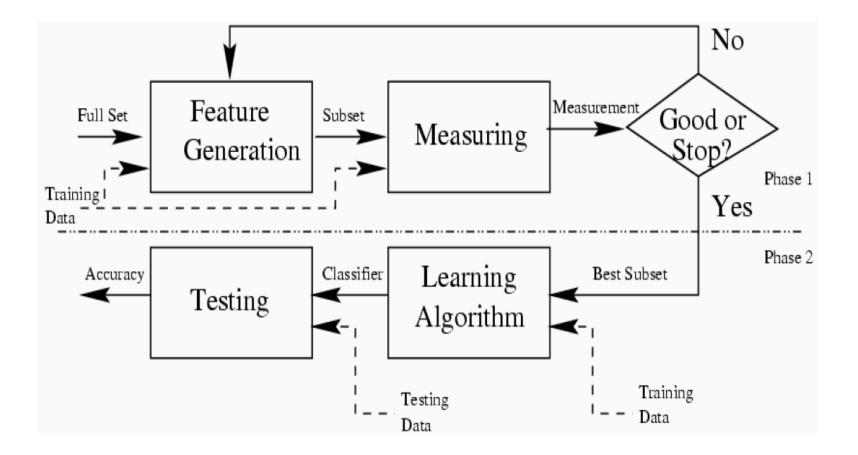
Feature Subset Selection

- Another way to reduce dimensionality of data
- Redundant features
 - duplicate much or all of the information contained in one or more other attributes
 - Example: purchase price of a product and the amount of sales tax paid
- Irrelevant features
 - contain no information that is useful for the data mining task at hand
 - Example: students' ID is often irrelevant to the task of predicting students' GPA

Feature Subset Selection

- Techniques:
 - Brute-force approach:
 - Try all possible feature subsets as input to data mining algorithm
 - Embedded approaches:
 - Feature selection occurs naturally as part of the data mining algorithm
 - Filter approaches:
 - Features are selected before data mining algorithm is run
 - Wrapper approaches:
 - Use the data mining algorithm as a black box to find best subset of attributes
 - Feature Weighting

Filter Approach

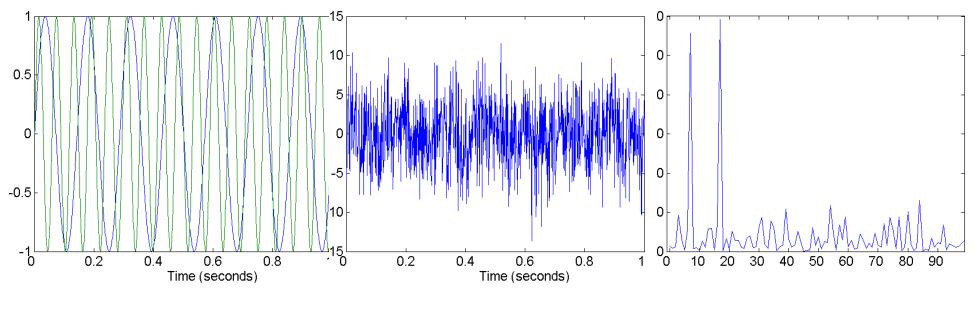


Feature Creation

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
 - Feature Extraction
 - domain-specific
 - Mapping Data to New Space
 - Feature Construction
 - combining features

Mapping Data to a New Space

- Fourier transform
- Wavelet transform



Two Sine Waves

Two Sine Waves + Noise

Frequency

Dangers of Dimensionality Reduction

• <u>https://cs.gmu.edu/~jessica/</u> <u>DimReducDanger.htm</u>

What is Similarity? The quality or state of being similar; likeness;

resemblance; as, a similarity of features. Webster's Dictionary

Similarity is hard to define, but... *"We know it when we see it"*

The real meaning of similarity is a philosophical question.

We will take a more pragmatic approach.

Similarity and Dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \left\{egin{array}{cc} 0 & ext{if} \; p = q \ 1 & ext{if} \; p eq q \end{array} ight.$	$s = \left\{ egin{array}{cc} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p-q	$s = -d, s = \frac{1}{1+d}$ or
		$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$

Table 5.1. Similarity and dissimilarity for simple attributes

Defining Distance Measures

Definition: Let O_1 and O_2 be two objects from the universe of possible objects. The distance (dissimilarity) is denoted by $D(O_1,O_2)$

What properties should a distance measure have?

- D(A,B) = D(B,A)
- D(A,A) = 0
- D(A,B) = 0 Iff A = B
- $D(A,B) \leq D(A,C) + D(B,C)$

Symmetry Constancy of Self-Similarity Positivity Triangular Inequality

Measures for which all properties hold are referred to as distance *metrics*.

Intuitions behind desirable distance measure properties I

D(A,B) = D(B,A) Symmetry

Otherwise you could claim:

"Fairfax is close to D.C., but D.C is not close to Fairfax."

Intuitions behind desirable distance measure properties II

D(A,A) = 0 Constancy of Self-Similarity

Otherwise you could claim:

"Fairfax is closer to D.C than D.C. itself!".

Intuitions behind desirable distance measure properties III

D(A,B) = 0 iff A=B Positivity

Otherwise you could claim:

"Fairfax is exactly at the same location as DC"

Intuitions behind desirable distance measure properties IIII

 $D(A,B) \le D(A,C) + D(B,C) Triangular$ Inequality

Otherwise you could claim:

"My house is very close to Fairfax, your house is very close to Fairfax, but my house is very far from your house".

Euclidean Distance

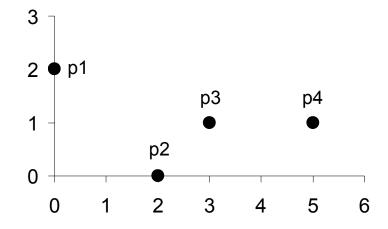
• Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where *n* is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects *p* and *q*.

• Standardization is necessary, if scales differ.

Euclidean Distance



point	X	у
p1	0	2
p2	2	0
p3	3	1
p4	5	1

	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

• Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Where *r* is a parameter, *n* is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects *p* and *q*.

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L1 norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \rightarrow \infty$. "supremum" (Lmax norm, L ∞ norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

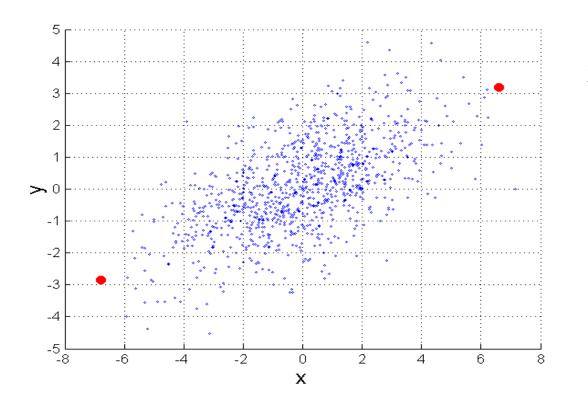
L1	p1	p2	p3	p4
p1	0	4	4	6
p2	4	0	2	4
p3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0
T	n1	n?	n3	n/
L∞	p1	p2	p3	p4
L∞ p1	p1 0	p2 2	p3 3	p4 5
	p1 0 2	p2 2 0	-	p4 5 3
p1	p1 0 2 3	p2 2 0 1	-	5

Distance Matrix

point	X	У
p1	0	2
p2	2	0
p3	3	1
p4	5	1

Mahalanobis Distance *mahalanobis $(p,q) = (p-q)\sum^{-1}(p-q)^{T}$



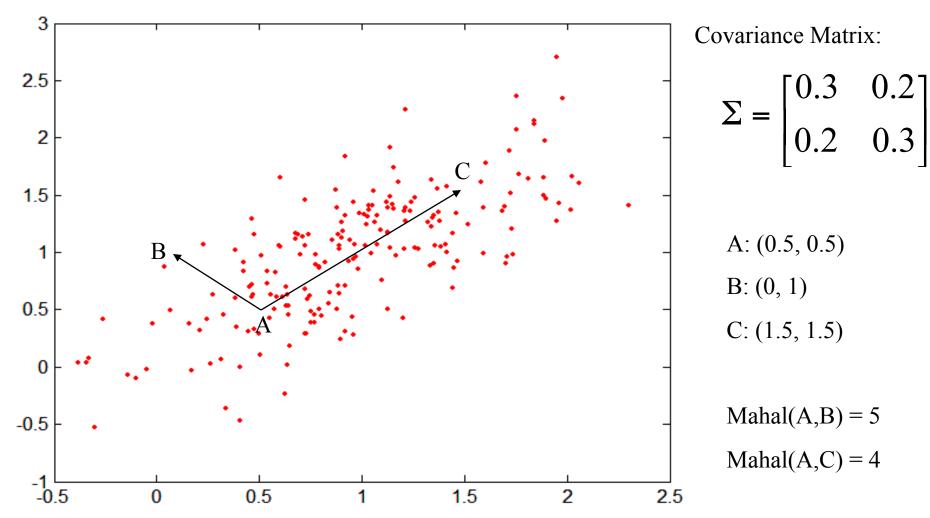
 Σ is the covariance matrix of the input data *X*

$$\Sigma_{j,k} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ij} - \overline{X}_j) (X_{ik} - \overline{X}_k)$$

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

* In some literature, this is the "squared" distance

Mahalanobis Distance



Common Properties of Similarity

• Similarities also have some well known properties.

- s(p, q) = 1 (or maximum similarity) only if p = q.

-s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

Similarity Between Binary Vectors

- Common situation is that objects, *p* and *q*, have only binary attributes
- Compute similarities using the following quantities M_{01} = the number of attributes where p was 0 and q was 1 M_{10} = the number of attributes where p was 1 and q was 0 M_{00} = the number of attributes where p was 0 and q was 0 M_{11} = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients SMC = number of matches / number of attributes $= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

 $M_{01} = 2$ (the number of attributes where p was 0 and q was 1) $M_{10} = 1$ (the number of attributes where p was 1 and q was 0) $M_{00} = 7$ (the number of attributes where p was 0 and q was 0) $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7)/(2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Cosine Similarity

• If d_1 and d_2 are two document vectors, then $\cos(d_1, d_2) = (d_1 \bullet d_2) / (||d_1|| ||d_2||)$,

where • indicates vector dot product and || d || is the length of vector d.

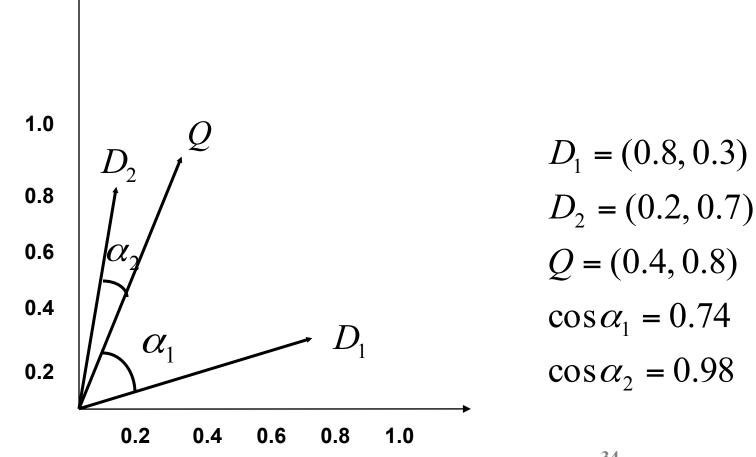
• Example:

 $d_1 = 3 2 0 5 0 0 0 2 0 0$ $d_2 = 1 0 0 0 0 0 0 1 0 2$

 $\begin{array}{l} d_1 \bullet d_2 = \ 3^*1 + 2^*0 + 0^*0 + 5^*0 + 0^*0 + 0^*0 + 0^*0 + 2^*1 + 0^*0 + 0^*2 = 5 \\ ||d_1|| = (3^*3 + 2^*2 + 0^*0 + 5^*5 + 0^*0 + 0^*0 + 0^*0 + 2^*2 + 0^*0 + 0^*0)^{0.5} = \ (42)^{0.5} = 6.481 \\ ||d_2|| = (1^*1 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 1^*1 + 0^*0 + 2^*2)^{0.5} = \ (6)^{0.5} = 2.45 \end{array}$

 $\cos(d_1, d_2) = .3150$

Cosine Similarity



34

Extended Jaccard Coefficient (Tanimoto)

- Variation of Jaccard for continuous or count attributes
 - Reduces to Jaccard for binary attributes

$$T(p,q) = rac{p \bullet q}{\|p\|^2 + \|q\|^2 - p \bullet q}$$

Correlation

Correlation measures the linear relationship between objects

 $corr(x, y) = \frac{Covariance(x, y)}{standard_dev(x)*standard_dev(y)}$ $= \frac{S_{xy}}{S_x S_y}$

Correlation (cont.)

covariance(x,y)=
$$\frac{1}{n-1}\sum_{k=1}^{n}(x_k-\overline{x})(y_k-\overline{y})$$

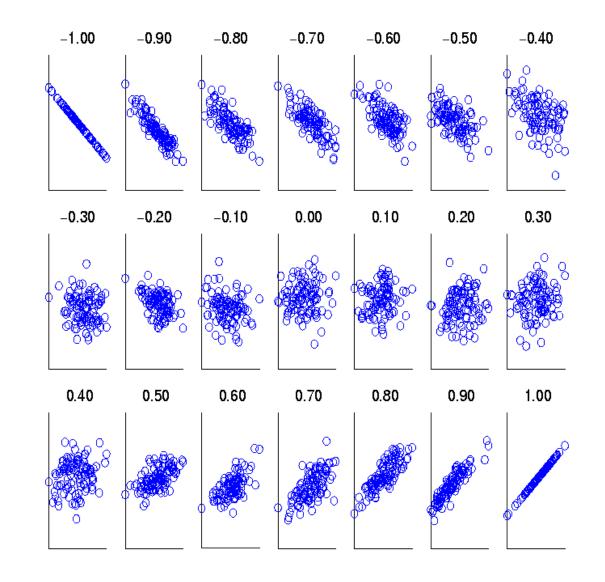
standard_dev(x)=S_x =
$$\sqrt{\frac{1}{n-1}\sum_{k=1}^{n}(x_k - \bar{x})^2}$$

standard_dev(y)=S_y =
$$\sqrt{\frac{1}{n-1}\sum_{k=1}^{n}(y_k - \overline{y})^2}$$

Exercise

• x = (1 1 0 0 0), y = (0 0 0 1 1). Compute their correlation.

Visually Evaluating Correlation



General Approach for Combining Similarities

• Sometimes attributes are of many different types, but an overall similarity is needed.

1. For the k^{th} attribute, compute a similarity, s_k , in the range [0, 1].

2. Define an indicator variable, δ_k , for the k_{th} attribute as follows:

 $\delta_k = \begin{cases} 0 & \text{if the } k^{th} \text{ attribute is a binary asymmetric attribute and both objects have} \\ & \text{a value of 0, or if one of the objects has a missing values for the } k^{th} \text{ attribute} \\ 1 & \text{otherwise} \end{cases}$

3. Compute the overall similarity between the two objects using the following formula:

$$similarity(p,q) = rac{\sum_{k=1}^n \delta_k s_k}{\sum_{k=1}^n \delta_k}$$

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
 - Use weights wk which are between 0 and 1 and sum to 1.

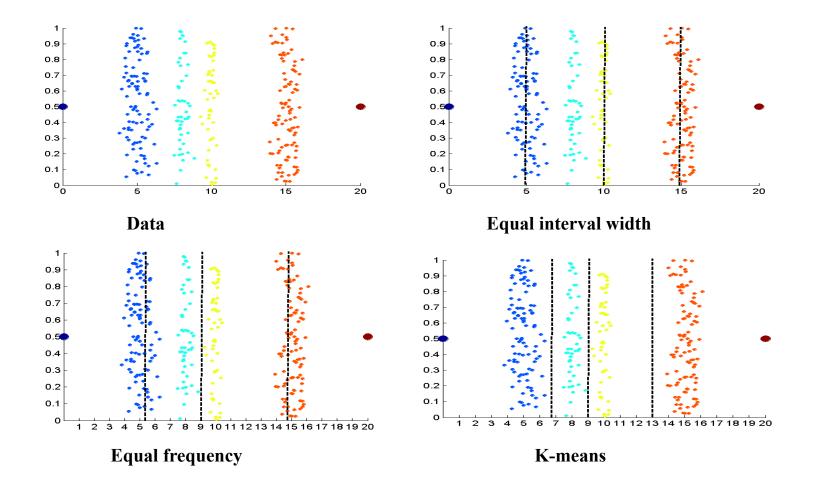
$$similarity(p,q) = rac{\sum_{k=1}^{n} w_k \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

$$distance(p,q) = \left(\sum_{k=1}^{n} w_k |p_k - q_k|^r\right)^{1/r}.$$

Which similarity function to use?

- Depends on the application.
 - Analyze the attributes.
 - See their properties, min, max, etc
 - See their dependency on other attributes
 - Do you need similarity or distance ?
 - Do you need a metric ?
 - Try several functions.
 - Combine/merge.
- Active area of research!

Discretization Without Using Class Labels



Discretization Using Class Labels

- Entropy based approach:
 - If you have class labels, compute the entropy per discretized bin, and then try to minimize the same.
 - The entropy e_i for the ith bin is given by (k = # of classes):

$$e_i = \sum_{j=1}^k p_{ij} \log_2 p_{ij}$$

where $p_{ij} = \text{prob}(\text{class } j \text{ in the } i^{\text{th}} \text{ interval})$ - If entropy = 0 then it is a pure grouping

Attribute Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
 - Simple functions: x^k , log(x), e^x , |x|
 - Standardization and Normalization