CS 484 Data Mining

Data

Dimensionality Reduction

- Purpose:
- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise
- Techniques
- Principle Component Analysis
- Singular Value Decomposition
- Others: supervised and non-linear techniques

Principal Component Analysis

- Goal of PCA
- To reduce the number of dimensions.
- Transfer interdependent variables into single and independent components.
- What does PCA do?
- Transforms the data into a lower dimensional space, by constructing dimensions that are linear combinations of the input dimensions/ features.
- Find independent dimensions along which data have the largest variance.

Goal is to find a projection that captures the largest amount of variation in data

Fig 1: Football-shaped data set with two main components.
http://www.chem.agilent.com/cag/bsp/sig/downloads/pdf/pca.pdf

Feature Subset Selection

- Another way to reduce dimensionality of data
- Redundant features
- duplicate much or all of the information contained in one or more other attributes
- Example: purchase price of a product and the amount of sales tax paid
- Irrelevant features
- contain no information that is useful for the data mining task at hand
- Example: students' ID is often irrelevant to the task of predicting students' GPA

Feature Subset Selection

- Techniques:
- Brute-force approach:
- Try all possible feature subsets as input to data mining algorithm
- Embedded approaches:
- Feature selection occurs naturally as part of the data mining algorithm
- Filter approaches:
- Features are selected before data mining algorithm is run
- Wrapper approaches:
- Use the data mining algorithm as a black box to find best subset of attributes
- Feature Weighting

Filter Approach

Feature Creation

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
- Feature Extraction
- domain-specific
- Mapping Data to New Space
- Feature Construction
- combining features

Mapping Data to a New Space

- Fourier transform
- Wavelet transform

Two Sine Waves
Two Sine Waves + Noise

Frequency

Dangers of Dimensionality Reduction

- https://cs.gmu.edu/~jessica/ DimReducDanger.htm

What is Similarity?

The quality or state of being similar; likeness; resemblance; as, a similarity of features. webster's Dictionary

Similarity is hard to define, but...
" We know it when we see it"

The real meaning of similarity is a philosophical question.

We will take a more pragmatic approach.

Similarity and Dissimilarity

- Similarity
- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range $[0,1]$
- Dissimilarity
- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute Type	Dissimilarity	Similarity
Nominal	$d= \begin{cases}0 & \text { if } p=q \\ 1 & \text { if } p \neq q\end{cases}$	$s= \begin{cases}1 & \text { if } p=q \\ 0 & \text { if } p \neq q\end{cases}$
Ordinal	$d=\frac{\|p-q\|}{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s=1-\frac{\|p-q\|}{n-1}$
Interval or Ratio	$d=\|p-q\|$	$s=-d, s=\frac{1}{1+d}$ or $s=1-\frac{d-m i n-d}{\text { max- } d-\text { min }-d}$

Table 5.1. Similarity and dissimilarity for simple attributes

Defining Distance Measures

Definition: Let O_{1} and O_{2} be two objects from the universe of possible objects. The distance (dissimilarity) is denoted by $D\left(\mathrm{O}_{1}, \mathrm{O}_{2}\right)$

What properties should a distance measure have?

- $D(\mathrm{~A}, \mathrm{~B})=D(\mathrm{~B}, \mathrm{~A})$

Symmetry

- $D(\mathrm{~A}, \mathrm{~A})=0$
- $D(\mathrm{~A}, \mathrm{~B})=0$ Iff $\mathrm{A}=\mathrm{B}$
- $D(\mathrm{~A}, \mathrm{~B}) \leq D(\mathrm{~A}, \mathrm{C})+D(\mathrm{~B}, \mathrm{C})$
Constancy of Self-Similarity

Positivity
Triangular Inequality

Measures for which all properties hold are referred to as distance metrics.

Intuitions behind desirable distance measure properties I

$$
D(\mathrm{~A}, \mathrm{~B})=D(\mathrm{~B}, \mathrm{~A})
$$

Otherwise you could claim:
"Fairfax is close to D.C., but D.C is not close to Fairfax."

Intuitions behind desirable distance measure properties II

$D(\mathrm{~A}, \mathrm{~A})=0$
 Constancy of Self-Similarity

Otherwise you could claim:
"Fairfax is closer to D.C than D.C. itself! ".

Intuitions behind desirable distance measure properties III

$D(\mathrm{~A}, \mathrm{~B})=0$ iff $\mathrm{A}=\mathrm{B} \quad$ Positivity

Otherwise you could claim:
"Fairfax is exactly at the same location as DC"

Intuitions behind desirable distance measure properties IIII

$D(\mathrm{~A}, \mathrm{~B}) \leq D(\mathrm{~A}, \mathrm{C})+D(\mathrm{~B}, \mathrm{C})$ Triangular Inequality

Otherwise you could claim:
"My house is very close to Fairfax, your house is very close to Fairfax, but my house is very far from your house".

Euclidean Distance

- Euclidean Distance

$$
d i s t=\sqrt{\sum_{k=1}^{n}\left(p_{k}-q_{k}\right)^{2}}
$$

Where n is the number of dimensions (attributes) and p_{k} and q_{k} are, respectively, the $\mathrm{k}^{\text {th }}$ attributes (components) or data objects p and q.

- Standardization is necessary, if scales differ.

Euclidean Distance

point	\mathbf{x}	\mathbf{y}
$\mathbf{p 1}$	0	2
$\mathbf{p 2}$	2	0
$\mathbf{p 3}$	3	1
$\mathbf{p 4}$	5	1

	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	2.828	3.162	5.099
$\mathbf{p 2}$	2.828	0	1.414	3.162
$\mathbf{p 3}$	3.162	1.414	0	2
$\mathbf{p 4}$	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

- Minkowski Distance is a generalization of Euclidean Distance

$$
\operatorname{dist}=\left(\sum_{k=1}^{n}\left|p_{k}-q_{k}\right|^{r}\right)^{\frac{1}{r}}
$$

Where r is a parameter, n is the number of dimensions (attributes) and p_{k} and q_{k} are, respectively, the kth attributes (components) or data objects p and q.

Minkowski Distance: Examples

- $\mathrm{r}=1$. City block (Manhattan, taxicab, L1 norm) distance.
- A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- $r=2$. Euclidean distance
- $\mathrm{r} \rightarrow \infty$. "supremum" (Lmax norm, $\mathrm{L} \infty$ norm) distance.
- This is the maximum difference between any component of the vectors
- Do not confuse r with n , i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

$\mathbf{L 1}$	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	4	4	6
$\mathbf{p 2}$	4	0	2	4
$\mathbf{p 3}$	4	2	0	2
$\mathbf{p 4}$	6	4	2	0

point	\mathbf{x}	\mathbf{y}
$\mathbf{p 1}$	0	2
$\mathbf{p 2}$	2	0
$\mathbf{p 3}$	3	1
$\mathbf{p 4}$	5	1

$\mathbf{L 2}$	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	2.828	3.162	5.099
$\mathbf{p 2}$	2.828	0	1.414	3.162
$\mathbf{p 3}$	3.162	1.414	0	2
$\mathbf{p 4}$	5.099	3.162	2	0

\mathbf{L}_{∞}	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	2	3	5
$\mathbf{p 2}$	2	0	1	3
$\mathbf{p 3}$	3	1	0	2
$\mathbf{p 4}$	5	3	2	0

Distance Matrix

Mahalanobis Distance
 $$
\text { *mahalanobis }(p, q)=(p-q) \Sigma^{-1}(p-q)^{T}
$$

Σ is the covariance matrix of the input data X

$$
\Sigma_{j, k}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i j}-\bar{X}_{j}\right)\left(X_{i k}-\bar{X}_{k}\right)
$$

For red points, the Euclidean distance is 14.7 , Mahalanobis distance is 6 .

Mahalanobis Distance

Covariance Matrix:

$$
\Sigma=\left[\begin{array}{ll}
0.3 & 0.2 \\
0.2 & 0.3
\end{array}\right]
$$

A: $(0.5,0.5)$
B: $(0,1)$
C: $(1.5,1.5)$

Mahal $(A, B)=5$
$\operatorname{Mahal}(\mathrm{A}, \mathrm{C})=4$

Common Properties of Similarity

- Similarities also have some well known properties.
$-s(p, q)=1$ (or maximum similarity) only if $p=$ q.
$-\mathrm{s}(\mathrm{p}, \mathrm{q})=\mathrm{s}(\mathrm{q}, \mathrm{p})$ for all p and q . (Symmetry)
where $s(p, q)$ is the similarity between points (data objects), p and q .

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities
$\mathrm{M}_{01}=$ the number of attributes where p was 0 and q was 1
$\mathrm{M}_{10}=$ the number of attributes where p was 1 and q was 0
$\mathrm{M}_{00}=$ the number of attributes where p was 0 and q was 0
$\mathrm{M}_{11}=$ the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients

SMC $=$ number of matches $/$ number of attributes

$$
=\left(\mathrm{M}_{11}+\mathrm{M}_{00}\right) /\left(\mathrm{M}_{01}+\mathrm{M}_{10}+\mathrm{M}_{11}+\mathrm{M}_{00}\right)
$$

$\mathrm{J}=$ number of 11 matches $/$ number of not-both-zero attributes values

$$
=\left(\mathrm{M}_{11}\right) /\left(\mathrm{M}_{01}+\mathrm{M}_{10}+\mathrm{M}_{11}\right)
$$

SMC versus Jaccard: Example

$$
\begin{gathered}
p=100000000000 \\
q= \\
0
\end{gathered} 000000010001
$$

$M_{01}=2$ (the number of attributes where p was 0 and q was 1)
$\mathrm{M}_{10}=1$ (the number of attributes where p was 1 and q was 0)
$\mathrm{M}_{00}=7$ (the number of attributes where p was 0 and q was 0)
$\mathrm{M}_{11}=0$ (the number of attributes where p was 1 and q was 1)
$\mathrm{SMC}=\left(\mathrm{M}_{11}+\mathrm{M}_{00}\right) /\left(\mathrm{M}_{01}+\mathrm{M}_{10}+\mathrm{M}_{11}+\mathrm{M}_{00}\right)=(0+7) /(2+1+0+7)=0.7$
$\mathrm{J}=\left(\mathrm{M}_{11}\right) /\left(\mathrm{M}_{01}+\mathrm{M}_{10}+\mathrm{M}_{11}\right)=0 /(2+1+0)=0$

Cosine Similarity

- If d_{1} and d_{2} are two document vectors, then

$$
\cos \left(d_{1}, d_{2}\right)=\left(d_{1} \bullet d_{2}\right) /\left(\left\|d_{1}\right\|\left\|d_{2}\right\|\right)
$$

where • indicates vector dot product and $\|d\|$ is the length of vector d.

- Example:

$$
\left.\begin{array}{l}
d_{1}=3205000200 \\
d_{2}=1000000102
\end{array}\right] \begin{aligned}
& d_{1} \cdot d_{2}=3 * 1+2 * 0+0 * 0+5 * 0+0 * 0+0 * 0+0 * 0+2 * 1+0^{*} 0+0^{*} 2=5 \\
& \left\|d_{l}\right\|=(3 * 3+2 * 2+0 * 0+5 * 5+0 * 0+0 * 0+0 * 0+2 * 2+0 * 0+0 * 0)^{0.5}=(42)^{0.5}=6.481 \\
& \left\|d_{2}\right\|=(1 * 1+0 * 0+0 * 0+0 * 0+0 * 0+0 * 0+0 * 0+1 * 1+0 * 0+2 * 2)^{0.5}=(6)^{0.5}=2.45 \\
& \quad \cos \left(d_{1}, d_{2}\right)=.3150
\end{aligned}
$$

Cosine Similarity

$$
\begin{aligned}
& D_{1}=(0.8,0.3) \\
& D_{2}=(0.2,0.7) \\
& Q=(0.4,0.8) \\
& \cos \alpha_{1}=0.74 \\
& \cos \alpha_{2}=0.98
\end{aligned}
$$

Extended Jaccard Coefficient (Tanimoto)

- Variation of Jaccard for continuous or count attributes
- Reduces to Jaccard for binary attributes

$$
T(p, q)=\frac{p \bullet q}{\|p\|^{2}+\|q\|^{2}-p \bullet q}
$$

Correlation

Correlation measures the linear relationship between objects

$$
\begin{aligned}
\operatorname{corr}(x, y) & =\frac{\operatorname{Covariance}(x, y)}{\text { standard_dev}(\mathrm{x}) * \operatorname{standard} _\operatorname{dev}(\mathrm{y})} \\
& =\frac{S_{x y}}{S_{x} S_{y}}
\end{aligned}
$$

Correlation (cont.)

$\operatorname{covariance}(\mathrm{x}, \mathrm{y})=\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)\left(y_{k}-\bar{y}\right)$
$\operatorname{standard} _\operatorname{dev}(\mathrm{x})=\mathrm{S}_{\mathrm{x}}=\sqrt{\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)^{2}}$
standard_dev $(\mathrm{y})=\mathrm{S}_{\mathrm{y}}=\sqrt{\frac{1}{n-1} \sum_{k=1}^{n}\left(y_{k}-\bar{y}\right)^{2}}$

Exercise

- $\mathrm{x}=\left(\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right)$), $\mathrm{y}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)$. Compute their correlation.

Visually Evaluating Correlation

General Approach for Combining Similarities

- Sometimes attributes are of many different types, but an overall similarity is needed.

1. For the $k^{t h}$ attribute, compute a similarity, s_{k}, in the range $[0,1]$.
2. Define an indicator variable, δ_{k}, for the $k_{t h}$ attribute as follows:

$$
\delta_{k}= \begin{cases}0 & \text { if the } k^{t h} \text { attribute is a binary asymmetric attribute and both objects have } \\ \text { a value of } 0, \text { or if one of the objects has a missing values for the } k^{t h} \text { attribute } \\ 1 & \text { otherwise }\end{cases}
$$

3. Compute the overall similarity between the two objects using the following formula:

$$
\operatorname{similarity}(p, q)=\frac{\sum_{k=1}^{n} \delta_{k} s_{k}}{\sum_{k=1}^{n} \delta_{k}}
$$

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
- Use weights wk which are between 0 and 1 and sum to 1 .

$$
\begin{aligned}
& \operatorname{similarity}(p, q)=\frac{\sum_{k=1}^{n} w_{k} \delta_{k} s_{k}}{\sum_{k=1}^{n} \delta_{k}} \\
& \operatorname{distance}(p, q)=\left(\sum_{k=1}^{n} w_{k}\left|p_{k}-q_{k}\right|^{r}\right)^{1 / r}
\end{aligned}
$$

Which similarity function to use ?

- Depends on the application.
- Analyze the attributes.
- See their properties, min, max, etc
- See their dependency on other attributes
- Do you need similarity or distance?
- Do you need a metric ?
- Try several functions.
- Combine/merge.
- Active area of research!

Discretization Without Using Class Labels

Equal frequency

Equal interval width

Discretization Using Class Labels

- Entropy based approach:
- If you have class labels, compute the entropy per discretized bin, and then try to minimize the same.
- The entropy e_{i} for the $i^{\text {th }}$ bin is given by ($k=\#$ of classes):

$$
e_{i}=\sum_{j=1}^{k} p_{i j} \log _{2} p_{i j}
$$

where $\mathrm{p}_{\mathrm{ij}}=\operatorname{prob}$ (class j in the $\mathrm{i}^{\text {th }}$ interval)

- If entropy $=0$ then it is a pure grouping

Attribute Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
- Simple functions: $\mathrm{x}^{\mathrm{k}}, \log (\mathrm{x}), \mathrm{e}^{\mathrm{x}},|\mathrm{x}|$
- Standardization and Normalization

