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Discrete and Continuous Attributes  
•  Discrete Attribute 

–  Has only a finite or countably infinite set of values 
–  Examples: zip codes, counts, or the set of words in a collection of 

documents  
–  Often represented using integer variables.    
–  Note: binary attributes are a special case of discrete attributes  

•  Continuous Attribute 
–  Has real numbers as attribute values 
–  Examples: temperature, height, or weight.   
–  Practically, real values can only be measured and represented 

using a finite number of digits. 
–  Continuous attributes are typically represented as floating-point 

variables.   2 



Types of data sets  
•  Record 

–  Data Matrix 
–  Document Data 
–  Transaction Data 

•  Graph 
–  World Wide Web 
–  Molecular Structures 

•  Ordered 
–  Spatial Data 
–  Temporal Data 
–  Sequential Data 
–  Genetic Sequence Data 3 



Record Data  

•  Data that consists of a collection of records, 
each of which consists of a fixed set of 
attributes  

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
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Data Matrix  
•  If data objects have the same fixed set of numeric attributes, 

then the data objects can be thought of as points in a multi-
dimensional space, where each dimension represents a distinct 
attribute  

•  Such data set can be represented by an m by n matrix, where 
there are m rows, one for each object, and n columns, one for 
each attribute 
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How would you represent 

•  Document Data ? 
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Transaction Data 

•  A special type of record data, where  
–  each record (transaction) involves a set of items.   
–  For example, consider a grocery store.  The set of products 

purchased by a customer during one shopping trip constitute a 
transaction, while the individual products that were purchased are 
the items.  

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
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Graph Data  

•  Examples: Generic graph and HTML Links  

5

2
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<a href="papers/papers.html#bbbb">
Data Mining </a>
<li>
<a href="papers/papers.html#aaaa">
Graph Partitioning </a>
<li>
<a href="papers/papers.html#aaaa">
Parallel Solution of Sparse Linear System of Equations </a>
<li>
<a href="papers/papers.html#ffff">
N-Body Computation and Dense Linear System Solvers

9 



Chemical Data  

•  Benzene Molecule: C6H6 
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Ordered Data  
•  Sequences of transactions 

An element of 
the sequence 

Items/Events 

11 



Ordered Data  

•   Genomic sequence data 

GGTTCCGCCTTCAGCCCCGCGCC
CGCAGGGCCCGCCCCGCGCCGTC
GAGAAGGGCCCGCCTGGCGGGCG
GGGGGAGGCGGGGCCGCCCGAGC
CCAACCGAGTCCGACCAGGTGCC
CCCTCTGCTCGGCCTAGACCTGA
GCTCATTAGGCGGCAGCGGACAG
GCCAAGTAGAACACGCGAAGCGC
TGGGCTGCCTGCTGCGACCAGGG
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Ordered Data 

•  Time Series 
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Ordered Data 
•  Spatio-Temporal Data 

Average Monthly 
Temperature of 
land and ocean 14 



Image Data 
•  Can be represented as (color) histograms 
•  Frequency count of each individual color 
•  Most commonly used color feature 

representation 

  Image      Corresponding histogram 15 



Data Quality  
•  What kinds of data quality problems? 
•  How can we detect problems with the 

data?  
•  What can we do about these problems?  

•  Examples of data quality problems:  
– Noise and outliers  
– missing values  
–  duplicate data  16 



Noise 

•  Noise refers to modification 
of original values 
–  Random collection of error. 
–  Examples: distortion of a 

person’s voice when talking 
on a poor phone and “snow” 
on television screen 
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Outliers 
•  Outliers are data objects with 

characteristics that are considerably 
different than most of the other data 
objects in the data set 
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Missing Values ( Think) 

•  Reasons for missing values? 
•  Handling missing values (How? Think) 
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Duplicate Data 

•  Data set may include data objects that are duplicates, or 
almost duplicates of one another 
–  Major issue when merging data from heterogeneous 

sources 

•  Examples: 
–  Same person with multiple email addresses 

•  Data cleaning 
–  Process of dealing with duplicate data issues 
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Data Preprocessing 

•  Aggregation 
•  Sampling 
•  Dimensionality Reduction 
•  Feature subset selection 
•  Feature creation 
•  Discretization and Binarization 
•  Attribute Transformation 
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Aggregation (LESS IS MORE) 

•  Combining two or more attributes (or 
objects) into a single attribute (or object) 

•  Purpose 
– Data reduction 

•   Reduce the number of attributes or objects 
– Change of scale 

•   Cities aggregated into regions, states, countries, etc 
– More “stable” data 

•   Aggregated data tends to have less variability  23 



Aggregation 

Standard Deviation of Average 
Monthly Precipitation 

Standard Deviation of Average 
Yearly Precipitation 

Variation of Precipitation in Australia 
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Sampling  

•  Sampling is the main technique employed for data 
selection. 
–  It is often used for both the preliminary 

investigation of the data and the final data analysis. 

•  Sampling is used in data mining because processing 
the entire set of data of interest is too expensive or 
time consuming. 

25 



Sampling …  

•  The key principle for effective sampling is 
the following:  
–  using a sample will work almost as well as 

using the entire data sets, if the sample is 
representative 
 

– A sample is representative if it has 
approximately the same property (of interest) as 
the original set of data   
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Types of Sampling 
•  Simple Random Sampling 

–  There is an equal probability of selecting any particular item 

•  Sampling without replacement 
–  As each item is selected, it is removed from the population 

•  Sampling with replacement 
–  Objects are not removed from the population as they are selected 

for the sample.    
•    In sampling with replacement, the same object can be picked up 

more than once 

•  Stratified sampling 
–  Split the data into several partitions; then draw random samples 

from each partition 27 



Sample Size 

•    

     8000 points           2000 Points                500 Points 
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Curse of Dimensionality 

•  When dimensionality increases, data becomes 
increasingly sparse in the space that it occupies 

•  Also distances between objects gets skewed 
– More dimensions that contribute to the notion 

of distance or proximity which makes it 
uniform. This leads to trouble in clustering and 
classification settings. 
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•  Consider a 3-class classification problem. 
•  In our toy problem, we decide to start with 

one feature and divide the real line into 3 
segments. 

 
•  After we have done this, we notice that 

there exist too much overlap between 
classes. So we add another feature. 

30 

Driving the point .. 



•  We decide to preserve the granularity of each axis, so 
the # of bins goes from 3 (in 1D) to 32 = 9 (in 2D). 
–  At this point we are faced with a decision: do we maintain 

the density of each cell, or do we keep the same number of 
examples as in 1D? 

–  Moving to 3 features makes the problem worse. 
•  The # of bins becomes 33 = 27 (in 3D). 
•  For the same density, the number of examples becomes…? 
•  For the same number of examples, the 3D scatter plot looks almost 

empty. 
31 



Curse of Dimensionality 

 
•  Definitions of density and 

distance between points, 
which is critical for 
clustering and outlier 
detection, become less 
meaningful 

• Randomly generate 500 points 

• Compute difference between max and min 
distance between any pair of points 



Dimensionality Reduction 
•  Purpose: 

–  Avoid curse of dimensionality 
–  Reduce amount of time and memory required by data 

mining algorithms 
–  Allow data to be more easily visualized 
–  May help to eliminate irrelevant features or reduce 

noise 
•  Techniques 

–  Principle Component Analysis 
–  Singular Value Decomposition 
–  Others: supervised and non-linear techniques 
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Principal Component Analysis 
•  Goal of PCA 

– To reduce the number of dimensions. 
– Transfer interdependent variables into single 

and independent components. 
•  What does PCA do ? 

– Transforms the data into a lower dimensional 
space, by constructing dimensions that are 
linear combinations of the input dimensions/
features. 

– Find independent dimensions along which 
data have the largest variance. 35 



•  Goal is to find a projection that captures 
the largest  amount of variation in data 

Dimensionality Reduction: PCA 

x2 

x1 

e 
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Feature Subset Selection 

•  Another way to reduce dimensionality of data 
•  Redundant features  

–  duplicate much or all of the information contained in 
one or more other attributes 

–  Example: purchase price of a product and the amount of 
sales tax paid 

•  Irrelevant features 
–  contain no information that is useful for the data mining 

task at hand 
–  Example: students' ID is often irrelevant to the task of 

predicting students' GPA 
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Feature Subset Selection 
•  Techniques: 

–  Brute-force approach: 
•  Try all possible feature subsets as input to data mining 

algorithm 

–  Embedded approaches: 
•   Feature selection occurs naturally as part of the data mining 

algorithm 

–  Filter approaches: 
•   Features are selected before data mining algorithm is run 

–  Wrapper approaches: 
•   Use the data mining algorithm as a black box to find best 

subset of attributes 

–  Feature Weighting 
38 



Filter Approach 
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Feature Creation 
•  Create new attributes that can capture the 

important information in a data set much 
more efficiently than the original attributes 

•  Three general methodologies: 
– Feature Extraction 

•   domain-specific 
– Mapping Data to New Space 
– Feature Construction 

•   combining features  
40 


