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Bayesian Belief networks 
 
•  Conditional independence assumption of Naïve Bayes 

classifier is too strong. 
•  Allows to specify which pairs of attributes are conditionally 

independent. 
•  A simple, graphical notation for conditional independence 

assertions and hence for compact specification of full joint 
distributions 

•  Syntax: 
–  a set of nodes, one per variable 
–  a directed, acyclic graph (link ≈ "directly influences") 
–  a conditional distribution for each node given its parents: 

P (Xi | Parents (Xi)) 
•  In the simplest case, conditional distribution represented as a 

conditional probability table (CPT) giving the distribution 
over Xi for each combination of parent values 
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Background: Law of Total Probability 
•  Law of Total Probability (aka “summing out” or marginalization) 
             P(A)  = Σi  P(A, Bi)  
                       = Σi  P(A | Bi) P(Bi) 
 
•  Why is this useful? 

     Given a joint distribution (e.g., P(A,B,C,D)) we can obtain any 
“marginal” probability (e.g., P(B)) by summing out the other variables, 
e.g., 

                 P(B)  = Σi Σj Σk P(Ai, B, Cj, Dk)  
 
•  Less obvious: we can also compute any conditional probability of interest 

given a joint distribution, e.g., 
              P(C | B) = Σi Σj P(Ai, C, Dj | B)  
                            = 1 / P(B)  Σi Σj P(Ai, C, Dj, B) 
                          where 1 / P(B) is just a normalization constant 
•  Thus, the joint distribution contains the information we need to compute 

any probability of interest. 
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Background: The Chain Rule or Factoring 

•  We can always write 
      P(A, B, C, … Z)   = P(A | B, C, …. Z) P(B, C, … Z) 
                                       (by definition of joint probability) 

•  Repeatedly applying this idea, we can write 
       P(A, B, C, … Z)   = P(A | B, C, …. Z) P(B | C,.. Z) P(C| .. Z)..P(Z) 
 

•  This factorization holds for any ordering of the variables 

•  This is the chain rule for probabilities 
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Conditional Independence 
The Markov condition: given its parents (P1, 
P2), a node (X) is conditionally independent of 
its non-descendants (ND1, ND2) 

X 

P1 P2 

C1 C2 

ND1 
ND2 



Example 
•  Topology of network encodes conditional independence 

assertions: 
 
 
 
 
 
 
•  Weather is independent of the other variables 
•  Toothache and Catch are conditionally independent given 

Cavity 
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Conditional Independence 
•  2 random variables A and B are conditionally independent 

given C iff 
            P(A, B | C) = P(A | C) P(B | C)  

•  More intuitive (equivalent) conditional formulation 
–  A and B are conditionally independent given C iff 
            P(A | B, C) = P(A | C)             
–  Intuitive interpretation: 
             P(A | B, C) = P(A | C) tells us that learning about B, given 

that we already know C, provides no change in our probability for 
A, i.e., B contains no information about a beyond what C provides 

•  Can generalize to more than 2 random variables 
–  E.g., K different symptom variables X1, X2, … XK, and C = 

disease 
–  P(X1, X2,…. XK | C) = Π  P(Xi | C) 
–  Also known as the naïve Bayes assumption 7 



Bayesian Networks 
•  A Bayesian network specifies a joint distribution in a 

structured form 
•  Represent dependence/independence via a directed graph   

–  Nodes = random variables 
–  Edges = direct dependence 

•  Structure of the graph ó Conditional independence relations 

 

•  Requires that graph is acyclic (no directed cycles) 
•  2 components to a Bayesian network 

–  The graph structure (conditional independence assumptions) 
–  The numerical probabilities (for each variable given its parents) 

 

p(X1, X2,....XN) = Π p(Xi | parents(Xi ) ) 

The full joint distribution The graph-structured approximation 
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Example of a simple Bayesian network 

A B 

C 

  

•   Probability model has simple factored form 

•  Directed edges =>  direct  dependence  

•  Absence of an edge  => conditional independence 

•  Also known as belief networks, graphical models, causal networks 

•  Other formulations, e.g., undirected graphical models 

P(A,B,C) = P(C|A,B)P(A)P(B) 
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Examples of 3-way Bayesian Networks 

A C B Marginal Independence: 
P(A,B,C) = P(A) P(B) P(C) 
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Examples of 3-way Bayesian Networks 

A 

C B 

Conditionally independent effects: 
P(A,B,C) = P(B|A)P(C|A)P(A) 
 
B and C are conditionally independent 
Given A 
 
e.g., A is a disease, and we model  
B and C as conditionally independent 
symptoms given A 
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Examples of 3-way Bayesian Networks 

A B 

C 

Independent Causes: 
P(A,B,C) = P(C|A,B)P(A)P(B) 
 
 
“Explaining away” effect: 
Given C, observing A makes B less likely 
e.g., earthquake/burglary/alarm example 
 
A and B are (marginally) independent  
but become dependent once C is known 
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Examples of 3-way Bayesian Networks 

A C B Markov dependence: 
P(A,B,C) = P(C|B) P(B|A)P(A) 

13 



Example 
•  I'm at work, neighbor John calls to say my alarm is 

ringing, but neighbor Mary doesn't call. Sometimes it's set 
off by minor earthquakes. Is there a burglar? 

•  Variables: Burglary (B), Earthquake (E), Alarm (A), 
JohnCalls (J), MaryCalls (M) 

•  What is P(B | M, J)? (for example) 
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Example 
•  We can use the full joint distribution to answer this 

question. 
–  Requires 25 = 32 probabilities 
–  Can we use prior domain knowledge to come up with a Baysian 

network that requires fewer probabilities? 

•  Network topology reflects "causal" knowledge: 
–  A burglar can set the alarm off 
–  An earthquake can set the alarm off 
–  The alarm can cause Mary to call 
–  The alarm can cause John to call 
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Constructing a Baysian Network – Step 1 

•  Order the variables in terms of causality 
(may be a partial order), e.g. {E, B} -> {A} 
-> {J, M} 

•  P(J, M, A, E, B) = P(J, M | A, E, B) P(A| E, B) P(E, B) 
           ≈ P(J, M | A)          P(A| E, B) P(E) P(B) 

                          ≈ P(J| A)P(M| A)   P(A| E, B) P(E) P(B) 
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Conditionally independent assumption 



The Resulting Bayesian Network 
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Constructing this Bayesian Network: Step 2 
•  P(J, M, A, E, B) =  P(J | A)  P(M | A)  P(A | E, B)  P(E)  P(B) 
 
•  There are 3 conditional probability tables (CPTs) to be determined: 

 P(J | A),  P(M | A),  P(A | E, B)  
–  Requiring 2 + 2 + 4 = 8 probabilities 

•  And 2 marginal probabilities P(E),  P(B) -> 2 more probabilities 
 
•  Where do  these probabilities come from? 

–  Expert knowledge 
–  From data (relative frequency estimates) 
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Inference (Reasoning) in Bayesian Networks 
•  Consider answering a query in a Bayesian Network 

–  Q = set of query variables 
–  e = evidence (set of instantiated variable-value pairs) 
–  Inference = computation of conditional distribution P(Q | e) 

 
•  Examples 

–  P(burglary | alarm) 
–  P(earthquake | JCalls, Mcalls) 
–  P(JCalls, MCalls | burglary, earthquake) 

 
•  Can we use the structure of the Bayesian Network  

  to answer such queries efficiently?  Answer = yes 
–  Generally speaking, complexity is inversely proportional to sparsity 

of graph 



Why Bayesian Classifiers ? 

•  Captures prior knowledge of a particular 
domain. Encodes causality. 

•  Works well with incomplete data. 
•  Robust to model overfitting. 
•  Can add new variables easily. 
•  Probabilistic outputs. 
•  But lots of time and effort spent in 

constructing the network. 
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Support Vector Machines 



Support Vector Machines 

•  Find a linear hyperplane (decision boundary) that will separate the data 
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Support Vector Machines 

•  One Possible Solution 

B1
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Support Vector Machines 

•  Another possible solution 

B2
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Support Vector Machines 

•  Other possible solutions 

B2
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Support Vector Machines 

•  Which one is better? B1 or B2? 
•  How do you define better? 

B1

B2
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Support Vector Machines 

•  Find hyperplane maximizes the margin => B1 is better than B2 

B1

B2

b11

b12

b21
b22

margin
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Support Vector Machines 
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Support Vector Machines 
•  We want to maximize: 

–  Which is equivalent to minimizing: 

–  But subjected to the following constraints: 

•   This is a constrained optimization problem 
–  Numerical approaches to solve it (e.g., quadratic 

programming) 
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Support Vector Machines 
•  What if the problem is not linearly separable? 
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Support Vector Machines 

•  What if the problem is not linearly 
separable? 
–  Introduce slack variables 

•   Need to minimize: 

•   Subject to:  
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Nonlinear Support Vector Machines 
•  What if decision boundary is not linear? 

32 



Nonlinear Support Vector Machines 

•  Transform data into higher dimensional space 
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Why SVMs?   

•  Convex Convex Convex 
– No trapping in local minima 

•  SVMs work for categorical and continuous 
data. 

•  Can control the model complexity by 
providing the control on cost function, 
margin parameters to use. 

•  Kernel Trick (Not discussed) extends it to 
non-linear spaces. 
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Loss, bias, variance and noise 

target 

Average shot 

Bias  

Bias: depends on the angle 

variance 

Variance: depends on the 
force and size of 
cannonball 

Noise: depends 
on the target 
position 
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Bias: depends on the angle 

Variance: depends on 
the force and size of 
the bird 

Average shot 

Bias  

variance 

target 

noise 



Example: Bias 
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Bias-Variance (Generalize) 
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For better generalizable model 

•  Minimize both bias and variance 
•  However, 

– Neglect the input data and predict the output to  
be a constant value gives “zero” variance but 
high bias. 

– On the other hand, perfectly interpolate the 
given data to produce f=f* - implies zero bias 
but high variance. 
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Model Complexity 
 

•  Simple models of low complexity 
–  high bias, small variance 
–  potentially rubbish, but stable predictions 

•  Flexible models of high complexity 
–  small bias, high variance 
–  over-complex models can be always massaged to 

exactly explain the observed training data 
•  What is the right level of model complexity? 

–  The problem of model selection 
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Complexity of the model 

Usually, the bias is a decreasing function of 
the complexity, while variance is an 
increasing function of the complexity. 

E=bias+var 

bias 

var 

Complexity 
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Ensemble Methods 

•  Construct a set of classifiers from the 
training data 

•  Predict class label of previously unseen 
records by aggregating predictions made by 
multiple classifiers 
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General Idea 
Original

Training data

....D1 D2 Dt-1 Dt

D

Step 1:
Create Multiple

Data Sets

C1 C2 Ct -1 Ct

Step 2:
Build Multiple

Classifiers

C*
Step 3:

Combine
Classifiers

43 



Why does it work? 
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•  Suppose there are 25 base classifiers 
– Each classifier has error rate, ε = 0.35 
– Assume classifiers are independent 
– Probability that the ensemble classifier makes a 

wrong prediction: 
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Examples of Ensemble Methods 

•  How to generate an ensemble of classifiers? 
– Bagging 

– Boosting 
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Bagging   
•  Bootstrap Aggregation 

–  Create classifiers by drawing samples of size equal to 
the original dataset. (Appx 63% of data will be chosen) 

–  Learn classifier using these samples. 
–  Vote on them. 

•  Why does this help ? 
–  If there is a high variance i.e. classifier is unstable, 

bagging will help to reduce errors due to fluctuations in 
the training data. 

–  If the classifier is stable i.e. error of the ensemble is 
primarily by bias in the base classifier -> may degrade 
the performance. 

46 



Boosting 

•  An iterative procedure to adaptively change 
distribution of training data by focusing 
more on previously misclassified records 
–  Initially, all N records are assigned equal 

weights 
– Unlike bagging, weights may change at the end 

of boosting round 

47 



Adaboost (Freund et. al. 1997)   
•  Given a set of n class-labeled tuples (x1,y1) … (xn,yn) i.e T 
•  Initially all weights of tuples are set to same (1/n) 
•  Generate k classifiers in k rounds.  At the i-th round 

–  Tuples from T are sampled from T  to form training set Ti 

–  Each tuple’s chance of selection depends on its weight. 
–  Learn a model Mi from Ti 
–  Compute error rate using Ti 

–  If tuple is misclassified its weight is increased. 
•  During prediction use the error of the classifier as a weight 

(vote) on each of the models 
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Why boosting/bagging?  

•  Improves the variance of unstable 
classifiers. 
– Unstable Classifiers 

•  Neural nets, decision trees 
– Stable Classifiers 

•  K-NN 

•  May lead to results that are not explanatory. 
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