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EETT
Bayesian Belief networks

* Conditional independence assumption of Naive Bayes
classifier 1s too strong.

« Allows to specify which pairs of attributes are conditionally
independent.

* A simple, graphical notation for conditional independence
assertions and hence for compact specification of full joint
distributions

e Syntax:
— aset of nodes, one per variable
— adirected, acyclic graph (link = "directly influences")
— a conditional distribution for each node given its parents:
P (X, | Parents (X.))
 In the simplest case, conditional distribution represented as a

conditional probability table (CPT) giving the distribution

over X, for each combination of parent values
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Background: Law of Total Probability

Law of Total Probability (aka “summing out” or marginalization)
P(A) =2; P(A, By
=2; P(A|B)) P(B)

Why is this useful?

Given a joint distribution (e.g., P(A,B,C,D)) we can obtain any
“marginal” probability (e.g., P(B)) by summing out the other variables,
e.g.,

P(B) =%, 3,3, P(A, B, C;, D)

Less obvious: we can also compute any conditional probability of interest
given a joint distribution, e.g.,
P(C|B)=%; % P(A;, C, D; | B)
=1/P(B) %, % P(A;, C, D, B)
where 1 / P(B) is just a normalization constant

Thus, the joint distribution contains the information we need to compute
any probability of interest.
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Background: The Chain Rule or Factoring

 We can always write
P(A,B,C,...Z) =P(A|B,C,....2)PB,C, ... Z)
(by definition of joint probability)

Repeatedly applying this 1idea, we can write
P(A,B,C,...Z) =P(A|B,C,....Z)P(B|C,..Z) P(C| .. 2)..P(Z)

« This factorization holds for any ordering of the variables

 This 1s the chain rule for probabilities

4



BN .
Conditional Independence

The Markov condition: given its parents (P,,
P,), a node (X) 1s conditionally independent of
its non-descendants (ND,, ND,)

x| &




Example

Topology of network encodes conditional independence
assertions:

Toothache @

Weather 1s independent of the other variables

Toothache and Catch are conditionally independent given
Cavity




EEETTT .,
Conditional Independence

« 2 random variables A and B are conditionally independent
given C 1ff

P(A,B|C)=P(A|C)P(B|C)

* More intuitive (equivalent) conditional formulation
— A and B are conditionally independent given C iff
P(A|B,C)=PA|C)
— Intuitive interpretation:
P(A | B, C) =P(A | C) tells us that learning about B, given
that we already know C, provides no change in our probability for
A, 1.e., B contains no information about a beyond what C provides
e (Can generalize to more than 2 random variables

— E.g., K different symptom variables X, X,, ... Xy, and C =

disease
— Also known as the naive Bayes assumption 7
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Bayesian Networks

« A Bayesian network specifies a joint distribution in a
structured form

» Represent dependence/independence via a directed graph
— Nodes = random variables
— Edges = direct dependence

 Structure of the graph <> Conditional independence relations

p(X,, X,,....Xy) = II p(X, | parents(X, ) )

/ I

The full joint distribution The graph-structured approximation

* Requires that graph 1s acyclic (no directed cycles)

« 2 components to a Bayesian network
— The graph structure (conditional independence assumptions)

— The numerical probabilities (for each variable given its parents)
8



Example of a simple Bayesian network

(a)
P(A,B,C) = P(C|A,B)P(A)P(B) +— M

- Probability model has simple factored form

 Directed edges => direct dependence

» Absence of an edge => conditional independence

* Also known as belief networks, graphical models, causal networks

 Other formulations, e.g., undirected graphical models
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Examples of 3-way Bayesian Networks

@ @ Marginal Independence:

P(A,B,C) = P(A) P(B) P(C)
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Examples of 3-way Bayesian Networks

Conditionally independent effects:
P(A,B,C) = P(B|A)P(C|A)P(A)

B and C are conditionally independent
Given A

e.g., A is a disease, and we model
B and C as conditionally independent
symptoms given A
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Examples of 3-way Bayesian Networks

@ @ Independent Causes:

AN P(A,B,C) = P(C|A,B)P(A)P(B)

“Explaining away’ effect:
Given C, observing A makes B less likely
e.g., earthquake/burglary/alarm example

A and B are (marginally) independent
but become dependent once C 1s known
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Examples of 3-way Bayesian Networks

@__. Markov dependence:

P(A,B,C) = P(C|B) P(B|A)P(A)
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Example

* [I'm at work, neighbor John calls to say my alarm 1is
ringing, but neighbor Mary doesn't call. Sometimes it's set
off by minor earthquakes. Is there a burglar?

e Varniables: Burglary (B), Earthquake (E), Alarm (A),
JohnCalls (J), MaryCalls (M)

« Whatis P(B | M, J)? (for example)
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Example

* We can use the full joint distribution to answer this
question.

— Requires 2° = 32 probabilities

— Can we use prior domain knowledge to come up with a Baysian
network that requires fewer probabilities?

« Network topology reflects "causal" knowledge:
— A burglar can set the alarm off
— An earthquake can set the alarm off
— The alarm can cause Mary to call
— The alarm can cause John to call
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Constructing a Baysian Network — Step 1

* Order the variables 1n terms of causality
(may be a partial order), e.g. {E, B} -> {A}
> {J, M}

« P(J,M, A,E,B)=P(J, M| A, E, B) P(A| E, B) P(E, B)

~P(J,M|A) P(A| E, B) P(E) P(B)
~P(J| AP(M| A) P(A| E, B) P(E) P(B)

e

Conditionally independent assumption

16




The Resulting Bayesian Network

Burglary

P(B)

.001

P(E)

002

PN

.70
.01
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Constructing this Bayesian Network: Step 2
 POLM,AE,B)= PJ|A) PM|A) P(A |E, B) P(E) P(B)
» There are 3 conditional probability tables (CPTs) to be determined:
P(J|A), PM | A), P(A|E, B)
— Requiring 2 + 2 + 4 = § probabilities

* And 2 marginal probabilities P(E), P(B) -> 2 more probabilities

— Expert knowledge
— From data (relative frequency estimates)

* Where do these probabilities come from?
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Inference (Reasoning) in Bayesian Networks

* Consider answering a query in a Bayesian Network
— Q= set of query variables
— ¢ = evidence (set of instantiated variable-value pairs)
— Inference = computation of conditional distribution P(Q | €)

= G
e Examples S

— P(burglary | alarm)
— P(earthquake | JCalls, Mcalls)
— P(JCalls, MCalls | burglary, earthquake)

* (Can we use the structure of the Bayesian Network
to answer such queries efficiently? Answer = yes

— Generally speaking, complexity is inversely proportional to sparsity
of graph




Why Bayesian Classifiers ?

» Captures prior knowledge of a particular
domain. Encodes causality.

* Works well with incomplete data.
* Robust to model overfitting.

* Can add new variables easily.

* Probabilistic outputs.

* But lots of time and effort spent 1n
constructing the network. .



Support Vector Machines



Support Vector Machines
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* Find a linear hyperplane (decision boundary) that will separate the data
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Support Vector Machines
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* One Possible Solution
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BT .,
Support Vector Machines
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* Another possible solution
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Support Vector Machines

Other possible solutions
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Support Vector Machines
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*  Which one is better? B1 or B2?

* How do you define better?
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Support Vector Machines
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* Find hyperplane maximizes the margin => B1 1s better than B2
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Support Vector Machines
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BT .,
Support Vector Machines

* We want to maximize: . . 2
argin = ——
g
— Which is equivalent to minimizing: [ |
L(w)=—

2

— But subjected to the following constraints:

1 ifwexX +b=1

1) = {

~1 ifWweX +b=-1

 This is a constrained optimization problem

— Numerical approaches to solve it (e.g., quadratic

programming) 26



Support Vector Machines
* What if the problem 1s not linearly separable?
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Support Vector Machines

* What if the problem is not linearly
separable?

— Introduce slack variables

 Need to minimize;: L(W) _ VT/ + C(igk)

1=1

* Subject to:

ifwex. +b=1-§&

) 1
f(x")={—1 ifWex +b=—1+&
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Nonlinear Support Vector Machines

* What if decision boundary 1s not linear?

12

10 +
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I
Nonlinear Support Vector Machines

* Transform data into higher dimensional space

x 10"

4
(X, +X,)

L 0O a4 N W A~ O N o
I L L L D ) ———
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BN .
Why SVMs?

e Convex Convex Convex

— No trapping in local minima

 SVMs work for categorical and continuous
data.

* Can control the model complexity by
providing the control on cost function,
margin parameters to use.

* Kernel Trick (Not discussed) extends it to
non-linear spaces.
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[oss, bias, variance and noise

Average shot

Bias: depends on the angle

Variance: depends on the Bias

force and size of

cannonball
Noise: depends
on the target
position

< —>

variance target 35
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Example: Bias
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Figure 5.33. Two decision trees with different complexities induced from the same training data.
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Bias-Variance (Generalize)

{(a) Decision boundary for decision tree. (b) Decision boundary for Il-nearest
neighbor.

Figure 5.34. Bias of decision tree and 1-nearest neighbor classifiers.
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For better generalizable model

e Minimize both bias and variance

e However,

— Neglect the input data and predict the output to
be a constant value gives “zero variance but
high bias.

— On the other hand, perfectly interpolate the
given data to produce f=f* - implies zero bias
but high variance.
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Model Complexity

* Simple models of low complexity

— high bias, small variance

— potentially rubbish, but stable predictions
» Flexible models of high complexity

— small bias, high variance

— over-complex models can be always massaged to
exactly explain the observed training data

* What is the right level of model complexity?
— The problem of model selection
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- Complexity of the model

E=bias+var

/Var

bias

Complexity

Usually, the bias 1s a decreasing function of
the complexity, while variance 1s an
increasing function of the complexity.

41



Ensemble Methods

 Construct a set of classifiers from the
training data

* Predict class label of previously unseen
records by aggregating predictions made by
multiple classifiers
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General Idea

Original
D Training data

y

Step 1: ‘ ‘ * *

Create Multiple D, D, mEes D D

Data Sets i t
Step 2:

Build Multiple C
Classifiers ‘
Step 3:

Combine

Classifiers
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Why does 1t work?

* Suppose there are 25 base classifiers
— Each classifier has error rate, € = 0.35
— Assume classifiers are independent

— Probability that the ensemble classifier makes a
wrong prediction:

225(25)81.(1 —£)”7" =0.06

=3\ 1
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Examples of Ensemble Methods

 How to generate an ensemble of classifiers?
— Bagging

— Boosting
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BT .
Bagging

* Bootstrap Aggregation

— Create classifiers by drawing samples of size equal to
the original dataset. (Appx 63% of data will be chosen)

— Learn classifier using these samples.
— Vote on them.

 Why does this help ?

— If there 1s a high variance 1.e. classifier is unstable,
bagging will help to reduce errors due to fluctuations in
the training data.

— If the classifier 1s stable 1.e. error of the ensemble 1s
primarily by bias in the base classifier -> may degrade

the performance.
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Boosting

* An 1terative procedure to adaptively change
distribution of training data by focusing
more on previously misclassified records

— Initially, all N records are assigned equal
weights

— Unlike bagging, weights may change at the end
of boosting round
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Adaboost (Freund et. al. 1997)

* (@iven a set of n class-labeled tuples (x;,y;) ... (X,,y) 1.6 T
 Initially all weights of tuples are set to same (1/n)
* Generate k classifiers in k rounds. At the 1-th round
— Tuples from T are sampled from T to form training set T,
— Each tuple’ s chance of selection depends on its weight.
— Learn a model M, from T,
— Compute error rate using T,
— If tuple 1s misclassified its weight is increased.

* During prediction use the error of the classifier as a weight
(vote) on each of the models

48



BT .
Why boosting/bagging?

* Improves the variance of unstable
classifiers.

— Unstable Classifiers

* Neural nets, decision trees

— Stable Classitiers
e K-NN

* May lead to results that are not explanatory.
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