CS 484 Data Mining

Classification 7

Some slides are from Professor Padhraic Smyth at UC Irvine

Bayesian Belief networks

- Conditional independence assumption of Naïve Bayes classifier is too strong.
- Allows to specify which pairs of attributes are conditionally independent.
- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - a directed, acyclic graph (link \approx "directly influences")
 - a conditional distribution for each node given its parents:

 $\mathbf{P}(X_i | \text{Parents}(X_i))$

• In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Background: Law of Total Probability

- Law of Total Probability (aka "summing out" or marginalization) ٠ $P(A) = \Sigma_i P(A, B_i)$ $= \Sigma_i P(A \mid B_i) P(B_i)$
- Why is this useful?

Given a joint distribution (e.g., P(A,B,C,D)) we can obtain any "marginal" probability (e.g., P(B)) by summing out the other variables, e.g.,

$$P(B) = \Sigma_i \Sigma_j \Sigma_k P(A_i, B, C_j, D_k)$$

Less obvious: we can also compute any conditional probability of interest ۲ given a joint distribution, e.g.,

$$P(C | B) = \sum_{i} \sum_{j} P(A_{i}, C, D_{j} | B)$$

= 1 / P(B) $\sum_{i} \sum_{j} P(A_{i}, C, D_{j}, B)$
where 1 / P(B) is just a normalization constant

Thus, the joint distribution contains the information we need to compute ٠ any probability of interest.

Background: The Chain Rule or Factoring

- We can always write
 P(A, B, C, ... Z) = P(A | B, C, ... Z) P(B, C, ... Z) (by definition of joint probability)
- Repeatedly applying this idea, we can write P(A, B, C, ..., Z) = P(A | B, C, ..., Z) P(B | C, ..., Z) P(C | ..., Z)..P(Z)
- This factorization holds for any ordering of the variables
- This is the chain rule for probabilities

Conditional Independence

The Markov condition: given its parents (P_1 , P_2), a node (X) is conditionally independent of its non-descendants (ND_1 , ND_2)

Example

• Topology of network encodes conditional independence assertions:

- *Weather* is independent of the other variables
- *Toothache* and *Catch* are conditionally independent given *Cavity*

Conditional Independence

• 2 random variables A and B are conditionally independent given C iff

 $P(A, B \mid C) = P(A \mid C) P(B \mid C)$

- More intuitive (equivalent) conditional formulation
 - A and B are conditionally independent given C iff P(A | B, C) = P(A | C)
 - Intuitive interpretation:

P(A | B, C) = P(A | C) tells us that learning about B, given that we already know C, provides no change in our probability for A, i.e., B contains no information about a beyond what C provides

- Can generalize to more than 2 random variables
 - E.g., K different symptom variables $X_1, X_2, \dots X_K$, and C = disease
 - $P(X_1, X_2, \dots, X_K | C) = \Pi P(Xi | C)$
 - Also known as the naïve Bayes assumption

Bayesian Networks

- A Bayesian network specifies a joint distribution in a structured form
- Represent dependence/independence via a directed graph
 - Nodes = random variables
 - Edges = direct dependence
- Structure of the graph ⇔ Conditional independence relations

$$p(X_1, X_2, \dots, X_N) = \prod p(X_i | parents(X_i))$$

The full joint distribution

The graph-structured approximation

- Requires that graph is acyclic (no directed cycles)
- 2 components to a Bayesian network
 - The graph structure (conditional independence assumptions)
 - The numerical probabilities (for each variable given its parents)

Example of a simple Bayesian network

- Probability model has simple factored form
- Directed edges => direct dependence
- Absence of an edge => conditional independence
- Also known as belief networks, graphical models, causal networks
- Other formulations, e.g., undirected graphical models

Marginal Independence: P(A,B,C) = P(A) P(B) P(C)

Conditionally independent effects: P(A,B,C) = P(B|A)P(C|A)P(A)

B and C are conditionally independent Given A

e.g., A is a disease, and we model B and C as conditionally independent symptoms given A

Independent Causes: P(A,B,C) = P(C|A,B)P(A)P(B)

"Explaining away" effect: Given C, observing A makes B less likely e.g., earthquake/burglary/alarm example

A and B are (marginally) independent but become dependent once C is known

Markov dependence: P(A,B,C) = P(C|B) P(B|A)P(A)

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary (B), Earthquake (E), Alarm (A), JohnCalls (J), MaryCalls (M)
- What is P(B | M, J)? (for example)

Example

- We can use the full joint distribution to answer this question.
 - Requires $2^5 = 32$ probabilities
 - Can we use prior domain knowledge to come up with a Baysian network that requires fewer probabilities?
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Constructing a Baysian Network – Step 1

- Order the variables in terms of causality (may be a partial order), e.g. {E, B} -> {A} -> {J, M}
- P(J, M, A, E, B) = P(J, M | A, E, B) P(A | E, B) P(E, B) $\approx P(J, M | A) P(A | E, B) P(E) P(B)$ $\approx P(J | A)P(M | A) P(A | E, B) P(E) P(B)$

Conditionally independent assumption

The Resulting Bayesian Network

17

Constructing this Bayesian Network: Step 2

- P(J, M, A, E, B) = P(J | A) P(M | A) P(A | E, B) P(E) P(B)
- There are 3 conditional probability tables (CPTs) to be determined: P(J | A), P(M | A), P(A | E, B)
 - Requiring 2 + 2 + 4 = 8 probabilities
- And 2 marginal probabilities P(E), $P(B) \rightarrow 2$ more probabilities
- Where do these probabilities come from?
 - Expert knowledge
 - From data (relative frequency estimates)

Inference (Reasoning) in Bayesian Networks

- Consider answering a query in a Bayesian Network
 - Q = set of query variables
 - e = evidence (set of instantiated variable-value pairs)
 - Inference = computation of conditional distribution P(Q | e)
- Examples
 - P(burglary | alarm)
 - P(earthquake | JCalls, Mcalls)
 - P(JCalls, MCalls | burglary, earthquake)

- Can we use the structure of the Bayesian Network to answer such queries efficiently? Answer = yes
 - Generally speaking, complexity is inversely proportional to sparsity of graph

Why Bayesian Classifiers ?

- Captures prior knowledge of a particular domain. Encodes causality.
- Works well with incomplete data.
- Robust to model overfitting.
- Can add new variables easily.
- Probabilistic outputs.
- But lots of time and effort spent in constructing the network.

• Find a linear hyperplane (decision boundary) that will separate the data

• One Possible Solution

• Another possible solution

• Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

• Find hyperplane maximizes the margin => B1 is better than B2

• We want to maximize:

$$Margin = \frac{2}{\|\vec{w}\|^2}$$

– Which is equivalent to minimizing:

– But subjected to the following constraints:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \bullet \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \bullet \vec{x}_i + b \le -1 \end{cases}$$

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

 $L(w) = \frac{\|\vec{w}\|^2}{2}$

• What if the problem is not linearly separable?

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$$

• Subject to:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 + \xi_i \end{cases}$$

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

Nonlinear Support Vector Machines

• Transform data into higher dimensional space

Why SVMs?

Convex Convex Convex

– No trapping in local minima

- SVMs work for categorical and continuous data.
- Can control the model complexity by providing the control on cost function, margin parameters to use.
- Kernel Trick (Not discussed) extends it to non-linear spaces.

Loss, bias, variance and noise

Example: Bias

Figure 5.33. Two decision trees with different complexities induced from the same training data.

Bias-Variance (Generalize)

(a) Decision boundary for decision tree.

(b) Decision boundary for 1-nearest neighbor.

For better generalizable model

- Minimize both bias and variance
- However,
 - Neglect the input data and predict the output to be a constant value gives "zero" variance but high bias.
 - On the other hand, perfectly interpolate the given data to produce f=f* - implies zero bias but high variance.

Model Complexity

- Simple models of low complexity
 - high bias, small variance
 - potentially rubbish, but stable predictions
- Flexible models of high complexity
 - small bias, high variance
 - over-complex models can be always massaged to exactly explain the observed training data
- What is the right level of model complexity?
 - The problem of model selection

Usually, the bias is a decreasing function of the complexity, while variance is an increasing function of the complexity.

Ensemble Methods

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

General Idea

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} \binom{25}{i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$

Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
 Bagging
 - Boosting

Bagging

- Bootstrap Aggregation
 - Create classifiers by drawing samples of size equal to the original dataset. (Appx 63% of data will be chosen)
 - Learn classifier using these samples.
 - Vote on them.
- Why does this help ?
 - If there is a high variance i.e. classifier is unstable, bagging will help to reduce errors due to fluctuations in the training data.
 - If the classifier is stable i.e. error of the ensemble is primarily by bias in the base classifier -> may degrade the performance.

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round

Adaboost (Freund et. al. 1997)

- Given a set of n class-labeled tuples $(x_1,y_1) \dots (x_n,y_n)$ i.e T
- Initially all weights of tuples are set to same (1/n)
- Generate k classifiers in k rounds. At the i-th round
 - Tuples from T are sampled from T to form training set T_i
 - Each tuple's chance of selection depends on its weight.
 - Learn a model M_i from T_i
 - Compute error rate using T_i
 - If tuple is misclassified its weight is increased.
- During prediction use the error of the classifier as a weight (vote) on each of the models

Why boosting/bagging?

- Improves the variance of unstable classifiers.
 - Unstable Classifiers
 - Neural nets, decision trees
 - Stable Classifiers
 - K-NN
- May lead to results that are not explanatory.