CS 484 Data Mining

Classification 7

Bayesian Belief networks

- Conditional independence assumption of Naïve Bayes classifier is too strong.
- Allows to specify which pairs of attributes are conditionally independent.
- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
- a set of nodes, one per variable
- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution for each node given its parents:

$$
\mathbf{P}\left(\mathrm{X}_{\mathrm{i}} \mid \text { Parents }\left(\mathrm{X}_{\mathrm{i}}\right)\right)
$$

- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Background: Law of Total Probability

- Law of Total Probability (aka "summing out" or marginalization)

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A}) & =\sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{~A}, \mathrm{~B}_{\mathrm{i}}\right) \\
& =\Sigma_{\mathrm{i}} \mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{~B}_{\mathrm{i}}\right)
\end{aligned}
$$

- Why is this useful?

Given a joint distribution (e.g., P(A,B,C,D)) we can obtain any "marginal" probability (e.g., $\mathrm{P}(\mathrm{B})$) by summing out the other variables, e.g.,

$$
\mathrm{P}(\mathrm{~B})=\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \Sigma_{\mathrm{k}} \mathrm{P}\left(\mathrm{~A}_{\mathrm{i}}, \mathrm{~B}, \mathrm{C}_{\mathrm{j}}, \mathrm{D}_{\mathrm{k}}\right)
$$

- Less obvious: we can also compute any conditional probability of interest given a joint distribution, e.g.,

$$
\begin{aligned}
\mathrm{P}(\mathrm{C} \mid \mathrm{B}) & =\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{P}\left(\mathrm{~A}_{\mathrm{i}}, \mathrm{C}, \mathrm{D}_{\mathrm{j}} \mid \mathrm{B}\right) \\
& =1 / \mathrm{P}(\mathrm{~B}) \Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{P}\left(\mathrm{~A}_{\mathrm{i}}, \mathrm{C}, \mathrm{D}_{\mathrm{j}}, \mathrm{~B}\right) \\
& \text { where } 1 / \mathrm{P}(\mathrm{~B}) \text { is just a normalization constant }
\end{aligned}
$$

- Thus, the joint distribution contains the information we need to compute any probability of interest.

Background: The Chain Rule or Factoring

- We can always write

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \ldots \mathrm{Z})= & \mathrm{P}(\mathrm{~A} \mid \mathrm{B}, \mathrm{C}, \ldots \mathrm{Z}) \mathrm{P}(\mathrm{~B}, \mathrm{C}, \ldots \mathrm{Z}) \\
& \text { (by definition of joint probability) }
\end{aligned}
$$

- Repeatedly applying this idea, we can write

$$
\mathrm{P}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \ldots \mathrm{Z})=\mathrm{P}(\mathrm{~A} \mid \mathrm{B}, \mathrm{C}, \ldots . \mathrm{Z}) \mathrm{P}(\mathrm{~B} \mid \mathrm{C}, . . \mathrm{Z}) \mathrm{P}(\mathrm{C} \mid . . \mathrm{Z}) . \mathrm{P}(\mathrm{Z})
$$

- This factorization holds for any ordering of the variables
- This is the chain rule for probabilities

Conditional Independence

The Markov condition: given its parents (P_{1}, P_{2}), a node (X) is conditionally independent of its non-descendants $\left(\mathrm{ND}_{1}, \mathrm{ND}_{2}\right)$

Example

- Topology of network encodes conditional independence assertions:

- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

Conditional Independence

- 2 random variables A and B are conditionally independent given C iff

$$
\mathrm{P}(\mathrm{~A}, \mathrm{~B} \mid \mathrm{C})=\mathrm{P}(\mathrm{~A} \mid \mathrm{C}) \mathrm{P}(\mathrm{~B} \mid \mathrm{C})
$$

- More intuitive (equivalent) conditional formulation
- A and B are conditionally independent given C iff

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B}, \mathrm{C})=\mathrm{P}(\mathrm{~A} \mid \mathrm{C})
$$

- Intuitive interpretation:

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B}, \mathrm{C})=\mathrm{P}(\mathrm{~A} \mid \mathrm{C}) \text { tells us that learning about } \mathrm{B} \text {, given }
$$ that we already know C , provides no change in our probability for A, i.e., B contains no information about a beyond what C provides

- Can generalize to more than 2 random variables
- E.g., K different symptom variables $X_{1}, X_{2}, \ldots X_{K}$, and $C=$ disease
$-\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{K}} \mid \mathrm{C}\right)=\Pi \mathrm{P}(\mathrm{Xi} \mid \mathrm{C})$
- Also known as the naïve Bayes assumption

Bayesian Networks

- A Bayesian network specifies a joint distribution in a structured form
- Represent dependence/independence via a directed graph
- Nodes = random variables
- Edges $=$ direct dependence
- Structure of the graph \Leftrightarrow Conditional independence relations

The full joint distribution
The graph-structured approximation

- Requires that graph is acyclic (no directed cycles)
- 2 components to a Bayesian network
- The graph structure (conditional independence assumptions)
- The numerical probabilities (for each variable given its parents)

Example of a simple Bayesian network

$$
\mathrm{P}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\mathrm{P}(\mathrm{C} \mid \mathrm{A}, \mathrm{~B}) \mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B}) \longleftrightarrow
$$

- Probability model has simple factored form
- Directed edges $=>$ direct dependence
- Absence of an edge $=>$ conditional independence
- Also known as belief networks, graphical models, causal networks
- Other formulations, e.g., undirected graphical models

Examples of 3-way Bayesian Networks

Marginal Independence:

$$
\mathrm{P}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B}) \mathrm{P}(\mathrm{C})
$$

Examples of 3-way Bayesian Networks

Conditionally independent effects:
$\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{C} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})$

B and C are conditionally independent Given A
e.g., A is a disease, and we model

B and C as conditionally independent symptoms given A

Examples of 3-way Bayesian Networks

Independent Causes: $\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{P}(\mathrm{C} \mid \mathrm{A}, \mathrm{B}) \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$
"Explaining away" effect:
Given C, observing A makes B less likely e.g., earthquake/burglary/alarm example

A and B are (marginally) independent but become dependent once C is known

Examples of 3-way Bayesian Networks

Markov dependence:
$\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{P}(\mathrm{C} \mid \mathrm{B}) \mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})$

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary (B), Earthquake (E), Alarm (A), JohnCalls (J), MaryCalls (M)
- What is $\mathrm{P}(\mathrm{B} \mid \mathrm{M}, \mathrm{J})$? (for example)

Example

- We can use the full joint distribution to answer this question.
- Requires $2^{5}=32$ probabilities
- Can we use prior domain knowledge to come up with a Baysian network that requires fewer probabilities?
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Constructing a Baysian Network - Step 1

- Order the variables in terms of causality (may be a partial order), e.g. $\{E, B\}->\{A\}$ $->\{\mathrm{J}, \mathrm{M}\}$
- $\mathrm{P}(\mathrm{J}, \mathrm{M}, \mathrm{A}, \mathrm{E}, \mathrm{B})=\mathrm{P}(\mathrm{J}, \mathrm{M} \mid \mathrm{A}, \mathrm{E}, \mathrm{B}) \mathrm{P}(\mathrm{A} \mid \mathrm{E}, \mathrm{B}) \mathrm{P}(\mathrm{E}, \mathrm{B})$

$$
\begin{array}{ll}
\approx \mathrm{P}(\mathrm{~J}, \mathrm{M} \mid \mathrm{A}) & \mathrm{P}(\mathrm{~A} \mid \mathrm{E}, \mathrm{~B}) \mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{~B}) \\
\approx \mathrm{P}(\mathrm{~J} \mid \mathrm{A}) \mathrm{P}(\mathrm{M} \mid \mathrm{A}) & \mathrm{P}(\mathrm{~A} \mid \mathrm{E}, \mathrm{~B}) \mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{~B})
\end{array}
$$

Conditionally independent assumption

The Resulting Bayesian Network

Constructing this Bayesian Network: Step 2

- $\mathrm{P}(\mathrm{J}, \mathrm{M}, \mathrm{A}, \mathrm{E}, \mathrm{B})=\mathrm{P}(\mathrm{J} \mid \mathrm{A}) \mathrm{P}(\mathrm{M} \mid \mathrm{A}) \mathrm{P}(\mathrm{A} \mid \mathrm{E}, \mathrm{B}) \mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{B})$
- There are 3 conditional probability tables (CPTs) to be determined:
$\mathrm{P}(\mathrm{J} \mid \mathrm{A}), \mathrm{P}(\mathrm{M} \mid \mathrm{A}), \mathrm{P}(\mathrm{A} \mid \mathrm{E}, \mathrm{B})$
- Requiring $2+2+4=8$ probabilities
- And 2 marginal probabilities $\mathrm{P}(\mathrm{E}), \mathrm{P}(\mathrm{B})$-> 2 more probabilities
- Where do these probabilities come from?
- Expert knowledge
- From data (relative frequency estimates)

Inference (Reasoning) in Bayesian Networks

- Consider answering a query in a Bayesian Network
- $\mathrm{Q}=$ set of query variables
- $e=$ evidence (set of instantiated variable-value pairs)
- Inference $=$ computation of conditional distribution $\mathrm{P}(\mathrm{Q} \mid \mathrm{e})$
- Examples
- P(burglary | alarm)
- P(earthquake \| JCalls, Mcalls)
- P(JCalls, MCalls | burglary, earthquake)

- Can we use the structure of the Bayesian Network to answer such queries efficiently? Answer = yes
- Generally speaking, complexity is inversely proportional to sparsity of graph

Why Bayesian Classifiers ?

- Captures prior knowledge of a particular domain. Encodes causality.
- Works well with incomplete data.
- Robust to model overfitting.
- Can add new variables easily.
- Probabilistic outputs.
- But lots of time and effort spent in constructing the network.

Support Vector Machines

Support Vector Machines

- Find a linear hyperplane (decision boundary) that will separate the data

Support Vector Machines

- One Possible Solution

Support Vector Machines

- Another possible solution

Support Vector Machines

- Other possible solutions

Support Vector Machines

- Which one is better? B1 or B2?
- How do you define better?

Support Vector Machines

- Find hyperplane maximizes the margin $=>\mathrm{B} 1$ is better than B 2

Support Vector Machines

Support Vector Machines

- We want to maximize:

$$
\text { Margin }=\frac{2}{\|\vec{w}\|^{2}}
$$

- Which is equivalent to minimizing:

$$
L(w)=\frac{\|\vec{w}\|^{2}}{2}
$$

- But subjected to the following constraints:

$$
f\left(\vec{x}_{i}\right)=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \geq 1 \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \leq-1
\end{array}\right.
$$

- This is a constrained optimization problem
- Numerical approaches to solve it (e.g., quadratic programming)

Support Vector Machines

- What if the problem is not linearly separable?

Support Vector Machines

- What if the problem is not linearly separable?
- Introduce slack variables
- Need to minimize: $L(w)=\frac{\|\vec{w}\|^{2}}{2}+C\left(\sum_{i=1}^{N} \xi_{i}^{k}\right)$
- Subject to:

$$
f\left(\vec{x}_{i}\right)=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \geq 1-\xi_{\mathrm{i}} \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \leq-1+\xi_{\mathrm{i}}
\end{array}\right.
$$

Nonlinear Support Vector Machines

- What if decision boundary is not linear?

Nonlinear Support Vector Machines

- Transform data into higher dimensional space

Why SVMs?

- Convex Convex Convex
- No trapping in local minima
- SVMs work for categorical and continuous data.
- Can control the model complexity by providing the control on cost function, margin parameters to use.
- Kernel Trick (Not discussed) extends it to non-linear spaces.

Loss, bias, variance and noise

Average shot

Bias: depends on the angle

Example: Bias

Figure 5.33. Two decision trees with different complexities induced from the same training data.

Bias-Variance (Generalize)

(a) Decision boundary for decision tree.

(b) Decision boundary for 1-nearest neighbor.

Figure 5.34. Bias of decision tree and 1-nearest neighbor classifiers.

For better generalizable model

- Minimize both bias and variance
- However,
- Neglect the input data and predict the output to be a constant value gives "zero" variance but high bias.
- On the other hand, perfectly interpolate the given data to produce $\mathrm{f}=\mathrm{f}^{*}$ - implies zero bias but high variance.

Model Complexity

- Simple models of low complexity
- high bias, small variance
- potentially rubbish, but stable predictions
- Flexible models of high complexity
- small bias, high variance
- over-complex models can be always massaged to exactly explain the observed training data
- What is the right level of model complexity?
- The problem of model selection

Complexity of the model

Usually, the bias is a decreasing function of the complexity, while variance is an increasing function of the complexity.

Ensemble Methods

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

General Idea

Why does it work?

- Suppose there are 25 base classifiers
- Each classifier has error rate, $\varepsilon=0.35$
- Assume classifiers are independent
- Probability that the ensemble classifier makes a wrong prediction:

$$
\sum_{i=13}^{25}\binom{25}{i} \varepsilon^{i}(1-\varepsilon)^{25-i}=0.06
$$

Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
- Bagging
- Boosting

Bagging

- Bootstrap Aggregation
- Create classifiers by drawing samples of size equal to the original dataset. (Appx 63% of data will be chosen)
- Learn classifier using these samples.
- Vote on them.
- Why does this help?
- If there is a high variance i.e. classifier is unstable, bagging will help to reduce errors due to fluctuations in the training data.
- If the classifier is stable i.e. error of the ensemble is primarily by bias in the base classifier -> may degrade the performance.

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
- Initially, all N records are assigned equal weights
- Unlike bagging, weights may change at the end of boosting round

Adaboost (Freund et. al. 1997)

- Given a set of n class-labeled tuples $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \ldots\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ i.e T
- Initially all weights of tuples are set to same ($1 / \mathrm{n}$)
- Generate k classifiers in k rounds. At the i -th round
- Tuples from T are sampled from T to form training set T_{i}
- Each tuple's chance of selection depends on its weight.
- Learn a model M_{i} from T_{i}
- Compute error rate using T_{i}
- If tuple is misclassified its weight is increased.
- During prediction use the error of the classifier as a weight (vote) on each of the models

Why boosting/bagging?

- Improves the variance of unstable classifiers.
- Unstable Classifiers
- Neural nets, decision trees
- Stable Classifiers
- K-NN
- May lead to results that are not explanatory.

