
CS 484
Data Mining

Classification 5

Some slides are from Professor Eamonn Keogh at UC Riverside

Handling Missing Attribute Values

•  Missing values affect decision tree
construction in three different ways:
– Affects how impurity measures are computed
– Affects how to distribute instance with missing

value to child nodes
– Affects how a test instance with missing value is

classified

Distribute Instances

Class=Yes 0 + 3/9

Class=No 3

Tid Home
Owner

Marital
Status

Annual
Income Class

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No
10

Home
Owner Yes No

Class=Yes 0

Class=No 3

Class=Yes 2

Class=No 4

Home
Owner Yes

Tid Home
Owner

Marital
Status

Annual
Income Class

10 ? Single 90K Yes
10

No

Class=Yes 2 + 6/9

Class=No 4

Probability that Home_Owner=Yes is 3/9

Probability that Home_Owner=No is 6/9

Assign record to the left child with weight =
3/9 and to the right child with weight = 6/9

Other Issues

•  Data Fragmentation
•  Search Strategy
•  Expressiveness
•  Tree Replication

Data Fragmentation

•  Number of instances gets smaller as you
traverse down the tree

•  Number of instances at the leaf nodes could
be too small to make any statistically
significant decision

Search Strategy

•  Finding an optimal decision tree is NP-hard

•  The algorithm presented so far uses a
greedy, top-down, recursive partitioning
strategy to induce a reasonable solution

•  Other strategies?
– Bottom-up
– Bi-directional

Expressiveness
•  Decision tree provides expressive representation for

learning discrete-valued function
–  But they do not generalize well to certain types of

Boolean functions
•  Example: parity function:

–  Class = 1 if there is an even number of Boolean attributes with
truth value = True

–  Class = 0 if there is an odd number of Boolean attributes with
truth value = True

•  For accurate modeling, must have a complete tree

•  Not expressive enough for modeling continuous variables
–  Particularly when test condition involves only a single

attribute at-a-time

Decision Boundary

y < 0.33?

 : 0
 : 3

 : 4
 : 0

y < 0.47?

 : 4
 : 0

 : 0
 : 4

x < 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

•  Border line between two neighboring regions of different classes
is known as decision boundary

•  Decision boundary is parallel to axes because test condition
involves a single attribute at-a-time

Oblique Decision Trees

x + y < 1

Class = + Class =

•  Test condition may involve multiple attributes

•  More expressive representation

•  Finding optimal test condition is computationally expensive

Tree Replication
P

Q R

S 0 1

0 1

Q

S 0

0 1

•  Same subtree appears in multiple branches

Model Evaluation

•  Metrics for Performance Evaluation
– How to evaluate the performance of a model?

•  Methods for Performance Evaluation
– How to obtain reliable estimates?

•  Methods for Model Comparison
– How to compare the relative performance

among competing models?

Model Evaluation

•  Metrics for Performance Evaluation
– How to evaluate the performance of a model?

•  Methods for Performance Evaluation
– How to obtain reliable estimates?

•  Methods for Model Comparison
– How to compare the relative performance

among competing models?

Accuracy =
Number of correct classifications
Number of instances in our database

Accuracy is a single number, we may
be better off looking at a confusion
matrix. This gives us additional
useful information…

Cat Dog Pig

Cat 100 0 0
Dog 9 90 1
Pig 45 45 10

True label is…

Classified as...

Metrics for Performance Evaluation

Focus on the predictive capability of a model, rather than how fast
it takes to classify or build models, scalability, etc.

Metrics for Performance Evaluation

•  Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Remember this Example?

Sea Bass misclassified as Salmon Salmon misclassified as Sea Bass

Metrics for Performance Evaluation
•  Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Salmon Sea Bass

Salmon
Sea Bass

Predicted as...

True label is…

Metrics for Performance Evaluation…

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a
(TP)

b
(FN)

Class=No c
(FP)

d
(TN)

FNFPTNTP
TNTP

dcba
da

+++
+

=
+++

+
=Accuracy

(% of correctly classified items)

Model Evaluation

•  Metrics for Performance Evaluation
– How to evaluate the performance of a model?

•  Methods for Performance Evaluation
– How to obtain reliable estimates?

•  Methods for Model Comparison
– How to compare the relative performance

among competing models?

Methods for Performance Evaluation

•  How to obtain a reliable estimate of
performance?

•  Performance of a model may depend on
other factors besides the learning algorithm:
– Class distribution
– Cost of misclassification
– Size of training and test sets

Methods of Estimation
•  Holdout

–  Reserve 2/3 for training and 1/3 for testing
•  Random subsampling

–  Repeated holdout
•  Cross validation

–  Partition data into k disjoint subsets
–  k-fold: train on k-1 partitions, test on the remaining one
–  Leave-one-out: k=n

•  Stratified sampling
–  oversampling vs undersampling

•  Bootstrap
–  Sampling with replacement

Hold-out validation: simple holdout set
Partition data into training set and test set

Sample

Training Set

Test Set

In some domains it makes sense to partition temporally
(training set before t, test set after t)

challenges: 1) what if by accident you selected a particularly easy/hard test set?
2) do you have an idea of the variation in model accuracy due to training?

K-Fold Cross Validation

Insect ID Abdomen
Length

Antennae
Length

Insect Class

1 2.7 5.5 Grasshopper

2 8.0 9.1 Katydid

3 0.9 4.7 Grasshopper

4 1.1 3.1 Grasshopper

5 5.4 8.5 Katydid

6 2.9 1.9 Grasshopper

7 6.1 6.6 Katydid

8 0.5 1.0 Grasshopper

9 8.3 6.6 Katydid

10 8.1 4.7 Katydids

We divide the dataset into K equal sized sections. The algorithm is tested K times,
each time leaving out one of the K section from building the classifier, but using it
to test the classifier instead

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

Accuracy = Number of correct classifications
Number of instances in our database

K = 5

Limitation of Accuracy

•  Consider a 2-class problem
– Number of Class 0 examples = 9990
– Number of Class 1 examples = 10

•  If model predicts everything to be class 0,
accuracy is 9990/10000 = 99.9 %
– Accuracy is misleading because model does not

detect any class 1 example

What if?
Salmon is more expensive than Bass?

New decision boundary

x*

Bass is more expensive than Salmon?

x*

New decision boundary

Cost sensitive classification

•  Penalize misclassifications of one class
more than the other

•  Changes decision boundaries

Cost Matrix
 PREDICTED CLASS

ACTUAL
CLASS

C(i, j) Class=Yes Class=No

Class=Yes C(Yes, Yes) C(Yes, No)

Class=No C(No, Yes) C(No, No)

C(i, j): Cost of misclassifying class i example as class j

Computing Cost of Classification
Cost
Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i, j) + -
+ -1 100
- 1 0

Model M1 PREDICTED CLASS

ACTUAL
CLASS

+ -
+ 150 40
- 60 250

Model M2 PREDICTED CLASS

ACTUAL
CLASS

+ -
+ 250 45
- 5 200

Accuracy = 80%
Cost = 3910

Accuracy = 90%
Cost = 4255

False negative error cost

False positive error cost

Cost vs Accuracy

Count PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

Cost PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes p q

Class=No q p

N = a + b + c + d

Accuracy = (a + d)/N

Cost = p (a + d) + q (b + c)

 = p (a + d) + q (N – a – d)

 = q N – (q – p)(a + d)

 = N [q – (q – p) × Accuracy]

Accuracy is proportional to cost if
1. C(Yes, No)=C(No, Yes) = q
2. C(Yes, Yes)=C(No, No) = p

Cost-Sensitive Measures

Precision (p) = a
a+ c

Recall (r) = a
a+ b

F1-measure (F1) = 2rp
r + p

=
2a

2a+ b+ c

  Precision is biased towards C(Yes, Yes) & C(No, Yes)
  Recall is biased towards C(Yes, Yes) & C(Yes, No)
  F1-measure is biased towards all except C(No, No)

dwcwbwaw
dwaw

4321

41Accuracy Weighted
+++

+
=

Count PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

Model Evaluation

•  Metrics for Performance Evaluation
– How to evaluate the performance of a model?

•  Methods for Performance Evaluation
– How to obtain reliable estimates?

•  Methods for Model Comparison
– How to compare the relative performance

among competing models?

Tool for model performance analytics: The fitting curve

But can we find the right complexity?

Model Complexity

revisit

Need to be careful making data mining
decisions based on testing data (or CV)

•  When choosing models, features, complexity parameters, etc.
•  Don’t want to overfit the test data!

Sample

Training Set

Test Set

•  can run a (nested) holdout (or CV)
on the training set, and make choices
without examining test set.
•  when choices all are made, then test
on test set
•  this “nested” test set is often called
the “validation” set (to differentiate
from the final test set).

validation data

nested training data

Nested holdout for
 complexity

control

split training
fold again

save this for later

ROC (Receiver Operating Characteristic)

•  Developed in 1950s for signal detection
theory to analyze noisy signals
– Characterize the trade-off between positive hits

and false alarms
•  ROC curve plots TPR (on the y-axis)

against FPR (on the x-axis)
•  Performance of each classifier represented

as a point on the ROC curve
–  changing the threshold of algorithm, sample

distribution or cost matrix changes the location
of the point

ROC (Receiver Operating Characteristic)

•  Developed in 1950s for signal detection theory to
analyze noisy signals
–  Characterize the trade-off between positive hits and

false alarms
•  ROC curve plots TPR (on the y-axis) against

FPR (on the x-axis)

FNTP
TPTPR
+

=

TNFP
FPFPR
+

=

PREDICTED CLASS

Actual

Yes No

Yes a
(TP)

b
(FN)

No c
(FP)

d
(TN)

36

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

ROC Curve

At threshold t:

TP=0.5, FN=0.5, FP=0.12, TN=0.88

- 1-dimensional data set containing 2 classes (positive and negative)

- any points located at x > t is classified as positive

ROC Curve
(TP,FP):
•  (0,0): declare everything

 to be negative class
•  (1,1): declare everything

 to be positive class
•  (1,0): ideal

•  Diagonal line:

–  Random guessing
–  Below diagonal line:

•  prediction is opposite of the
true class

ROC space

Using ROC for Model Comparison
•  No model consistently

outperform the other
•  M1 is better for small

FPR
•  M2 is better for large

FPR

•  Area Under the ROC
curve

•  Ideal:
•  Area = 1

•  Random guess:
•  Area = 0.5

How To Construct an ROC Curve?

How To Construct an ROC Curve?

How To Construct an ROC Curve?

How to Construct an ROC curve

Instance P(+|A) True Class
1 0.95 +
2 0.93 +
3 0.87 -
4 0.85 -
5 0.85 -
6 0.85 +
7 0.76 -
8 0.53 +
9 0.43 -

10 0.25 +

•  Use classifier that produces
posterior probability for each test
instance P(+|A)

•  Sort the instances according to
P(+|A) in decreasing order

•  Apply threshold at each unique
value of P(+|A)

•  Count the number of TP, FP,
 TN, FN at each threshold

•  TP rate, TPR = TP/(TP+FN)

•  FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve
Class + - + - - - + - + +

P 0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00

TP 5 4 4 3 3 3 3 2 2 1 0

FP 5 5 4 4 3 2 1 1 0 0 0

TN 0 0 1 1 2 3 4 4 5 5 5

FN 0 1 1 2 2 2 2 3 3 4 5

TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0

FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0

Threshold >=

ROC Curve:

