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Some slides are from Professor Eamonn Keogh at UC Riverside 



Handling Missing Attribute Values 

•  Missing values affect decision tree 
construction in three different ways: 
– Affects how impurity measures are computed 
– Affects how to distribute instance with missing 

value to child nodes 
– Affects how a test instance with missing value is 

classified 



Distribute Instances 

Class=Yes 0 + 3/9 

Class=No 3 
 

 

Tid Home 
Owner 

Marital 
Status 

Annual 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 
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Class=Yes 2 

Class=No 4 
 

 

Home 
Owner Yes 

Tid Home 
Owner 

Marital 
Status 

Annual 
Income Class 

10 ? Single 90K Yes 
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No 

Class=Yes 2 + 6/9 

Class=No 4 
 

 

Probability that Home_Owner=Yes is 3/9 

Probability that Home_Owner=No is 6/9 

Assign record to the left child with weight = 
3/9 and to the right child with weight = 6/9 



Other Issues 

•  Data Fragmentation 
•  Search Strategy 
•  Expressiveness 
•  Tree Replication 



Data Fragmentation 

•  Number of instances gets smaller as you 
traverse down the tree 

•  Number of instances at the leaf nodes could 
be too small to make any statistically 
significant decision 



Search Strategy 

•  Finding an optimal decision tree is NP-hard 

•  The algorithm presented so far uses a 
greedy, top-down, recursive partitioning 
strategy to induce a reasonable solution 

•  Other strategies? 
– Bottom-up 
– Bi-directional 



Expressiveness 
•  Decision tree provides expressive representation for 

learning discrete-valued function 
–  But they do not generalize well to certain types of 

Boolean functions 
•   Example: parity function:  

–  Class = 1 if there is an even number of Boolean attributes with 
truth value = True 

–  Class = 0 if there is an odd number of Boolean attributes with 
truth value = True 

•   For accurate modeling, must have a complete tree 

•  Not expressive enough for modeling continuous variables 
–  Particularly when test condition involves only a single 

attribute at-a-time 



Decision Boundary 
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•  Border line between two neighboring regions of different classes 
is known as decision boundary 

•  Decision boundary is parallel to axes because test condition 
involves a single attribute at-a-time 



Oblique Decision Trees 

x + y < 1 

Class = +  Class =      

•  Test condition may involve multiple attributes 

•  More expressive representation 

•  Finding optimal test condition is computationally expensive 



Tree Replication 
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•  Same subtree appears in multiple branches 



Model Evaluation 

•  Metrics for Performance Evaluation 
– How to evaluate the performance of a model? 
 

•  Methods for Performance Evaluation 
– How to obtain reliable estimates? 

•  Methods for Model Comparison 
– How to compare the relative performance 

among competing models? 
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Accuracy =  
Number of correct classifications 
Number of instances in our database  

Accuracy is a single number, we may 
be better off looking at a confusion 
matrix. This gives us additional 
useful information… 

Cat Dog Pig 

Cat 100 0 0 
Dog 9 90 1 
Pig 45 45 10 

True label is… 

Classified as... 

Metrics for Performance Evaluation 

Focus on the predictive capability of a model, rather than how fast 
it takes to classify or build models, scalability, etc. 



Metrics for Performance Evaluation 

•  Confusion Matrix: 

PREDICTED CLASS 
 
 

ACTUAL 
CLASS 

Class=Yes Class=No 

Class=Yes a b 

Class=No c d 

a: TP (true positive) 

b: FN (false negative) 

c: FP (false positive) 

d: TN (true negative) 



Remember this Example? 

Sea Bass misclassified as Salmon Salmon misclassified as Sea Bass 



Metrics for Performance Evaluation 
•  Confusion Matrix: 

PREDICTED CLASS 
 
 

ACTUAL 
CLASS 

Class=Yes Class=No 

Class=Yes a b 

Class=No c d 

a: TP (true positive) 

b: FN (false negative) 

c: FP (false positive) 

d: TN (true negative) 

Salmon Sea Bass 

Salmon 
Sea Bass 

Predicted as... 

True label is… 



Metrics for Performance Evaluation… 

PREDICTED CLASS 

 
 

ACTUAL 
CLASS 

Class=Yes Class=No 

Class=Yes a 
(TP) 

b 
(FN) 

Class=No c 
(FP) 

d 
(TN) 

FNFPTNTP
TNTP

dcba
da

+++
+

=
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+
=Accuracy 

(% of correctly classified items) 



Model Evaluation 

•  Metrics for Performance Evaluation 
– How to evaluate the performance of a model? 
 

•  Methods for Performance Evaluation 
– How to obtain reliable estimates? 

•  Methods for Model Comparison 
– How to compare the relative performance 

among competing models? 



Methods for Performance Evaluation 

•  How to obtain a reliable estimate of 
performance? 

•  Performance of a model may depend on 
other factors besides the learning algorithm: 
– Class distribution 
– Cost of misclassification 
– Size of training and test sets 



Methods of Estimation 
•  Holdout 

–  Reserve 2/3 for training and 1/3 for testing  
•  Random subsampling 

–  Repeated holdout 
•  Cross validation 

–  Partition data into k disjoint subsets 
–  k-fold: train on k-1 partitions, test on the remaining one 
–  Leave-one-out:   k=n 

•  Stratified sampling  
–  oversampling vs undersampling 

•  Bootstrap 
–  Sampling with replacement 



Hold-out validation: simple holdout set 
Partition data into training set and test set 

Sample

Training Set

Test Set

In some domains it makes sense to partition temporally  
(training set before t, test set after t) 

challenges: 1) what if by accident you selected a particularly easy/hard test set? 
2) do you have an idea of the variation in model accuracy due to training? 



K-Fold Cross Validation 

Insect ID Abdomen  
Length 

Antennae  
Length 

Insect Class 

1 2.7 5.5 Grasshopper 

2 8.0 9.1 Katydid 

3 0.9 4.7 Grasshopper 

4 1.1 3.1 Grasshopper 

5 5.4 8.5 Katydid 

6 2.9 1.9 Grasshopper 

7 6.1 6.6 Katydid 

8 0.5 1.0 Grasshopper 

9 8.3 6.6 Katydid 

10 8.1 4.7 Katydids 

We divide the dataset into K equal sized sections. The algorithm is tested K times, 
each time leaving out one of the K section from building the classifier, but using it 
to test the classifier instead   
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Accuracy =  Number of correct classifications 
Number of instances in our database  

K = 5 



Limitation of Accuracy 

•  Consider a 2-class problem 
– Number of Class 0 examples = 9990 
– Number of Class 1 examples = 10 

•  If model predicts everything to be class 0, 
accuracy is 9990/10000 = 99.9 % 
– Accuracy is misleading because model does not 

detect any class 1 example 



What if?  
Salmon is more expensive than Bass? 

New decision boundary 

x* 

Bass is more expensive than Salmon? 

x* 

New decision boundary 



Cost sensitive classification  

•  Penalize misclassifications of one class 
more than the other 

•  Changes decision boundaries 



Cost Matrix 
      PREDICTED CLASS 

 
 

ACTUAL 
CLASS 

C(i, j) Class=Yes Class=No 

Class=Yes C(Yes, Yes) C(Yes, No) 

Class=No C(No, Yes) C(No, No) 

C(i, j): Cost of misclassifying class i example as class j 



Computing Cost of Classification 
Cost 
Matrix 

PREDICTED CLASS 

 
ACTUAL 
CLASS 

C(i, j) + - 
+ -1 100 
- 1 0 

Model M1 PREDICTED CLASS 

 
ACTUAL 
CLASS 

+ - 
+ 150 40 
- 60 250 

Model M2 PREDICTED CLASS 

 
ACTUAL 
CLASS 

+ - 
+ 250 45 
- 5 200 

Accuracy = 80% 
Cost = 3910 

Accuracy = 90% 
Cost = 4255 

False negative error cost 

False positive error cost 



Cost vs Accuracy 

Count PREDICTED CLASS 

 
 

ACTUAL 
CLASS 

Class=Yes Class=No 

Class=Yes a b 

Class=No c d 

Cost PREDICTED CLASS 

 
 

ACTUAL 
CLASS 

Class=Yes Class=No 

Class=Yes p q 

Class=No q p 

N = a + b + c + d 

 

Accuracy = (a + d)/N 

 

Cost = p (a + d) + q (b + c) 

        = p (a + d) + q (N – a – d) 

        = q N – (q – p)(a + d) 

        = N [q – (q – p) × Accuracy]  

 

Accuracy is proportional to cost if 
1. C(Yes, No)=C(No, Yes) = q  
2. C(Yes, Yes)=C(No, No) = p 



Cost-Sensitive Measures 

Precision (p) = a
a+ c

Recall (r) = a
a+ b

F1-measure (F1) = 2rp
r + p

=
2a

2a+ b+ c

  Precision is biased towards C(Yes, Yes) & C(No, Yes) 
  Recall is biased towards C(Yes, Yes) & C(Yes, No) 
  F1-measure is biased towards all except C(No, No) 

dwcwbwaw
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Count PREDICTED CLASS 

 
 

ACTUAL 
CLASS 

Class=Yes Class=No 

Class=Yes a b 

Class=No c d 



Model Evaluation 

•  Metrics for Performance Evaluation 
– How to evaluate the performance of a model? 
 

•  Methods for Performance Evaluation 
– How to obtain reliable estimates? 

•  Methods for Model Comparison 
– How to compare the relative performance 

among competing models? 



Tool for model performance analytics: The fitting curve 

But can we find the right complexity? 

Model Complexity 

revisit 



Need to be careful making data mining 
decisions based on testing data (or CV) 

•  When choosing models, features, complexity parameters, etc. 
•  Don’t want to overfit the test data! 

Sample

Training Set

Test Set

•  can run a (nested) holdout (or CV) 
on the training set, and make choices 
without examining test set. 
•  when choices all are made, then test 
on test set 
•  this “nested” test set is often called 
the “validation” set (to differentiate 
from the final test set). 

validation data 

nested training data 

Nested holdout for 
 complexity  

control 

split training  
fold again 

save this for later 



ROC (Receiver Operating Characteristic) 

•  Developed in 1950s for signal detection 
theory to analyze noisy signals  
– Characterize the trade-off between positive hits 

and false alarms 
•  ROC curve plots TPR (on the y-axis) 

against FPR (on the x-axis) 
•  Performance of each classifier represented 

as a point on the ROC curve 
–  changing the threshold of algorithm, sample 

distribution or cost matrix changes the location 
of the point 



ROC (Receiver Operating Characteristic) 

•  Developed in 1950s for signal detection theory to 
analyze noisy signals  
–  Characterize the trade-off between positive hits and 

false alarms 
•  ROC curve plots TPR (on the y-axis) against 

FPR (on the x-axis) 

FNTP
TPTPR
+

=

TNFP
FPFPR
+

=

PREDICTED CLASS 

 
 

Actual 

Yes No 

Yes a 
(TP) 

b 
(FN) 

No c 
(FP) 

d 
(TN) 
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http://en.wikipedia.org/wiki/Receiver_operating_characteristic 



ROC Curve 

At threshold t: 

TP=0.5, FN=0.5, FP=0.12, TN=0.88 

- 1-dimensional data set containing 2 classes (positive and negative) 

- any points located at x > t is classified as positive 



ROC Curve 
(TP,FP): 
•  (0,0): declare everything 

          to be negative class 
•  (1,1): declare everything 

         to be positive class 
•  (1,0): ideal 
 
•  Diagonal line: 

–  Random guessing 
–  Below diagonal line: 

•   prediction is opposite of the 
true class 



ROC space 



Using ROC for Model Comparison 
•  No model consistently 

outperform the other 
•  M1 is better for small 

FPR 
•  M2 is better for large 

FPR 

•  Area Under the ROC 
curve 

•  Ideal:  
•   Area = 1 

•  Random guess: 
•   Area = 0.5 



How To Construct an ROC Curve? 
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How to Construct an ROC curve 

Instance P(+|A) True Class 
1 0.95 + 
2 0.93 + 
3 0.87 - 
4 0.85 - 
5 0.85 - 
6 0.85 + 
7 0.76 - 
8 0.53 + 
9 0.43 - 

10 0.25 + 

•  Use classifier that produces 
posterior probability for each test 
instance P(+|A) 

•  Sort the instances according to 
P(+|A) in decreasing order 

•  Apply threshold at each unique 
value of P(+|A) 

•  Count the number of TP, FP,  
  TN, FN at each threshold 

•  TP rate, TPR = TP/(TP+FN) 

•  FP rate, FPR = FP/(FP + TN) 



How to construct an ROC curve 
Class + - + - - - + - + +  

P 0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00 

TP 5 4 4 3 3 3 3 2 2 1 0 

FP 5 5 4 4 3 2 1 1 0 0 0 

TN 0 0 1 1 2 3 4 4 5 5 5 

FN 0 1 1 2 2 2 2 3 3 4 5 

TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0 

FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0 
 

Threshold >=  

ROC Curve: 


