CS 484 Data Mining

Classification 5

Some slides are from Professor Eamonn Keogh at UC Riverside

Handling Missing Attribute Values

- Missing values affect decision tree construction in three different ways:
 - Affects how impurity measures are computed
 - Affects how to distribute instance with missing value to child nodes
 - Affects how a test instance with missing value is classified

Distribute Instances

Tid	Home Owner	Mari Stati	tal us	Annual Income	Cla	ass
1	Yes	Sing	le	125K	No)
2	No	Marr	ied	100K	No)
3	No	Sing	le	70K	No)
4	Yes	Marr	ied	120K	No)
5	No	Divo	rced	95K	Ye	S
6	No	Marr	ied	60K	No)
7	Yes	Divo	rced	220K	No)
8	No	Sing	le	85K	Ye	S
9	No	Marr	ied	75K	No	
Yes No						
Class=	Class=Yes 0			Class=Ye	S	2
Class=	No	3		Class=No	D	4

Probability that Home_Owner=Yes is 3/9 Probability that Home_Owner=No is 6/9 Assign record to the left child with weight = 3/9 and to the right child with weight = 6/9

Other Issues

- Data Fragmentation
- Search Strategy
- Expressiveness
- Tree Replication

Data Fragmentation

- Number of instances gets smaller as you traverse down the tree
- Number of instances at the leaf nodes could be too small to make any statistically significant decision

Search Strategy

- Finding an optimal decision tree is NP-hard
- The algorithm presented so far uses a greedy, top-down, recursive partitioning strategy to induce a reasonable solution
- Other strategies?
 - Bottom-up
 - Bi-directional

Expressiveness

- Decision tree provides expressive representation for learning discrete-valued function
 - But they do not generalize well to certain types of Boolean functions
 - Example: parity function:
 - Class = 1 if there is an even number of Boolean attributes with truth value = True
 - Class = 0 if there is an odd number of Boolean attributes with truth value = True
 - For accurate modeling, must have a complete tree
- Not expressive enough for modeling continuous variables
 - Particularly when test condition involves only a single attribute at-a-time

Decision Boundary

• Border line between two neighboring regions of different classes is known as decision boundary

• Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive

Tree Replication

• Same subtree appears in multiple branches

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Model Evaluation

Metrics for Performance Evaluation

– How to evaluate the performance of a model?

- Methods for Performance Evaluation

 How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

Focus on the predictive capability of a model, rather than how fast it takes to classify or build models, scalability, etc.

 $Accuracy = \frac{Number of correct classifications}{Number of instances in our database}$

Accuracy is a single number, we may be better off looking at a **confusion matrix**. This gives us additional useful information...

Classified as...

	Cat	Dog	Pig
Cat	100	0	0
Dog	9	90	1
Pig	45	45	10

True label is...

Metrics for Performance Evaluation

• Confusion Matrix:

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	а	b		
CLASS	Class=No	С	d		

a: TP (true positive)b: FN (false negative)c: FP (false positive)

d: TN (true negative)

Remember this Example?

Metrics for Performance Evaluation

• Confusion Matrix:

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	а	b	
	Class=No	С	d	

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Predicted as...

	Salmon	Sea Bass
Salmon		
Sea Bass		

True label is...

Metrics for Performance Evaluation...

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	a (TP)	b (FN)		
ULASS	Class=No	c (FP)	d (TN)		

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

(% of correctly classified items)

Model Evaluation

Metrics for Performance Evaluation

– How to evaluate the performance of a model?

- Methods for Performance Evaluation – How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

Hold-out validation: simple holdout set

Partition data into training set and test set

In some domains it makes sense to partition temporally (training set before t, test set after t)

Test Set

<u>challenges</u>: 1) what if by accident you selected a particularly easy/hard test set?2) do you have an idea of the variation in model accuracy due to training?

K-Fold Cross Validation

We divide the dataset into *K* equal sized sections. The algorithm is tested *K* times, each time leaving out one of the *K* section from building the classifier, but using it to *test* the classifier instead

$Accuracy = \frac{Number of correct classifications}{Number of instances in our database}$

K	=	5
		-

nsect ID	Abdomen Length	Antennae Length	Insect Class
1	2.7	5.5	Grasshopper
2	8.0	9.1	Katydid
3	0.9	4.7	Grasshopper
4	1.1	3.1	Grasshopper
5	5.4	8.5	Katydid
6	2.9	1.9	Grasshopper
7	6.1	6.6	Katydid
8	0.5	1.0	Grasshopper
9	8.3	6.6	Katydid
10	8.1	4.7	Katydids

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

What if?Salmon is more expensive than Bass?Bass is more expensive than Salmon?

Cost sensitive classification

- Penalize misclassifications of one class more than the other
- Changes decision boundaries

Cost Matrix

	PREDICTED CLASS				
	C(i, j)	Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	C(Yes, Yes)	C(Yes, No)		
	Class=No	C(No, Yes)	C(No, No)		

C(i, j): Cost of misclassifying class i example as class j

Computing Cost of Classification

	Cost Matrix	PREDICTED CLASS			
		C(i, j)	+	-	
	ACTUAL CLASS	+	-1	100	
			1	0	

False negative error cost

False positive error cost *<*

Model M ₁	PREDICTED CLASS			
ACTUAL CLASS		+	-	
	+	150	40	
		60	250	

Accuracy = 80%

Cost = 3910

Model M ₂	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	250	45	
	-	5	200	

Accuracy = 90%

Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS					
ACTUAL CLASS		Class=Yes	Class=No			
	Class=Yes	а	b			
	Class=No	С	d			

Accuracy is proportional to cost if 1. C(Yes, No)=C(No, Yes) = q 2. C(Yes, Yes)=C(No, No) = p

$$N = a + b + c + d$$

Accuracy = (a + d)/N

Cost	PREDICTED CLASS						
ACTUAL CLASS		Class=Yes	Class=No				
	Class=Yes	р	q				
	Class=No	q	р				

Cost-Sensitive Measures

- Precision is biased towards C(Yes, Yes) & C(No, Yes)
- Recall is biased towards C(Yes, Yes) & C(Yes, No)
- F1-measure is biased towards all except C(No, No) Weighted Accuracy = $\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$

Model Evaluation

- Metrics for Performance Evaluation

 How to evaluate the performance of a model?
- Methods for Performance Evaluation
 How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Tool for model performance analytics: The fitting curve *But can we find the right complexity?*

revisit

Nested holdout for complexity control

Need to be careful making data mining decisions based on testing data (or CV)

nested training data

- When choosing models, features, complexity parameters, etc.
- Don't want to overfit the <u>test data!</u>

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:

• Area
$$= 0.5$$

How To Construct an ROC Curve?

How To Construct an ROC Curve?

How To Construct an ROC Curve?

How to Construct an ROC curve

Instance	P(+ A)	True Class		
1	0.95	+		
2	0.93	+		
3	0.87	-		
4	0.85	-		
5	0.85	-		
6	0.85	+		
7	0.76	-		
8	0.53	+		
9	0.43	-		
10	0.25	+		

• Use classifier that produces posterior probability for each test instance P(+|A)

- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	<u> </u> >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	ТР	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

