CS 484 Data Mining

Classification

Classification: Definition

- Given a collection of records (training set)
- Each record contains a set of attributes, one of the attributes is the class.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: previously unseen records should be assigned a class as accurately as possible.
- A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

Illustrating Classification Task

Tid		Attrib1	Attrib2	Attrib3
1	Yes	Large	125 K	No
2	No	Medium	100 K	No
3	No	Small	70 K	No
4	Yes	Medium	120 K	No
5	No	Large	95 K	Yes
6	No	Medium	60 K	No
7	Yes	Large	220 K	No
8	No	Small	85 K	Yes
9	No	Medium	75 K	No
10	No	Small	90 K	Yes
Training Set				

Tid				Attrib1
Attrib2	Attrib3	Class		
11	No	Small	55 K	$?$
12	Yes	Medium	80 K	$?$
13	Yes	Large	110 K	$?$
14	No	Small	95 K	$?$
15	No	Large	67 K	$?$

Test Set

Examples of Classification Task

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent
- Categorizing news stories as finance, weather, entertainment, sports, etc

The Classification Problem

 (informal definition)Given a collection of annotated data. In this case 5 instances of Katydids and five of Grasshoppers, decide what type of insect the unlabeled example is.

Katydid or Grasshopper?

Katydids

Grasshoppers

For any domain of interest, we can measure features

Color \{Green, Brown, Gray, Other\}

Has Wings?

Abdomen	Thorax
Length	Length

Antennae
Length

Mandible
Size
Spiracle
Diameter

We can store features in a database.

The classification

 problem can now be expressed as:Given a training database (My_Collection), predict the class label of a previously unseen instance

My_Collection

Insect ID	Abdomen Length	Antennae Length	Insect Class
1	2.7	5.5	Grasshopper
2	8.0	9.1	Katydid
3	0.9	4.7	Grasshopper
4	1.1	3.1	Grasshopper
5	5.4	8.5	Katydid
6	2.9	1.9	Grasshopper
7	6.1	6.6	Katydid
8	0.5	1.0	Grasshopper
9	8.3	6.6	Katydid
10	8.1	4.7	Katydids

Grasshoppers

$\begin{array}{llll}1 & 2 & 3 \quad 4 & 5 \\ & & \text { Abdomen } \\ & & \text { Length }\end{array}$
Katydids

Grasshoppers
We will also use this lager dataset

Katydids

 as a motivating example...

Each of these data objects are called...

- exemplars
- (training) examples
- instances
- tuples

We will return to the previous slide in two minutes. In the meantime, we are going to play a quick game.

I am going to show you some classification problems which were shown to pigeons!

Let us see if you are as smart as a pigeon!

Pigeon Problem 1

Pigeon Problem 1

What class is this object?

What about this one, A or B ?

Pigeon Problem 1

This is a B!

Here is the rule. If the left bar is smaller than the right bar, it is an A, otherwise it is a B.

Pigeon Problem 2

Oh! This ones

 hard!class A

Pigeon Problem 2

The rule is as follows, if the two bars are equal sizes, it is an A. Otherwise it is a B.

So this one is an A.

Pigeon Problem 3

Examples of class A	Examples of class B
44	56
15	75
63	48
7	$7 \quad 7$

This one is really hard! What is this, A or B?

Pigeon Problem 3

It is a B !

The rule is as follows, if the square of the sum of the two bars is less than or equal to 100, it is an A. Otherwise it is $a B$.

Why did we spend so much time with this game?

Because we wanted to show that almost all classification problems have a geometric interpretation, check out the next 3 slides...

Pigeon Problem 1

Here is the rule again. If the left bar is smaller than the right bar, it is an A, otherwise it is a B.

Pigeon Problem 2

Examples of class A	Examples of class B
$4 \quad 4$	52.5
55	25
66	53
3 3	2.53

Let me look it up... here it is.. the rule is, if the two bars are equal sizes, it is an A. Otherwise it is a B.

Pigeon Problem 3

Examples of class A	Examples of class B
44	56
15	75
63	48
$3 \quad 7$	$7 \quad 7$

The rule again:
if the square of the sum of the two bars is less than or equal to 100, it is an A. Otherwise it is a B.

Grasshoppers

$\begin{array}{llll}1 & 2 & 3 \quad 4 & 5 \\ & & \text { Abdomen } \\ & & \text { Length }\end{array}$
Katydids

11	5.1	7.0	??????

> We can "project" the previously unseen instance into the same space as the database.

We have now abstracted away the details of our particular problem. It will be much easier to talk about points in space.

© Katydids

- Grasshoppers

Simple Linear Classifier

R.A. Fisher 1890-1962

If previously unseen instance above the line then
class is Katydid
else
class is Grasshopper
© Katydids

- Grasshoppers

The simple linear classifier is defined for higher dimensional spaces...

It is interesting to think about what would happen in this example if we did not have the $3^{\text {rd }}$ dimension...

We can no longer get perfect accuracy with the simple linear classifier...

We could try to solve this problem by user a simple quadratic classifier or a simple cubic classifier..

However, as we will later see, this is probably a bad idea.

Which of the "Pigeon Problems" can be solved by the Simple Linear Classifier?

Perfect
Useless
Pretty Good

Problems that can be solved by a linear classifier are called linearly separable.

A Famous Problem

R. A. Fisher's Iris Dataset.

3 classes
50 of each class
The task is to classify Iris plants into one of 3 varieties using the Petal Length and Petal Width.

Iris Versicolor

Iris Virginica

We can generalize the piecewise linear classifier to N classes, by fitting N-1 lines. In this case we first learned the line to (perfectly) discriminate between Setosa and Virginica/Versicolor, then we learned to approximately discriminate between Virginica and Versicolor.

If petal width $>3.272-(0.325 *$ petal length $)$ then class $=$ Virginica Elseif petal width...

