CS 484 Data Mining

Association Rule Mining 3

Compact Representation of Frequent Itemsets

• Some itemsets are redundant because they have identical support as their supersets

TID	A1	A2	A3	A4	A5	A6	A7	A 8	A9	A10	B1	B2	B 3	B4	B5	B6	B7	B 8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C 8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

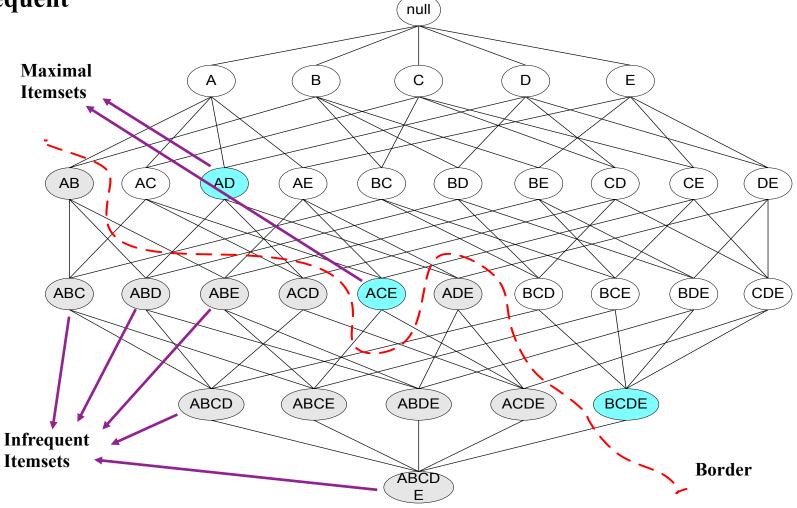
• Number of frequent itemsets

$$= 3 \times \sum_{k=1}^{10} \binom{10}{k}$$

• Need a compact representation

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent



Closed Itemset

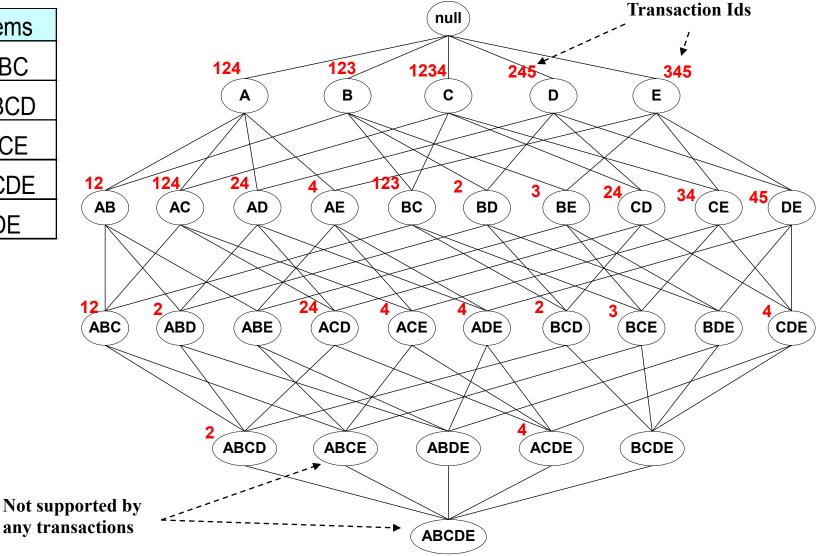
• An itemset is closed if none of its immediate supersets has the same support as the itemset. Using the closed itemset support, we can find the support for the non-closed itemsets.

TID	Items
1	{A,B}
2	{B,C,D}
3	{A,B,C,D}
4	{A,B,D}
5	{A,B,C,D}

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
{A,B,C}	2
{A,B,D}	3
{A,C,D}	2
{B,C,D}	3
{A,B,C,D}	2

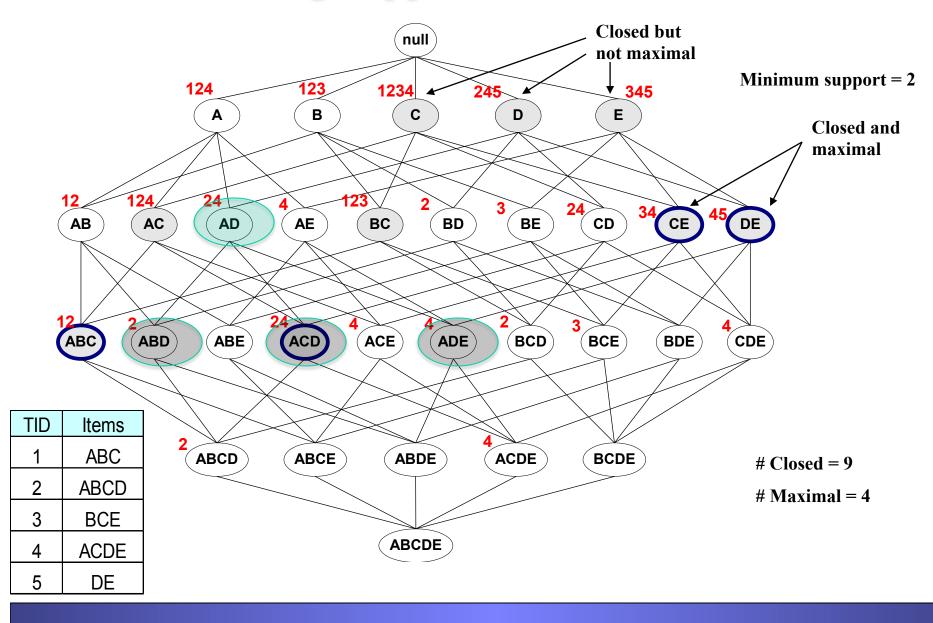
Maximal vs Closed Itemsets



Maximal vs Closed Frequent Itemsets



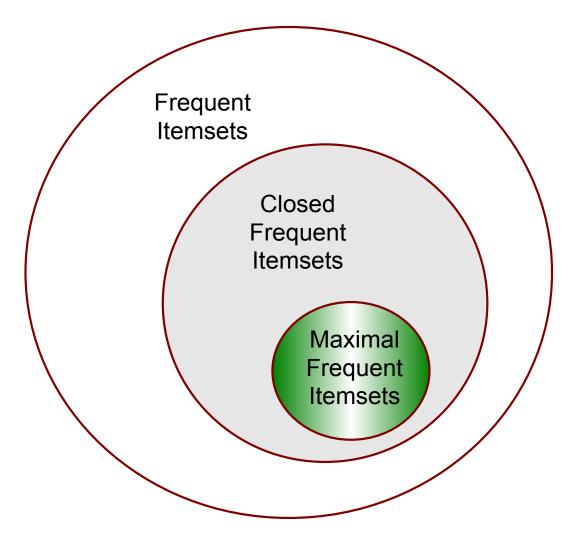
Determining support for non-closed itemsets



Closed Frequent Itemset

- An itemset is closed frequent itemset if it is closed and it support is greater than or equal to "minsup".
- Useful for removing redundant rules
 - A rules X -> Y is redundant if there exists another rule X' -> Y' where X is a subset of X' and Y is a subset of Y', such that the support/confidence for both rules are identical

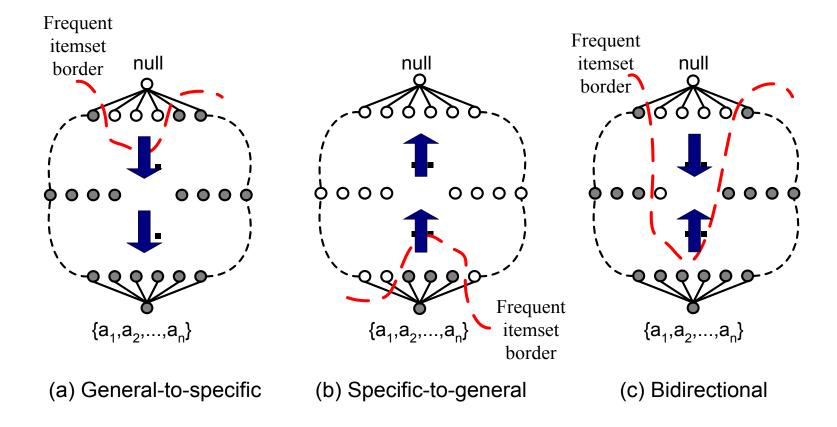
Maximal vs Closed Itemsets



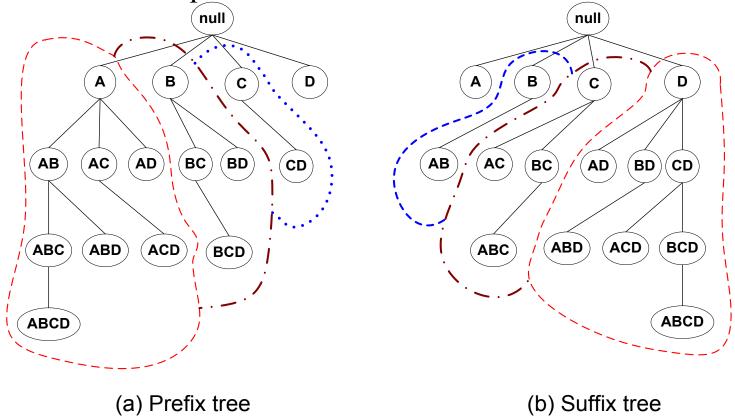
Apriori Problems

- High I/O
- Poor performance for dense datasets because of increasing width of dimensions.

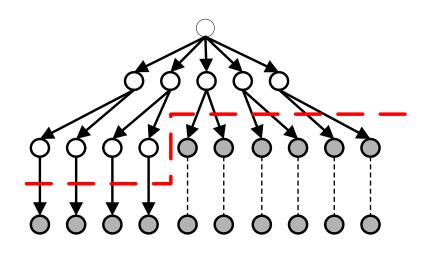
- Traversal of Itemset Lattice
 - General-to-specific vs Specific-to-general



- Traversal of Itemset Lattice
 - Equivalent Classes based on prefix or suffix
 - Consider frequent itemsets from these classes.



- Traversal of Itemset Lattice
 - Breadth-first vs Depth-first



(a) Breadth first

(b) Depth first

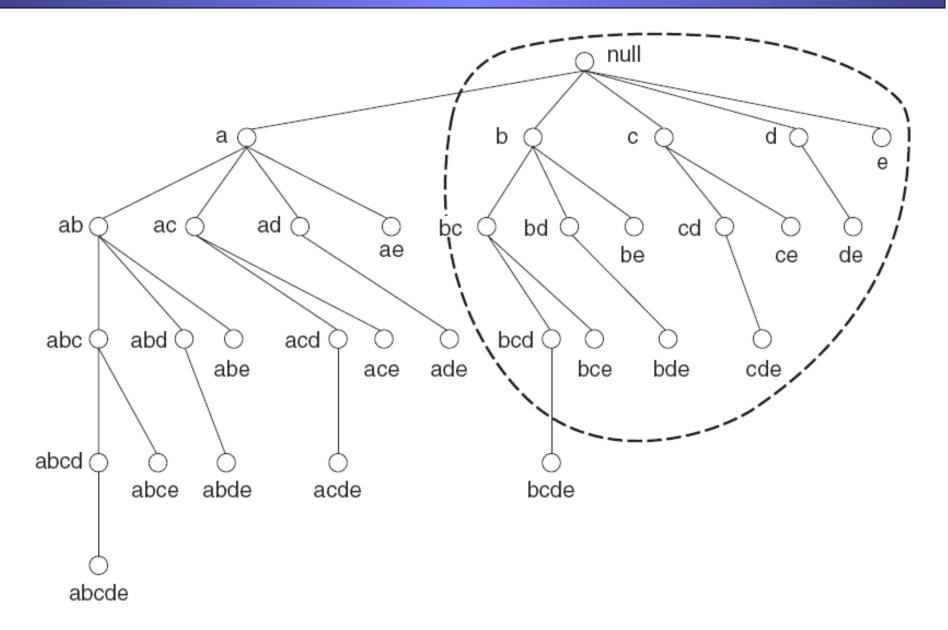


Figure 6.22. Generating candidate itemsets using the depth-first approach.

- Representation of Database
 - horizontal vs vertical data layout

Data	a Layout
TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Horizontal Data Layout

Vertical Data Layout

Α	В	С	D	Ε
1	1	2	2	1
4	2	3	4	3 6
4 5 6 7	2 5	4	4 5 9	6
6	7	8	9	
7	8	9		
8	10			
9				

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - Many of them are uninteresting or redundant
 - Redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

Subjective Interestingness Measure

- Objective measure:
 - Rank patterns based on statistics computed from data
 - e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).
- Subjective measure:
 - Rank patterns according to user's interpretation
 - A pattern is subjectively interesting if it contradicts the expectation of a user
 - A pattern is subjectively interesting if it is actionable

Computing Interestingness Measure

• Given a rule $X \rightarrow Y$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \rightarrow Y$

	Y	Y	
Х	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

 $\begin{array}{l} f_{11} : \mbox{ support of } X \mbox{ and } Y \\ f_{10} : \mbox{ support of } X \mbox{ and } \overline{Y} \\ f_{01} : \mbox{ support of } \overline{X} \mbox{ and } Y \\ f_{00} : \mbox{ support of } \overline{X} \mbox{ and } \overline{Y} \end{array}$

Used to define various measures

support, confidence, lift, Gini,

J-measure, etc.

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Although confidence is high, rule is misleading

 $\Rightarrow P(Coffee|Tea) = 0.9375$

Statistical Independence

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)

$$- P(S \land B) = 420/1000 = 0.42$$

- $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
- $P(S \land B) = P(S) \times P(B) \Longrightarrow$ Statistical independence
- $P(S \land B) > P(S) \times P(B) =>$ Positively correlated
- $P(S \land B) < P(S) \times P(B) =>$ Negatively correlated

Statistical-based Measures

• Measures that take into account statistical dependence

$$Lift(X - > Y) = \frac{conf(X - > Y)}{P(Y)} = \frac{P(Y | X)}{P(Y)}$$

InterestFactor = $\frac{P(X, Y)}{P(X)P(Y)}$
Lift is equivalent to Interest Factor
for binary variables.
Leverage = $P(X, Y) - P(X)P(Y)$
 $\varphi - coefficient = \frac{P(X, Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$
Correlation for binary
variables

Interestingness Measure: Lift

• *play basketball* \Rightarrow *eat cereal* [40%, 66.7%] is misleading

- The overall % of students eating cereal is 75% > 66.7%.

- *play basketball* ⇒ *not eat cereal* [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift (= Interest Factor)

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89 \qquad lift(B,\neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

 $lift = \frac{P(A \cup B)}{P(A)P(B)}$

Example: Lift/Interest Factor

	Coffee	Coffee	
Теа	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

Drawback of Lift & Interest Factor

	Y	Y	
X	10	0	10
×	0	90	90
	10	90	100

	Y	Ŷ	
Х	90	0	90
X	0	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

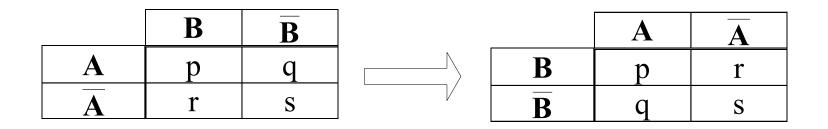
If $P(X,Y)=P(X)P(Y) \implies Lift = 1$

		Maagum	Formula
	#	Measure	P(A,B) - P(A)P(B)
There are lots of	1	ϕ -coefficient	$\sqrt{P(A)P(B)(1-P(A))(1-P(B))}$
measures proposed in	2	Goodman-Kruskal's (λ)	$\frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
the literature	3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(\overline{A},\overline{B})P(\overline{A},\overline{B})} = \frac{\alpha - 1}{\alpha + 1}$
	5	Yule's Y	$\frac{P(A,B)P(AB)+P(A,B)P(A,B)}{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
Some measures are good			$\frac{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}}{P(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B})} - \sqrt{\alpha} + 1$
for certain applications,	6	Kappa (ĸ)	$\frac{1(A_iB_j+1(A_iB_j)-1(A_j)(B_j-1(A_j)(B_j))}{1-P(A)P(B)-P(A)P(B_j)}$ $\sum_i \sum_j P(A_i,B_j) \log \frac{P(A_i,B_j)}{P(A_i)P(B_j)}$
but not for others	7	Mutual Information (M)	$\frac{\sum_i \sum_j P(A_i, B_j) \log \frac{-(-i)P(B_j)}{P(A_i)P(B_j)}}{\min(-\sum_i P(A_i) \log P(A_i), -\sum_j P(B_j) \log P(B_j))}$
but not for others	8	J-Measure (J)	$\max\left(\frac{P(A,B)\log\left(\frac{P(B A)}{P(B)}\right) + P(A\overline{B})\log\left(\frac{P(\overline{B} A)}{P(\overline{B})}\right)}{\exp\left(\frac{P(B A)}{P(B)}\right) + P(A\overline{B})\log\left(\frac{P(\overline{B} A)}{P(\overline{B})}\right)},$
	ľ		$\frac{P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})}{P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})}$
What anitaria about days			/
What criteria should we	9	Gini index (G)	$\max \left(P(A)[P(B A)^{2} + P(\overline{B} A)^{2}] + P(\overline{A})[P(B \overline{A})^{2} + P(\overline{B} \overline{A})^{2}] \right)$
use to determine			$-P(B)^{2} - P(\overline{B})^{2},$
whether a measure is			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
good or bad?			$-P(A)^2 - P(\overline{A})^2$
	10	Support (s)	P(A,B)
	11	Confidence (c)	$\max(P(B A), P(A B))$
What about Apriori-style	12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
support based pruning?	13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
How does it affect these	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
measures?	15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
	16	Piatetsky-Shapiro's (PS)	$\frac{\sqrt{P(A)P(B)}}{P(A,B) - P(A)P(B)}$
	17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)},\frac{P(A B)-P(A)}{1-P(A)}\right)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
	20	Jaccard (ζ)	$\frac{P(A)P(B)+P(\overline{A})P(\overline{B})}{P(A,B)} \xrightarrow{1-P(A,B)-P(\overline{A}B)}$
	21	Klosgen (K)	$V(A)+P(B)-P(A,B) \ \sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

Properties of Objective Measures

- Symmetric/Asymmetric
- Scaling Property
- Inversion property
- Null Addition Property

Property under Variable Permutation



Does M(A,B) = M(B,A)?

Symmetric measures:

support, lift, collective strength, cosine, Jaccard, etc
 Asymmetric measures:

confidence, conviction, Laplace, J-measure, etc

Property under Row/Column Scaling

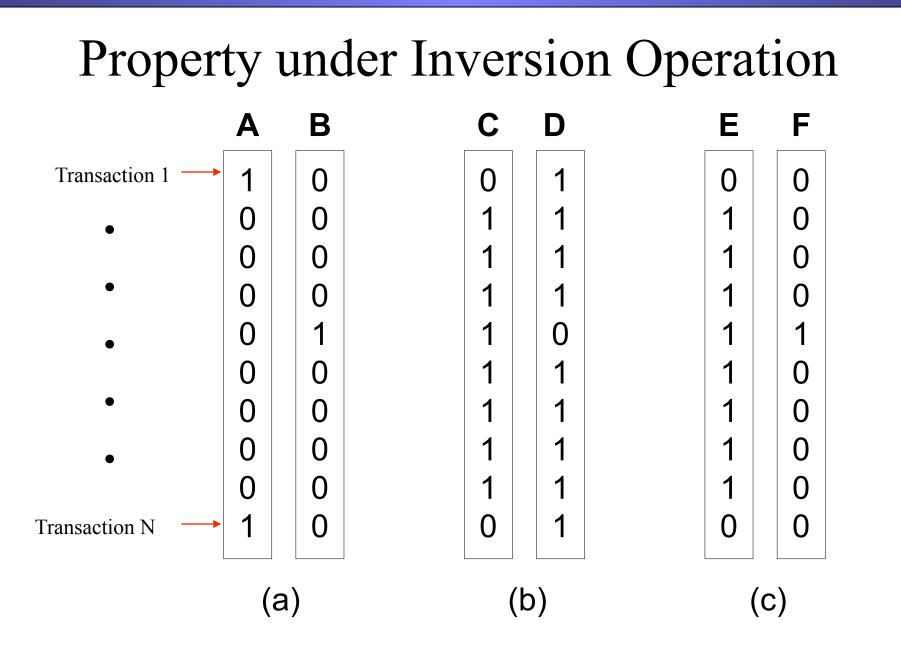
Grade-Gender Example (Mosteller, 1968):

	Male	Female	
High	2	3	5
Low	1	4	5
	3	7	10

	Male	Female	
High	4	30	34
Low	2	40	42
	6	70	76
	Ļ		
	$2\mathbf{x}$	10x	

Mosteller:

Underlying association should be independent of the relative number of male and female students in the samples



Example: ϕ -Coefficient

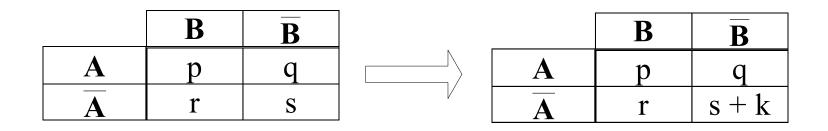
 φ-coefficient is analogous to correlation coefficient for continuous variables

	Y	Y	
Х	60	10	70
X	10	20	30
	70	30	100

	Y	Y	
Х	20	10	30
X	10	60	70
	30	70	100

 $\boldsymbol{\phi}$ Coefficient is the same for both tables

Property under Null Addition



Invariant measures:

support, cosine, Jaccard, etc

Non-invariant measures:

correlation, Gini, mutual information, odds ratio, etc

Resources

• Good summary of interestingness measures:

http://michael.hahsler.net/research/ association_rules/measures.html