CS 484
 Data Mining

Association Rule Mining 2

Review: Reducing Number of Candidates

- Apriori principle:
- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$
\forall X, Y:(X \subseteq Y) \Longrightarrow s(X) \geq s(Y)
$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Candidate Generation

- Three basic approaches:
- Brute-force method
$-F_{k-1} \times F_{1}$ method
$-F_{k-1} \times F_{k-1}$ method
- The next three slides demonstrate how each method generates candidate 3-itemsets

Brute-Force Method

TID	Items
$\mathbf{1}$	Bread, Milk
$\mathbf{2}$	Bread, Diaper, Beer, Eggs
$\mathbf{3}$	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
$\mathbf{5}$	Bread, Milk, Diaper, Coke
Min support count $=3$ (minsup $=60 \%)$	
didate ning	

Figure 6.6. A brute-force method for generating candidate 3 -itemsets.

$\mathrm{F}_{\mathrm{k}-1} \times \mathrm{F}_{1}$ method

TID	Items		
$\mathbf{1}$	Bread, Milk		
$\mathbf{2}$	Bread, Diaper, Beer, Eggs		
$\mathbf{3}$	Milk, Diaper, Beer, Coke		
$\mathbf{4}$	Bread, Milk, Diaper, Beer		
$\mathbf{5}$	Bread, Milk, Diaper, Coke		
Min support count $=3$ $($ minsup $=60 \%)$			

Figure 6.7. Generating and pruning candidate k-itemsets by merging a frequent ($k-1$)-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

$\mathrm{F}_{\mathrm{k}-1} \times \mathrm{F}_{\mathrm{k}-1}$ method

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
$\mathbf{5}$	Bread, Milk, Diaper, Coke
	Min support count $=3$ $($ minsup $=60 \%)$

Frequent 2-itemset

Itemset
\{Beer, Diapers $\}$
\{Bread, Diapers $\}$
\{Bread, Milk\}
\{Diapers, Milk\}

Only merge a pair of frequent ($\mathrm{k}-1$)-itemsets if their first k-2 items are identical!

Figure 6.8. Generating and pruning candidate k-itemsets by merging pairs of frequent $(k-1)$-itemsets.

Candidate Pruning

Found to be Infrequent

Rule Generation

- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $\mathrm{f} \rightarrow \mathrm{L}-\mathrm{f}$ satisfies the minimum confidence requirement
- If $\{A, B, C, D\}$ is a frequent itemset, candidate rules:
- $\mathrm{ABC} \rightarrow \mathrm{D}, \quad \mathrm{ABD} \rightarrow \mathrm{C}$,
$\mathrm{ACD} \rightarrow \mathrm{B}$,
$\mathrm{BCD} \rightarrow \mathrm{A}$, $\mathrm{A} \rightarrow \mathrm{BCD}, \quad \mathrm{B} \rightarrow \mathrm{ACD}, \quad \mathrm{C} \rightarrow \mathrm{ABD}, \quad \mathrm{D} \rightarrow \mathrm{ABC}$ $\mathrm{AB} \rightarrow \mathrm{CD}, \quad \mathrm{AC} \rightarrow \mathrm{BD}, \quad \mathrm{AD} \rightarrow \mathrm{BC}, \quad \mathrm{BC} \rightarrow \mathrm{AD}$, $\mathrm{BD} \rightarrow \mathrm{AC}, \quad \mathrm{CD} \rightarrow \mathrm{AB}$,
- If $|\mathrm{L}|=\mathrm{k}$, then there are $2^{\mathrm{k}}-2$ candidate association rules (ignoring $\mathrm{L} \rightarrow \varnothing$ and $\varnothing \rightarrow \mathrm{L}$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
- In general, confidence does not have an antimonotone property
$\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D})$ can be larger or smaller than $\mathrm{c}(\mathrm{AB} \rightarrow \mathrm{D})$
- But confidence of rules generated from the same itemset has an anti-monotone property
- e.g., $L=\{A, B, C, D\}$:
$-\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D}) \geq \mathrm{c}(\mathrm{AB} \rightarrow \mathrm{CD}) \geq \mathrm{c}(\mathrm{A} \rightarrow \mathrm{BCD})$
- Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Theorem

- If Rule $\mathrm{X} \rightarrow \mathrm{Y}-\mathrm{X}$ does not satisfy the confidence threshold then any rule $X^{\prime} \rightarrow Y$ $-X^{\prime}$ where X^{\prime} is a subset of X does not satisfy the confidence threshold as well.

Rule Generation for Apriori Algorithm

Lattice of rules

Rule Generation for Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join $(C D=>A B, B D=>A C)$ would produce the candidate rule $\mathrm{D}=>\mathrm{ABC}$
- Prune rule $\mathrm{D}=>\mathrm{ABC}$ if its super-set $A D=>B C$ does not have
 high confidence

Reducing Number of Comparisons

- Candidate counting:
- Scan the database of transactions to determine the support of each candidate itemset
- To reduce the number of comparisons, store the candidates in a hash structure
- Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Subset Operation (Enumeration)

Given a transaction t , what are the possible subsets of size 3 ?

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:
$\{145\},\{124\},\{457\},\{125\},\{458\},\{159\},\{136\},\{234\},\{567\}$, $\{345\},\{356\},\{357\},\left\{\begin{array}{ll}6 & 9\end{array}\right\},\left\{\begin{array}{l}3 \\ 6\end{array}\right\},\{368\}$

You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Association Rule Discovery: Hash tree

Hash Function
Candidate Hash Tree

Hash on
1,4 or 7

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Factors Affecting Complexity

- Choice of minimum support threshold
- Lowering support threshold results in more frequent itemsets
- This may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
- More space is needed to store support count of each item
- If number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
- Since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
- Transaction width increases with denser data sets
- This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

