
CS 484
Data Mining

Association Rule Mining 2

Review: Reducing Number of Candidates
•  Apriori principle:

–  If an itemset is frequent, then all of its subsets must also
be frequent

•  Apriori principle holds due to the following property
of the support measure:

–  Support of an itemset never exceeds the support of its
subsets

–  This is known as the anti-monotone property of support

)()()(:, YsXsYXYX ≥⇒⊆∀

Candidate Generation

•  Three basic approaches:
– Brute-force method
– Fk-1x F1 method
– Fk-1x Fk-1 method

•  The next three slides demonstrate how each
method generates candidate 3-itemsets

3

Brute-Force Method

Min support count = 3
(minsup = 60%)

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Fk-1x F1 method

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke
 Min support count = 3

(minsup = 60%)

Fk-1x Fk-1 method

Only merge a pair of frequent (k-1)-itemsets if their
first k-2 items are identical!

Min support count = 3
(minsup = 60%)

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Found to be
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Candidate Pruning
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Pruned
supersets

Rule Generation
•  Given a frequent itemset L, find all non-empty subsets f ⊂ L

such that f → L – f satisfies the minimum confidence
requirement
–  If {A,B,C,D} is a frequent itemset, candidate rules:

•  ABC →D, ABD →C, ACD →B, BCD →A,
A →BCD, B →ACD, C →ABD, D →ABC
AB →CD, AC → BD, AD → BC, BC →AD,
BD →AC, CD →AB,

•  If |L| = k, then there are 2k – 2 candidate association rules
(ignoring L → ∅ and ∅ → L)

Rule Generation
•  How to efficiently generate rules from frequent

itemsets?
–  In general, confidence does not have an anti-

monotone property
 c(ABC →D) can be larger or smaller than c(AB →D)

– But confidence of rules generated from the same
itemset has an anti-monotone property

–  e.g., L = {A,B,C,D}:

–  c(ABC → D) ≥ c(AB → CD) ≥ c(A → BCD)
•  Confidence is anti-monotone w.r.t. number of items on the

RHS of the rule

Theorem

•  If Rule X à Y – X does not satisfy the
confidence threshold then any rule X’ à Y
– X’ where X’ is a subset of X does not
satisfy the confidence threshold as well.

Rule Generation for Apriori Algorithm

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD
Pruned
Rules

Low
Confidence
Rule

Rule Generation for Apriori Algorithm

•  Candidate rule is generated by merging two rules
that share the same prefix
in the rule consequent

•  join(CD=>AB,BD=>AC)
would produce the candidate
rule D => ABC

•  Prune rule D=>ABC if its
super-set AD=>BC does not have
high confidence

BD=>ACCD=>AB

D=>ABC

Reducing Number of Comparisons
•  Candidate counting:

–  Scan the database of transactions to determine the
support of each candidate itemset

–  To reduce the number of comparisons, store the
candidates in a hash structure

•  Instead of matching each transaction against every candidate,
match it against candidates contained in the hashed buckets

Subset Operation (Enumeration)

1 2 3 5 6

Transaction, t

2 3 5 61 3 5 62

5 61 33 5 61 2 61 5 5 62 3 62 5

5 63

1 2 3
1 2 5
1 2 6

1 3 5
1 3 6 1 5 6 2 3 5

2 3 6 2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what are
the possible subsets of size 3?

Generate Hash Tree

2 3 4
5 6 7

1 4 5 1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

1,4,7
2,5,8

3,6,9
Hash function

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7},
{3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

•  Hash function

•  Max leaf size: max number of itemsets stored in a leaf node (if number of
candidate itemsets exceeds max leaf size, split the node)

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on
1, 4 or 7

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on
2, 5 or 8

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on
3, 6 or 9

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

1 + 2 3 5 6 3 5 6 2 +

5 6 3 +

1,4,7

2,5,8

3,6,9

Hash Function transaction

1 2 3 5 6

Transaction, t

2 3 5 61 3 5 62

5 61 33 5 61 2 61 5 5 62 3 62 5

5 63

1 2 3
1 2 5
1 2 6

1 3 5
1 3 6 1 5 6 2 3 5

2 3 6 2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function 1 2 3 5 6

3 5 6 1 2 +

5 6 1 3 +

6 1 5 +

3 5 6 2 +

5 6 3 +

1 + 2 3 5 6

transaction

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function 1 2 3 5 6

3 5 6 1 2 +

5 6 1 3 +

6 1 5 +

3 5 6 2 +

5 6 3 +

1 + 2 3 5 6

transaction

Match transaction against 9 out of 15 candidates

Factors Affecting Complexity
•  Choice of minimum support threshold

–  Lowering support threshold results in more frequent itemsets
–  This may increase number of candidates and max length of

frequent itemsets
•  Dimensionality (number of items) of the data set

–  More space is needed to store support count of each item
–  If number of frequent items also increases, both computation

and I/O costs may also increase
•  Size of database

–  Since Apriori makes multiple passes, run time of algorithm
may increase with number of transactions

•  Average transaction width
–  Transaction width increases with denser data sets
–  This may increase max length of frequent itemsets and

traversals of hash tree (number of subsets in a transaction
increases with its width)

