CS 484 Data Mining

Association Rule Mining 1

Motivation

Association Rules

(market basket analysis)

- Retail shops are often interested in associations between different items that people buy.
 - e.g. Someone who buys bread is quite likely also to buy milk
- Associations information is used beyond market basket analysis.
 - e.g. medicine, recommender systems (online stores, movies, news articles, Facebook "Likes", etc.
- Association rules:

Bizarre and Surprising Rules

(From "Predictive Analytics" by Eric Siegel)

- (Osco Drug) Customers who buy diapers are more likely to also buy beer.
 - Daddy needs a beer.
- (Walmart) 60% of customers who buy a Barbie doll buy one of three types of candy bars.
 - Kids come along for errands.
- (Some large retailer) The purchase of a stapler often accompanies the purchase of paper, waste baskets, scissors, paper clips, folders, and so on.
 - New hires?
- (Orbitz) Mac users book more expensive hotels.
 - Classification problem and association analysis.
- (Car insurance) Low credit rating, more car accidents.
- Music taste and political affiliation.

Association Rule Mining

• Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 ${Diaper} \rightarrow {Beer},$ ${Milk, Bread} \rightarrow {Eggs, Coke},$ ${Beer, Bread} \rightarrow {Milk},$

Implication means co-occurrence, not causality!

Market-Basket transactions

Definition: Frequent Itemset

• Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support
 - Fraction of transactions that contain an itemset
 - E.g. $s({Milk, Bread, Diaper}) = 2/5$
- Frequent Itemset
 - An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

• Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example: {Milk, Diaper} \rightarrow {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example: {Milk, Diaper} \Rightarrow Beer $s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$

$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support \geq *minsup* threshold
 - confidence \geq *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds

⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{Milk, Diaper\} \rightarrow \{Beer\} (s=0.4, c=0.67) \\ \{Milk, Beer\} \rightarrow \{Diaper\} (s=0.4, c=1.0) \\ \{Diaper, Beer\} \rightarrow \{Milk\} (s=0.4, c=0.67) \\ \{Beer\} \rightarrow \{Milk, Diaper\} (s=0.4, c=0.67) \\ \{Diaper\} \rightarrow \{Milk, Beer\} (s=0.4, c=0.5) \\ \{Milk\} \rightarrow \{Diaper, Beer\} (s=0.4, c=0.5) \\ \}$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate

- Complexity ~ O(NMw) => Expensive since $M = 2^d !!!$

Computational Complexity

- Given d unique items:
 - Total number of itemsets $= 2^d$
 - Total number of possible association rules:

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

With support-based pruning, 6+6+1=13

Apriori Algorithm

- Method:
 - Let k=1
 - Generate frequent itemsets of length 1
 - Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

• ABC →D,	ABD →C,	ACD →B,	BCD →A,
A →BCD,	B →ACD,	C →ABD,	D →ABC
AB →CD,	$AC \rightarrow BD$,	$AD \rightarrow BC$,	BC →AD,
$BD \rightarrow AC$,	CD →AB,		

If |L| = k, then there are 2^k – 2 candidate association rules (ignoring L → Ø and Ø → L)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property
 c(ABC →D) can be larger or smaller than c(AB →D)
 - But confidence of rules generated from the same itemset has an anti-monotone property
 - $e.g., L = {A,B,C,D}:$
 - $-c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$
 - Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Theorem

If Rule X → Y – X does not satisfy the confidence threshold then any rule X' → Y – X' where X' is a subset of X does not satisfy the confidence threshold as well.

Rule Generation for Apriori Algorithm

