
SQL - 2

Week 7

2

sid sname rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35.0

64 Horatio 7 35.0

71 Zorba 10 16.0

74 Horatio 9 35.0

85 Art 3 25.5

95 Bob 3 63.5

sid bid day

22 101 10/10/04

22 102 10/10/04

22 103 10/08/04

22 104 10/07/04

31 102 11/10/04

31 103 11/06/04

31 104 11/12/04

64 101 09/05/04

64 102 09/08/04

74 103 09/08/04

bid bname Color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

Sailors Reserves

Boats

3

Correlated Nested Queries
(Revisit)

Find names of sailors who have reserved boat 103

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
 FROM Reserves R
 WHERE R.bid=103 AND R.sid=S.sid);

Tests whether the set
is nonempty

(For finding sailors who have not reserved boat 103, we
would use NOT EXISTS)

4

Correlated Nested Query - Division

Find the names of sailors who have reserved ALL boats
(DIVISION)

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS ((SELECT B.bid

 FROM Boats B)
 EXCEPT
 (SELECT R.bid
 FROM Reserves R
 WHERE R.sid = S.sid));

5

Correlated Nested Query 2

Alternatively,

Find the names of sailors who have reserved ALL boats

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

 FROM Boats B
 WHERE NOT EXISTS (SELECT R.bid
 FROM Reserves R
 WHERE R.bid = B.bid AND
 R.sid = S.sid));

6

ANY and ALL operators

Find sailors whose rating is better than some sailor named
Horatio

SELECT S.sid
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

 FROM Sailors S2
 WHERE S2.sname=‘Horatio’);

7

Using ALL operator

Find sailors whose rating is better than every sailor
named Horatio

SELECT S.sid
FROM Sailors S
WHERE S.rating > ALL(SELECT S2.rating

 FROM Sailors S2
 WHERE S2.sname=‘Horatio’);

What if there were no sailor called Horatio?

Note that IN is equivalent to = ANY
NOT IN is equivalent to <> ALL

8

BETWEEN and AND operators

•  The BETWEEN and AND operator selects
a range of data between two values.

•  These values can be numbers, text, or dates.

9

BETWEEN and AND Example

Find the names of sailors whose age is between 25 and
35

 SELECT S.sname
 FROM Sailors S
 WHERE S.age BETWEEN 25 AND 35;

10

Post Processing
•  Processing on the result of an SQL query:

–  Sorting: can sort the tuples in the output by any
column (even the ones not appearing the the
SELECT clause)

–  Duplicate removal
–  Example:

•  Aggregation operators

SELECT DISTINCT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103
ORDER BY S.sid ASC, S.sname DESC;

11

Last time we saw…
Example of MAX operator

Find the name and age of the oldest sailor

 SELECT S.sname, MAX(S.age)
 FROM Sailors S;

 But this is illegal in SQL!!

12

Correct SQL Query for MAX

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age = (SELECT MAX(S2.age)

 FROM Sailors S2);

13

Alternatively…

SELECT S.sname, S.age
FROM Sailors S
WHERE ROWNUM <= 1
ORDER BY S.age DESC;

14

Banking Examples
branch (branch-id, branch-city, assets)

customer (customer-id, customer-name, customer-city)

account (account-number, branch-id, balance)

loan (loan-number, branch-id, amount)

depositor (customer-id, account-number)

borrower (customer-id, loan-number)

15

IN…Example 1

“Find the account numbers opened at branches of the bank in
Fairfax”

SELECT A.account-number

FROM account A

WHERE A.branch-id IN (SELECT B.branch-id

 FROM branch B

 WHERE B.branch-city=‘Fairfax’)

16

IN…Example 2

“Find the account numbers opened at branches 101 and
102 of the bank”

SELECT A.account-number

FROM A.account

WHERE A.branch-id IN (‘101’, ‘102’)

17

EXISTS

The EXISTS predicate is TRUE if and only if the Subquery
returns a non-empty set.

The NOT EXISTS predicate is TRUE if and only if the

Subquery returns an empty set.

The NOT EXISTS can be used to implement the SET
DIFFERENCE operator from relational algebra.

18

EXISTS…Example 1
“Select all the account balances where the account has been

opened in a branch in Fairfax ”

SELECT A.account-balance

FROM account A

WHERE EXISTS (SELECT *

 FROM branch B

 WHERE B.branch-city=‘Fairfax’

 AND B.branch-id=A.branch-id)

19

EXISTS…Example 2
“Select all the account balances where the account has not been

opened in a Fairfax branch ”

SELECT A.account-balance

FROM account A

WHERE NOT EXISTS (SELECT *

 FROM branch B

 WHERE B.branch-city=‘Fairfax’

 AND B.branch-id=A.branch-id)

20

EXISTS…Example 3
“Find customers who opened accounts in all branches in Fairfax”

SELECT C.customer-id
FROM customer C
WHERE NOT EXISTS (SELECT B.branch-id
 FROM branch B
 WHERE B.branch-city=‘Fairfax’
 EXCEPT

 SELECT A.branch-id
 FROM depositor D, account A

 WHERE D.customer-id = C.customer-id AND
 D.account-number = A.account-number)

21

Quantified Comparison Predicate

Example 1
“Select account numbers of the accounts with the minimum

balance”

SELECT A.account-number

FROM account A

WHERE A.balance <= ALL (SELECT A2.balance

 FROM account A2)

22

Aggregate Functions in SQL…
revisited

SQL provides five built-in aggregate functions that operate
on sets of column values in tables:

COUNT(), MAX(), MIN(), SUM(), AVG().

With the exception of COUNT(), these set functions must
operate on sets that consist of simple values-that is, sets of

numbers or sets of character strings, rather than sets of rows
with multiple values.

23

Aggregate Functions in SQL
Example 1

“Select the total amount of balance of the account in
branches located in Fairfax”

SELECT SUM(A.balance) AS total_amount

FROM account A, branch B

WHERE B.branch-city=‘Fairfax’ AND

 B.branch-id= A.branch-id

24

Aggregate Functions in SQL
Example 2

“Select the total number of opened accounts”

SELECT COUNT(A.account-number)

FROM account A

OR

SELECT COUNT(*)

FROM account

Value functions
•  Values can be transformed before aggregated:

Select sum(S.A/2) from S;

•  An interesting decode function (Oracle specific):
decode(value, if1, then1, if2, then2, …, else):

Select sum(decode(major, ‘CS’, 1, 0)) as Num_CS_Stu,

 sum(decode(major, ‘CS’, 0, 1)) as Num_NonCS_Stu
From student ;

if (major == ‘CS’)

 result = 1;
else

 result = 0;

26

GROUP BY and HAVING
•  So far, we’ve applied aggregate operators to all

(qualifying) tuples. Sometimes, we want to apply
them to each of several groups of tuples.

•  Consider: Find the age of the youngest sailor for each
rating level.
–  In general, we don’t know how many rating levels exist, and

what the rating values for these levels are!
–  Suppose we know that rating values go from 1 to 10; we can

write 10 queries that look like this (!):

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

27

Queries With GROUP BY and
HAVING

•  The target-list contains (i) attribute names (ii) terms with
aggregate operations (e.g., MIN (S.age)).
–  The attribute list (i) must be a subset of grouping-list. Intuitively,

each answer tuple corresponds to a group, and these attributes
must have a single value per group. (A group is a set of tuples
that have the same value for all attributes in grouping-list.)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

28

Conceptual Evaluation
•  The cross-product of relation-list is computed, tuples that

fail qualification are discarded, `unnecessary’ fields are
deleted, and the remaining tuples are partitioned into
groups by the value of attributes in grouping-list.

•  The group-qualification is then applied to eliminate some
groups. Expressions in group-qualification must have a
single value per group!
–  In effect, an attribute in group-qualification that is not an

argument of an aggregate op also appears in grouping-list. (SQL
does not exploit primary key semantics here!)

•  One answer tuple is generated per qualifying group.

29

Find the age of the youngest sailor with age >= 18,
for each rating with at least 2 such sailors

•  Only S.rating and S.age are
mentioned in the SELECT, GROUP
BY or HAVING clauses; other
attributes `unnecessary’.

•  2nd column of result is unnamed.
(Use AS to name it.)

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0
rating age
1 33.0
7 45.0
7 35.0
8 55.5
10 35.0

rating
7 35.0

Answer relation

30

For each red boat, find the number of
reservations for this boat

•  Grouping over a join of two relations.
•  What do we get if we remove B.color=‘red’ from the WHERE

clause and add a HAVING clause with this condition?

SELECT B.bid, COUNT (*) AS scount
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

SELECT B.bid, COUNT (*) AS scount
FROM Boats B, Reserves R
WHERE R.bid=B.bid
GROUP BY B.bid
HAVING B.color=‘red’ Illegal!

SELECT B.bid, COUNT (*) AS scount
FROM Boats B, Reserves R
WHERE R.bid=B.bid
GROUP BY B.bid
HAVING EVERY(B.color=‘red’)

Can be rewritten using EVERY in HAVING:

31

Find the age of the youngest sailor with age >= 18,
for each rating with at least 2 sailors (of any age)

•  Shows HAVING clause can also contain a subquery.
•  Compare this with the query where we considered only ratings

with 2 sailors over 18!

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
 FROM Sailors S2
 WHERE S.rating=S2.rating)

32

Find those ratings for which the average age is
the minimum over all ratings

•  Aggregate operations cannot be nested!
 WRONG:
SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage
 FROM Sailors S
 GROUP BY S.rating) AS Temp
WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
 FROM Temp)

Correct solution in SQL/92 (but does not work in Oracle):

33

Continue from previous

However, this should work on Oracle 8 (or later):

SELECT S.rating
FROM Sailors S
GROUP BY S.rating
HAVING AVG(S.age) = (SELECT MIN (AVG (S2.age))
 FROM Sailors S2
 Group by rating);

Can use nested aggregates with Group By

Null Values

• We use null when the column value is either unknown or
inapplicable.

• A comparison with at least one null value always returns
unknown.

• SQL also provides a special comparison operator IS NULL
to test whether a column value is null.

• To incorporate nulls in the definition of duplicates we
define that two rows are duplicates if corresponding rows
are equal or both contain null.

Deal with the null value
•  Special operators needed to check if value

is/is not null.
–  “is null” always true or false (never unknown)
–  “is not null”

•  Is rating>8 true or false when rating is
equal to null?
–  Actually, it’s unknown.
–  Three-valued logic

Three valued logic
AND False True Unknown
False False False False
True False True Unknown
Unknown False Unknown Unknown

OR False True Unknown
False False True Unknown
True True True True
Unknown Unknown True Unknown

NOT
False True
True False
Unknown Unknown

Other issues with the null value
•  WHERE and HAVING clause eliminate rows

that don’t evaluate to true (i.e., rows
evaluate to false or unknown).

•  Aggregate functions ignore nulls (except count
(*))

•  DISTINCT treats all nulls as the same

Outer Joins

• Let R and S be two tables. The outer join preserves the
rows of R and S that have no matching rows according to
the join condition and outputs them with nulls at the non-
applicable columns.

• There exist three different variants: left outer join, right
outer join and full outer join.

Outer joins
sid bid day
22 101 10/10/96
58 103 11/12/96

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

(left outer-join)

= sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
31 lubber 8 55.5 Null Null
58 rusty 10 35.0 103 11/12/96

In Oracle
Select *
From Sailor S, Reserve R
Where S.sid = R.sid(+);

How about:
Select S.sid, count(R.bid)
From Sailor S, Reserve R
Where S.sid = R.sid(+)
Group by S.sid;

OR
Select S.sid, count(*)
From Sailor S, Reserve R
Where S.sid = R.sid(+)
Group by S.sid;

More outer joins
•  Left outer join

+ sign on the right in Oracle:
Select * from R, S where R.id=S.id(+)

•  Right outer join
+ sign on the left in Oracle:
Select * from R, S where R.id(+)=S.id

•  Full outer join
–  not implemented in Oracle 8
– Added for Oracle 9 (or later)

•  Use full text instead of +’s: “full outer join”, “left
outer join”, “right outer join”, “inner join”

Overall:
Conceptual order in query evaluation

•  First the relational products of the tables in the FROM clause are evaluated.
•  From this, rows not satisfying the WHERE clause are eliminated.
•  The remaining rows are grouped in accordance with the GROUP BY clause.
•  Groups not satisfying the HAVING clause are then eliminated.
•  The expressions in the SELECT list are evaluated.
•  If the keyword DISTINCT is present, duplicate rows are now eliminated.
•  Evaluate UNION, INTERSECT and EXCEPT for Subqueries up to this point.
•  Finally, the set of all selected rows is sorted if the ORDER BY is present.

43

Conclusion
•  Nested queries are a very powerful feature in

SQL; they help us write shorter and more efficient
queries.

•  Post processing on the result of queries is
supported.

•  Aggregation is the most complex “post
processing”
–  “Group by” clause partition the results into groups
–  “Having” clause puts condition on groups (just like

Where clause on tuples).

