
1

The Relational Model

Week 2

2

Relations

students

name
S.S.N

city
street

name S.S.N street city

Lisa 1272 Main Fairfax
Bart 5592 Apple Manassas
Lisa 7552 Ox Fairfax

Sue 5555 Lee Vienna

A relation is a more
concrete construction, of
something we have seen
before, the ER diagram.

A relation is (just!) a table!

We will use table and
relation interchangeably,
except where there is a
possibility of confusion.

The students relation

3

A relation consists of a relational schema and a relational instance.

A relation schema is essentially a list of column names with their
data types. In this case…

students(name : string, S.S.N : string, street : string, city : string)

name S.S.N street city

Lisa 1272 Main Fairfax
Bart 5592 Apple Manassas
Lisa 7552 Ox Fairfax

Sue 5555 Lee Vienna

•  A relation instance is
made up of zero or more
tuples (rows, records)

4

students(name : string, S.S.N : string, street : string, city : string)

A schema specifies a relation’s name.

A schema also specifies the name of each field, and its domain.

Fields are often referred to as columns, attributes, dimensions

5

A minor, but important point about relations, they are unordered.

name S.S.N street city

Lisa 1272 Main Fairfax
Bart 5592 Apple Manassas
Lisa 7552 Ox Fairfax

Sue 5555 Lee Vienna

name S.S.N city street

Lisa 1272 Fairfax Main
Bart 5592 Manassas Apple
Lisa 7552 Fairfax Ox

Sue 5555 Vienna Lee

This is not a problem, since we refer to fields by name.

However sometimes, we refer to the fields by their column number,
in which case the ordering becomes important. I will point this out
when we get there.

Also, the tuples are unordered too!

6

Note that every tuple in our instance is unique. This is not a
coincidence. The definition of relation demands it.

Later we will see how we can represent weak entities in relations.

name S.S.N street city

Lisa 1272 Main Fairfax
Bart 5592 Apple Manassas
Lisa 7552 Ox Fairfax
Sue 5592 Lee Vienna

7

The number of fields is called the
degree (or arity, or dimensionality
of the relation).

Below we have a table of degree 4.

name S.S.N street city

Lisa 1272 Main Fairfax
Bart 5592 Apple Manassas
Lisa 7552 Ox Fairfax

The number of tuples =
cardinality of the relation

Of course, we don’t count the
row that has the labels!

To the right we have a table of
cardinality 3.

8

name S.S.N street city

Lisa 1272 Main Fairfax
Bart 5592 Apple Manassas
Lisa 7552 Ox Fairfax
Sue 5555 Lee Vienna

students(name : string, S.S.N : string, street : string, city : string)

Note that relations have primary keys, just like ER
diagrams. Remember that the primary key might not be one
field, it may be a combination of two or more fields.

9

Translating ER diagrams into Relations
We need to figure out how to translate ER diagrams into relations.

There are only three cases to worry about.
•  Strong entity sets
•  Weak entity sets
•  Relationship sets

Professor

PID Name

Course

Number Name

Teaches

days

10

•  Strong entity sets

Teaches

PID name

1234 Lin
3421 Lee
2342 Smyth
4531 Lee

This is trivial, the primary key
of the ER diagram becomes the
primary key of the relation. All
other fields are copied in (in
any order)

professor(PID : string, name : string)

Professor

PID Name

Course

Number Name
days

11

•  Weak entity sets

PID number name

1234 CS12 C++
3421 CS11 Java
2342 CS12 C++
4531 CS15 LISP

course(PID : string, number : string, name : string)

The primary key of the relation consists
of the union of the primary key of the
strong entity set and the discriminator
of the weak entity set. The “imported
key from the strong entity set is called
the foreign key.

All other fields are copied in (in any
order)

Professor

PID Name

Course

Number Name
days

Teaches

12

•  Relationship entity sets

PID days

1234 mwf
3421 wed
2342 tue
4531 sat

teaches(PID : string, days : string)
 For one-to-one relationship sets, the
relation’s primary key can be that of
either entity set.

•  For many-to-many relationship
sets, the union of the primary keys
becomes the relation’s primary key

• For other cases, the relation’s
primary key is taken from the strong
entity set.

Professor

PID Name

Course

Number Name
days

Teaches

13

professor(PID : string, name : string)
course(PID : string, number : string, name : string)
teaches(PID : string, days : string)

So, this ER Model…

… maps to this database schema

Professor

PID Name

Course

Number Name
days

Teaches

Later we’ll see how we can take advantage of the
key constraint and come up with a better design.

14

professor(PID : string, name : string)
course(PID : string, number : string, name : string)
teaches(PID : string, days : string)

We have seen how to create a database
schema, how do we create an actual
database on our computers?

15

professor(PID : string, name : string)

…how do we create an actual database on
our computers?

We use SQL, a language that allows us to
build, modify and query databases.

16

SQL (Structured Query Language)

•  SQL is a language that allows us to build, modify and
query databases.
•  SQL is an ANSI standard language. American National Standards Institute
•  SQL is the “engine” behind Oracle, Microsoft SQL
Server, etc.
•  Most of these systems have built GUIs on top of the
command line interface, so you don’t normally write
statements directly in SQL (although you can).

17

Creating Relations in SQL
•  Creates a Students relation.

Observe that the type (domain)
of each field is specified, and
enforced by the DBMS whenever
tuples are added or modified.

•  As another example, the
Enrolled table holds
information about courses
that students take.

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa REAL);

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2));

Creating Domains

•  Say you want to restrict the values of GPA
(0 < GPA <= 4.0)

•  Approach 1: Specify constraint when
defining the table

18

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa REAL check(gpa <= 4.0 AND gpa > 0));

Creating Domains

•  Approach 2: After CREATING TABLE,
use ALTER TABLE

19

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa REAL);

ALTER TABLE Students
ADD CONSTRAINT check_gpa CHECK(gpa > 0 AND gpa <= 4.0);

To specify a set of allowed values, do something like this (using either approach):
 … CHECK(gender=‘M’ OR gender=‘F’)

Getting Info About Existing Tables

20

SELECT table_name
FROM user_tables;

SELECT table_name
FROM all_tables
WHERE owner=‘YOUR_ACCOUNT_NAME_IN_UPPER_CASE’;

or

To get more about an existing table, say, Students:

Describe Students;

To get the list of existing tables in your database:

21

Adding and Deleting Tuples

•  Can insert a single tuple using:

•  Can delete all tuples satisfying some condition
(e.g., name = Smith):

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2);

DELETE
FROM Students
WHERE name = ‘Smith’;

22

The SQL Query Language

• To find all 18 year old students, we can write:

•  To show just names and logins columns,
replace the first line with:

SELECT *
FROM Students S
WHERE S.age=18;

SELECT S.name, S.login

23

 Querying Multiple Relations
•  What does this query

compute?

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=‘A’;

we get:

Students Enrolled

24

Destroying and Altering Relations

•  Destroys the relation Students. The schema
information and the tuples are deleted.

•  The schema of Students is altered by adding a new
field; every tuple in the current instance is
extended with a null value in the new field.

DROP TABLE Students;

ALTER TABLE Students
ADD COLUMN firstYear integer;

Integrity Constraints (ICs)

•  IC: condition that must be true for any instance of
the database; e.g., domain constraints.
–  ICs are specified when schema is defined.
–  ICs are checked when relations are modified.

•  A legal instance of a relation is one that satisfies all
specified ICs.
–  DBMS should not allow illegal instances.

•  If the DBMS checks ICs, stored data is more faithful
to real-world meaning.
–  Avoids data entry errors, too!

25

Primary Key Constraints Revisited
• A set of fields is a key for a relation if :

1. No two distinct tuples can have same values in all
key fields, and

2. no subset of the key is also a key.
–  A superkey.
–  If there’s >1 key for a relation, one of the keys is

chosen (by DBA) to be the primary key.
•  e.g., sid is a key for Students. (What about

name?) The set {sid, gpa} is a superkey.

26

Primary and Candidate Keys in SQL
•  Possibly many candidate keys (specified using UNIQUE),

one of which is chosen as the primary key.
•  What’s the difference between the two statements below?

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid));

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade));

Used carelessly, an IC can prevent the storage of database instances that
arise in practice! 27

Foreign Keys, Referential Integrity

•  Foreign key : Set of fields in one relation that is used to
`refer’ to a tuple in another relation. (Must correspond
to primary key of the second relation.) Like a `logical
pointer’.

•  e.g. sid is a foreign key referring to Students:
–  Enrolled(sid: string, cid: string, grade: string)
–  If all foreign key constraints are enforced, referential

integrity is achieved, i.e., no dangling references.
–  Can you name a data model w/o referential integrity?

•  Links in HTML!
28

29

Foreign Keys in SQL

• Only students listed in the Students relation should be
allowed to enroll for courses.

CREATE TABLE Enrolled
 (sid CHAR(20), cid CHAR(20), grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid) REFERENCES Students); Enrolled

Students

30

Enforcing Referential Integrity
•  Consider Students and Enrolled; sid in Enrolled is a

foreign key that references Students.
•  What should be done if an Enrolled tuple with a non-

existent student id is inserted? (Reject it!)
•  What should be done if a Students tuple is deleted?

–  Also delete all Enrolled tuples that refer to it.
–  Disallow deletion of a Students tuple that is referred to.
–  Set sid in Enrolled tuples that refer to it to a default sid.
–  (In SQL, also: Set sid in Enrolled tuples that refer to it to a

special value null, denoting `unknown’ or `inapplicable’.)
•  Similar if primary key of Students tuple is updated.

31

Referential Integrity in SQL

•  SQL/92 and SQL:1999
support all 4 options on
deletes and updates.
–  Default is NO ACTION

(delete/update is rejected)
–  CASCADE (also delete all

tuples that refer to deleted
tuple)

–  SET NULL / SET DEFAULT
(sets foreign key value of
referencing tuple)

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid)
 REFERENCES Students

 ON DELETE CASCADE
 ON UPDATE SET DEFAULT)

32

Where do ICs Come From?
•  ICs are based upon the semantics of the real-world

enterprise that is being described in the database
relations.

•  We can check a database instance to see if an IC is
violated, but we can NEVER infer that an IC is
true by looking at an instance.
–  An IC is a statement about all possible instances!
–  From example, we know name is not a key, but the

assertion that sid is a key is given to us.

•  Key and foreign key ICs are the most common;
more general ICs supported too.

33

