

Relational Algebra 1

Week 4

2

Relational Query Languages
•  Query languages: Allow manipulation and

retrieval of data from a database.
•  Relational model supports simple, powerful QLs:

–  Strong formal foundation based on logic.
–  Allows for much optimization.

•  Query Languages != programming languages!
–  QLs not expected to be “Turing complete”.
–  QLs not intended to be used for complex calculations.
–  QLs support easy, efficient access to large data sets.

3

Formal Relational Query Languages
Two mathematical Query Languages form the basis

for “real” languages (e.g. SQL), and for
implementation:

 Relational Algebra: More operational, very useful
for representing execution plans.

 Relational Calculus: Lets users describe what
they want, rather than how to compute it. (Non-
operational, declarative.)

  Understanding Algebra is key to understanding SQL,
 and query processing!

4

The Role of Relational Algebra in a DBMS

5

Algebra Preliminaries

•  A query is applied to relation instances, and
the result of a query is also a relation instance.
–  Schemas of input relations for a query are fixed

(but query will run regardless of instance!)
–  The schema for the result of a given query is also

fixed! Determined by definition of query language
constructs.

6

Relational Algebra
•  Procedural language
•  Five basic operators

•  selection select
•  projection project
•  union (why no intersection?)
•  set difference difference
•  Cross product Cartesian product

•  The are some other operators which are composed of the above
operators. These show up so often that we give them special names.
•  The operators take one or two relations as inputs and give a new
relation as a result.

SQL is closely based
on relational algebra.

7

Select Operation – Example

•  Relation r" A! B! C! D!

α!
α!
β!

β!

α!
β!
β!

β!

1!
5!
12!

23!

7!
7!
3!

10!

• σA=B ^ D > 5 (r)"
A! B! C! D!

α!
β!

α!
β!

1!
23!

7!
10!

Intuition: The select operation
allows us to retrieve some rows
of a relation (by “some” I mean
anywhere from none of them to
all of them)

Here I have retrieved all the
rows of the relation r where the
value in field A equals the value
in field B, and the value in field
D is greater than 5.

lowercase
Greek sigma

8

Select Operation
•  Notation: σ p(r) lowercase Greek sigma σ

•  p is called the selection predicate
•  Defined as:

 σp(r) = {t | t ∈ r and p(t)}
 Where p is a formula in propositional calculus consisting
of terms connected by : ∧ (and), ∨ (or), ¬ (not)
Each term is one of:
 <attribute> op <attribute> or <constant>

 where op is one of: =, ≠, >, ≥, <, ≤
•  Example of selection:

 σ name=‘Lee’(professor)

9

Project Operation – Example I

•  Relation r:

A! B! C!

α!
α!
β!

β!

10!
20!
30!

40!

7!
1!
1!

2!

A! C!

α!
α!
β!

β!

7!
1!
1!

2!

•  πA,C (r)

Intuition: The project operation
allows us to retrieve some
columns of a relation (by
“some” I mean anywhere from
none of them to all of them)

Here I have retrieved columns
A and C.

Greek lower-case
pi

10

Project Operation – Example II

•  Relation r:

A! B! C!

α!
α!
β!

β!

10!
20!
30!

40!

1!
1!
1!

2!

A! C!

α!
α!
β!

β!

1!
1!
1!

2!

="

A! C!

α!
β!
β!

1!
1!
2!

•  πA,C (r)

Intuition: The project
operation removes
duplicate rows, since
relations are sets.

Here there are two rows
with A = α and C = 1. So
one was discarded.

11

Project Operation
•  Notation:

 πA1, A2, …, Ak (r) Greek lower-case pi

 where A1, A2 are attribute names and r is a
relation name.

•  The result is defined as the relation of k
columns obtained by erasing the columns that
are not listed

•  Duplicate rows removed from result, since
relations are sets.

12

Union Operation – Example

Relations r, s:

r ∪ s:

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

r!
s!

A! B!

α!
α!
β!

β!

1!
2!
1!

3!

Intuition: The union
operation concatenates
two relations, and removes
duplicate rows (since
relations are sets).

Here there are two rows
with A = α and B = 2. So
one was discarded.

13

Union Operation
•  Notation: r ∪ s
•  Defined as:

 r ∪ s = {t | t ∈ r or t ∈ s}
For r ∪ s to be valid.

 1. r, s must have the same arity (same number of attributes)
 2. The attribute domains must be compatible (e.g., 2nd column
 of r deals with the same type of values as does the 2nd
 column of s).

Although the field types must be the same, the names can be
different. For example I can union professor and lecturer where:

 professor(PID : string, name : string)
 lecturer(LID : string, first_name : string)

“Union-compatible”

14

Related Operation: Intersection

Relations r, s:

r ∩ s:

r!

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

s!

A! B!!
α!
!

!
2!
!

• Similar to Union
operation.

• But Intersection is NOT
one of the five basic
operations.

• Intuition: The
intersection operation
computes the common
rows between two
relations

15

Set Difference Operation – Example

Relations r, s:

 r – s:

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

r!
s!

A! B!

α!
β!

1!
1!

Intuition: The set
difference operation
returns all the rows that
are in r but not in s.

16

Set Difference Operation
•  Notation r – s
•  Defined as:

 r – s = {t | t ∈ r and t ∉ s}
•  Set differences must be taken between

compatible relations.
–  r and s must have the same arity
–  attribute domains of r and s must be compatible

•  Note that in general r – s ≠ s – r

“Union-compatible”

17

Cross-Product Operation-Example
Relations r, s:"

r x s:"

A! B!

α!
β!

1!
2!

C! D!

α!
β!
β!
γ!

10!
10!
20!
10!

E!

a!
a!
b!
b!r! s!

A! B!

α!
α!
α!
α!
β!
β!
β!
β!

1!
1!
1!
1!
2!
2!
2!
2!

C! D!

α!
β !
β!
γ!
α!
β!
β!
γ!

10!
10!
20!
10!
10!
10!
20!
10!

E!

a!
a!
b!
b!
a!
a!
b!
b!

Intuition: The cross
product operation
returns all possible
combinations of rows in
r with rows in s.

In other words the result
is every possible pairing
of the rows of r and s.

18

Cross-Product Operation

•  Notation r x s
•  Defined as:

 r x s = {t q | t ∈ r and q ∈ s}
•  Assume that attributes of r(R) and s(S) are

disjoint. (That is, R ∩ S = ∅).
•  If attributes names of r(R) and s(S) are not

disjoint, then renaming must be used.

19

Composition of Operations
•  We can build expressions using

multiple operations
•  Example: σA= C(r x s)

A! B! C! D! E!

α!
β!
β!

1!
2!
2!

α!
β!
β!

10!
10!
20!

a!
a!
b!

A! B!

α!
β!

1!
2!

C! D!

α!
β!
β!
γ!

10!
10!
20!
10!

E!

a!
a!
b!
b!r! s!

r x s:"

σA=C(r x s)

A! B!

α!
α!
α!
α!
β!
β!
β!
β!

1!
1!
1!
1!
2!
2!
2!
2!

C! D!

α!
β !
β!
γ!
α!
β!
β!
γ!

10!
10!
20!
10!
10!
10!
20!
10!

E!

a!
a!
b!
b!
a!
a!
b!
b!

“take the cross product of r
and s, then return only the
rows where A equals B”

20

Rename Operation
•  Allows us to name, and therefore to

refer to, the results of relational-
algebra expressions.

Example:
 ρ (myRelation, (r – s))

Renaming columns (rename A to A2):
 ρ (myRelation(A->A2), (r – s))

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

r! s!

A! B!

α!
β!

1!
1!

myRelation!

Take the set difference of r and s,
and call the result myRelation"
Renaming in relational algebra is
essentiality the same as assignment
in a programming language

21

Rename Operation
If a relational-algebra expression Y

has arity n, then
 ρ(X(A->A1, B->A2, …), Y)

returns the result of expression Y under

the name X, and with the attributes
renamed to A1, A2, …., An.

For example,
ρ (myRelation(A->E, B->K), (r – s))

A! B!

α!
α!
β!

1!
2!
1!

A! B!

α!
β!

2!
3!

r! s!

E! K!

α!
β!

1!
1!

myRelation!Take the set difference of r and s, and call the
result myRelation, while renaming the first field
to E, and the second field to K.

22

Sailors Example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

23

Example Instances
sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1

S1

S2

•  “Sailors” and “Reserves”
relations for our examples.

24

Algebra Operations
•  Look what we want to get from the

following table:

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2

25

Selection

=
>

)2(8 Srating!
sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

•  Selects rows that
satisfy selection
condition.

•  No duplicates in
result! (Why?)

•  Schema of result
identical to schema of
(only) input relation.

S2
sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

26

Projection
sname rating
yuppy 9
lubber 8
guppy 5
rusty 10

! sname rating S, ()2

age
35.0
55.5

!age S()2

•  Deletes attributes that are not in
projection list.

•  Schema of result contains exactly the
fields in the projection list, with the
same names that they had in the
(only) input relation.

•  Projection operator has to eliminate
duplicates! (Why??)

–  Note: real systems typically don’t do
duplicate elimination unless the user
explicitly asks for it.

27

Composition of Operations
•  Result relation can be the input for another relational

algebra operation! (Operator composition)

sname rating
yuppy 9
rusty 10

=
>

))2(8(, Sratingratingsname !"

S2 sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

28

What do we want to get from two
relations?

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1
S1

What about: Who reserved boat 101?

Or: Find the name of the sailor who reserved boat 101.

29

Cross-Product
•  Each row of S1 is paired with each row of R1.
•  Result schema has one field per field of S1 and

R1, with field names inherited.

)1,2()1,1(RsidsidSsidsid !"! ##

sid1 sname rating age sid2 bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

  Renaming operator (because of naming conflict):

30

Why does this cross product help
Query: Find the name of the sailor who reserved boat 101.

!

Temp=" (sid#sid1, S1) $ "(sid#sid2, R1)
Result=%Sname(&sid1=sid2 ' bid=101(Temp))

* Note my use of “temporary” relation Temp.

31

Another example
•  Find the name of the sailor having the highest

rating.

!

AllR="ratingA#(rating$>ratingA, S2)

Result?="Sname(%rating<ratingA(S2&AllR))

What’s in “Result?” ?

Does it answer our query?

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2

32

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2
ratingA

9

8

5

10

×

AllR

sid sname rating age ratingA

28 yuppy 9 35.0 9

28 yuppy 9 35.0 8

28 yuppy 9 35.0 5

28 yuppy 9 35.0 10

31 lubber 8 55.5 9

31 lubber 8 55.5 8

31 lubber 8 55.5 5

31 lubber 8 55.5 10

44 guppy 5 35.0 9

44 guppy 5 35.0 8

44 guppy 5 35.0 5

44 guppy 5 35.0 10

58 rusty 10 35.0 9

58 rusty 10 35.0 8

58 rusty 10 35.0 5

58 rusty 10 35.0 10

=

!

AllR="ratingA#(rating$>ratingA, S2)

Result?="Sname(%rating<ratingA(S2&AllR))

33

Union, Intersection, Set-Difference
•  All of these operations

take two input relations,
which must be union-
compatible:
–  Same number of fields.
–  ‘Corresponding’ fields

have the same type.
•  What is the schema of

result?

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2!

S S1 2!

sid sname rating age
22 dustin 7 45.0

S S1 2!

34

Back to our query
•  Find the name of the sailor having the highest

rating.

!

AllR="ratingA #(rating$>ratingA, S2)

Tmp="Sid,Sname(%rating<ratingA(S2&AllR))

Result="Sname ("Sid,Sname(S2)$Tmp)

* Why not project on Sid only for Tmp?

35

Relational Algebra (So far)
•  Basic operations:

–  Selection (σ) Selects a subset of rows from relation.
–  Projection (π) Deletes unwanted columns from relation.
–  Cross-product (×) Allows us to combine two relations.
–  Set-difference (-) Tuples in reln. 1, but not in reln. 2.
–  Union (∪) Tuples in reln. 1 and tuples in reln. 2.

Also,
–  Rename (ρ) Changes names of the attributes
–  Intersection (∩) Tuples in both reln. 1 and in reln. 2.

•  Since each operation returns a relation, operations can be composed! (Algebra is
“closed”.)

•  Use of temporary relations recommended.

36

Additional Operations
We define additional operations that do not add

any power to the relational algebra, but that
simplify common queries.

– Natural join
– Conditional Join
– Equi-Join
– Division

Also, we‘ve already seen “Set intersection”:
 r ∩ s = r - (r - s)

All joins are really
special cases of
conditional join

37

Quick note on notation

customer-name loan-number
Patty 1234
Apu 3421
Selma 2342
Ned 4531

customer-name loan-number
Seymour 3432
Marge 3467
Selma 7625
Abraham 3597

good_customers bad_customers

If we have two or more relations which feature
the same attribute names, we could confuse them.
To prevent this we can use dot notation.
For example

 good_customers.loan-number

38

Natural-Join Operation: Motivation
cust-name l-number
Patty 1234
Apu 3421

l-number branch
1234 Dublin
3421 Irvine

borrower loan

cust-name borrower.l-number loan.l-number branch

Patty 1234 1234 Dublin

Patty 1234 3421 Irvine

Apu 3421 1234 Dublin

Apu 3421 3421 Irvine

cust-name borrower.l-number loan.l-number branch

Patty 1234 1234 Dublin

Apu 3421 3421 Irvine

σborrower.l-number = loan.l-number(borrower x loan)))

Very often, we have a query and the
answer is not contained in a single
relation. For example, I might wish to
know where Apu banks.
The classic relational algebra way to do
such queries is a cross product, followed
by a selection which tests for equality on
some pair of fields.

While this works…

•  it is unintuitive
•  it requires a lot of memory
•  the notation is cumbersome

Note that in this example the two relations are the
same size (2 by 2), this does not have to be the case.

So, we have a more intuitive way of achieving the same effect,
the natural join, denoted by the symbol

39

Natural-Join Operation: Intuition
Natural join combines a cross product and a selection into one
operation. It performs a selection forcing equality on those
attributes that appear in both relation schemes. Duplicates are
removed as in all relation operations.
So, if the relations have one attribute in common, as in the last slide
(“l-number”), for example, we have…

borrower loan

There are two special cases:
•  If the two relations have no attributes in common, then their
natural join is simply their cross product.
•  If the two relations have more than one attribute in common,
then the natural join selects only the rows where all pairs of
matching attributes match. (let’s see an example on the next slide).

= σborrower.l-number = loan.l-number(borrower x loan)))

40

l-name f-name age
Bouvier Selma 40
Bouvier Patty 40
Smith Maggie 2

A!
l-name f-name ID
Bouvier Selma 1232
Smith Selma 4423

B!

l-name f-name age l-name f-name ID
Bouvier Selma 40 Bouvier Selma 1232
Bouvier Selma 40 Smith Selma 4423
Bouvier Patty 2 Bouvier Selma 1232
Bouvier Patty 40 Smith Selma 4423
Smith Maggie 2 Bouvier Selma 1232
Smith Maggie 2 Smith Selma 4423

l-name f-name age l-name f-name ID
Bouvier Selma 40 Bouvier Selma 1232

l-name f-name age ID
Bouvier Selma 40 1232 A B =

Both the l-name and the
f-name match, so select.

Only the f-names match,
so don’t select.

Only the l-names match,
so don’t select.

We remove duplicate
attributes…

The natural join of A and B!

Note that this is just a way to visualize the natural
join, we don’t really have to do the cross product as
in this example

41

Natural-Join Operation
•  Notation: r s!
•  Let r and s be relation instances on schemas R and S

respectively.The result is a relation on schema R ∪ S which is
obtained by considering each pair of tuples tr from r and ts from s.

•  If tr and ts have the same value on each of the attributes in R ∩ S, a
tuple t is added to the result, where
–  t has the same value as tr on r
–  t has the same value as ts on s

•  Example:
 R = (A, B, C, D)
 S = (E, B, D)

•  Result schema = (A, B, C, D, E)
•  r s is defined as:

 πr.A, r.B, r.C, r.D, s.E (σr.B = s.B r.D = s.D (r x s))

42

Natural Join Operation – Example
•  Relation instances r, s:

A! B!

α!
β!
γ!
α!
δ!

1!
2!
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b"
a"
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r!

A! B!

α!
α!
α!
α!
δ!

1!
1!
1!
1!
2!

C! D!

α!
α!
γ!
γ!
β!

a"
a"
a"
a"
b"

E!

α!
γ!
α!
γ!
δ!

s!

r s!
How did we get here?

Lets do a trace over the
next few slides…

43

A! B!

α!
β!
γ!
α!
δ!

1!
2!
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b"
a"
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r! s!

First we note which attributes the two relations have in common…

44

A! B!

α!
β!
γ!
α!
δ!

1!
2!
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b"
a"
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r!

A! B!

α!
α!
 !
!
!

1!
1!
!
!
!

C! D!

α!
α!
!
!
!

a"
a"
"
"
"

E!

α!
γ!
!
!
!

s!

There are two rows in s that match our first row in r, (in the relevant
attributes) so both are joined to our first row…

45

A! B!

α!
β!
γ!
α!
δ!

1!
2!
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b"
a"
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r! s!

A! B!

α!
α!
 !
!
!

1!
1!
!
!
!

C! D!

α!
α!
!
!
!

a!
a!
"
"
"

E!

α!
γ!
!
!
!

…there are no rows in s that match our second row in r, so do
nothing…

46

A! B!

α!
β!
γ!
α!
δ!

1!
2"
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b"
a"
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r! s!

A! B!

α!
α!
 !
!
!

1!
1!
!
!
!

C! D!

α!
α!
!
!
!

a!
a!
"
"
"

E!

α!
γ!
!
!
!

…there are no rows in s that match our third row in r, so do
nothing…

47

A! B!

α!
β!
γ!
α!
δ!

1!
2"
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b!
a"
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r! s!

A! B!

α!
α!
α!
α!
!

1!
1!
1!
1!
!

C! D!

α!
α!
γ!
γ!
!

a"
a"
a"
a"
"

E!

α!
γ!
α!
γ!
!

There are two rows in s that match our fourth row in r, so both are
joined to our fourth row…

48

A! B!

α!
β!
γ!
α!
δ!

1!
2"
4!
1!
2!

C! D!

α!
γ!
β!
γ!
β!

a"
a"
b!
a!
b"

B!

1!
3!
1!
2!
3!

D!

a"
a"
a"
b"
b"

E!

α!
β!
γ!
δ!
∈!

r! s!

There is one row that matches our fifth row in r,.. so it is joined to
our fifth row and we are done!

A! B!

α!
α!
α!
α!
δ!

1!
1!
1!
1!
2!

C! D!

α!
α!
γ!
γ!
β!

a"
a"
a"
a"
b"

E!

α!
γ!
α!
γ!
δ!

49

Natural Join on Sailors Example

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

=11 RS !"

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

S1 R1

50

Earlier We Saw…
Query: Find the name of the sailor who reserved boat 101.

!

Temp=" (sid#sid1, S1) $ "(sid#sid2, R1)
Result=%Sname(&sid1=sid2 ' bid=101(Temp))

* Note my use of “temporary” relation Temp.

51

Query revisited using natural join

Query: Find the name of the sailor who reserved boat 101.

!

Result="Sname(#bid=101(S1 !" R1))

Or
Result="Sname(S1 !" #bid=101(R1))

What’s the difference between these two approaches?

52

Conditional-Join Operation:
The conditional join is actually the most general type of join. I
introduced the natural join first only because it is more intuitive
and... natural!
 Just like natural join, conditional join combines a cross product and
a selection into one operation. However instead of only selecting
rows that have equality on those attributes that appear in both
relation schemes, we allow selection based on any predicate.

r c s = σc(r x s) Where c is any predicate
the attributes of r and/or s"

Duplicate rows are removed as always, but duplicate columns are
not removed!

53

l-name f-name marr-Lic age
Simpson Marge 777 35
Lovejoy Helen 234 38
Flanders Maude 555 24
Krabappel Edna 978 40

l-name f-name marr-Lic age
Simpson Homer 777 36
Lovejoy Timothy 234 36
Simpson Bart null 9

r r.age < s.age AND r.Marr-Lic = s.Marr-Lic s!
r.l-name r.f-name r.Marr-Lic r.age s.l-name s.f-name s.marr-Lic s.age
Simpson Marge 777 35 Simpson Homer 777 36

We want to find all women that are younger than their husbands…

Conditional-Join Example:

r! s!

Note we have removed ambiguity of attribute names by using “dot” notation
Also note the redundant information in the marr-lic attributes

54

Equi-Join

•  Equi-Join: Special case of conditional join
where the conditions consist only of
equalities.

•  Natural Join: Special case of equi-join in
which equalities are specified on ALL fields
having the same names in both relations.

55

l-name f-name marr-Lic age
Simpson Marge 777 35
Lovejoy Helen 234 38
Flanders Maude 555 24
Krabappel Edna 978 40

l-name f-name marr-Lic age
Simpson Homer 777 36
Lovejoy Timothy 234 36
Simpson Bart null 9

r r.Marr-Lic = s.Marr-Lic s!
r.l-name r.f-name Marr-Lic r.age s.l-name s.f-name s.age
Simpson Marge 777 35 Simpson Homer 36
Lovejoy Helen 234 38 Lovejoy Timothy 36

Equi-Join

r! s!

56

Review on Joins
•  All joins combine a cross product and a selection

into one operation.
•  Conditional Join

–  the selection condition can be of any predicate (e.g.
rating1 > rating2)

•  Equi-Join:
–  Special case of conditional join where the conditions

consist only of equalities.
•  Natural Join

–  Special case of equi-join in which equalities are
specified on ALL fields having the same names in both
relations.

