
1 

Schema Refinement & 
Normalization Theory 2 

 
 
 
 

Week 15 



2 

How do we know R is in BCNF?  
•  If R has only two attributes, then it is in 

BCNF 
•  If F only uses attributes in R, then: 

– R is in BCNF if and only if for each X → Y in 
F (not F+!), X is a superkey of R, i.e., X → R is 
in F+ (not F!). 
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Checking for BCNF Violations 
•  List all non-trivial FDs 
•  Ensure that left hand side of each FD is a 

superkey 
•  We have to first find all the keys! 
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Checking for BCNF Violations 
•  Is Courses(course_num, dept_name, course_name, 

classroom, enrollment, student_name, address) in BCNF? 
•  FDs are: 

–  course_num, dept_name → course_name 
–  course_num, dept_name → classroom 
–  course_num, dept_name → enrollment 

•  What is (course_num, dept_name)+? 
–  {course_num, dept_name, course_name, classroom, enrollment} 

•  Therefore, the key is 
{course_num, dept_name, course_name, classroom, enrollment, 
student_name, address} 

•  The relation is not in BCNF 
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BCNF and Dependency Preservation 

•  In general, there may not be a dependency 
preserving decomposition into BCNF. 

•  Example: schema CSZ (city, street_name, 
zip_code) with FDs: CS → Z,  Z → C 

 (city, street_name) → zip_code 
 zip_code → city 

•  Can’t decompose while preserving CS → Z, 
but CSZ is not in BCNF. 
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Example Regarding Dependency 
Preservation 

•  R = (A, B, C) 
F = {A → B, B → C) 
–  Can be decomposed in two different ways 

•  R1 = (A, B),   R2 = (B, C) 
–  Lossless-join decomposition: 

   R1  ∩ R2 = {B} and B → BC 
–  Dependency preserving 

•  R1 = (A, B),   R2 = (A, C) 
–  Lossless-join decomposition: 

   R1  ∩ R2 = {A} and A → AB 
–  Not dependency preserving  

(cannot check B → C without computing R1     R2) 
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Dependency Preserving Decomposition 
•  Consider CSJDPQV,  C is key,  JP → C  and  

SD → P. 
–  BCNF decomposition:   CSJDQV and SDP 
–  Problem:  Checking  JP → C  requires a join! 

•  Dependency preserving decomposition 
(Intuitive): 
–  If R is decomposed into X, Y and Z, and we 

enforce the FDs that hold on X, on Y and on Z, 
then all FDs that were given to hold on R must 
also hold.  (Avoids Problem (3)) 



8 

What FD on a decomposition? 
•  Projection of set of FDs F:   If R is 

decomposed into X, ... the projection of F 
onto X  (denoted FX ) is the set of FDs U → 
V in F+ (closure of F ) such that U, V are in 
X.  
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Dependency Preserving Decompositions 
(Contd.) 

•  Decomposition of R into X and Y is dependency preserving 
if  (FX  union   FY ) +  =  F + 

–  i.e., if we consider only dependencies in the closure F + that can be 
checked in X without considering Y, and in Y without considering 
X,  these imply all dependencies in F +. 

•  Important to consider F +, not F, in this definition: 
–  ABC,  A → B,  B → C,  C → A, decomposed into AB and BC. 
–  Is this dependency preserving?  Is  C → A  preserved????? 

•  Dependency preserving does not imply lossless join: 
–  ABC,  A → B,  decomposed into AB and BC. 

•  And vice-versa! 
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Another example 
•  Assume CSJDPQV is decomposed into  

                        SDP, JS, CJDQV 
It is not dependency preserving  
w.r.t. the FDs: JP → C,  SD → P  and  J → S. 

•  However, it is a lossless join decomposition. 
•  In this case, adding JPC to the collection of relations gives 

us a dependency preserving decomposition. 
•  JPC tuples stored only for checking FD!  
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Summary of BCNF 
•  If a relation is in BCNF, it is free of redundancies that can 

be detected using FDs.  Thus, trying to ensure that all 
relations are in BCNF is a good heuristic. 

•  If a relation is not in BCNF, we can try to decompose it 
into a collection of BCNF relations. 
–  It is always possible to decompose a relation into a set of 

relations that are in BCNF such that: 
•  the decomposition is lossless 
•  it may not be possible to preserve dependencies. 
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Next: Third Normal Form 
•  There are some situations where  

–  BCNF is not dependency preserving, and  
–  efficient checking for FD violation on updates is 

important 
•  Solution: define a weaker normal form, called 

Third Normal Form (3NF) 
–  Allows some redundancy (with resultant problems; we 

will see examples later) 
–  But functional dependencies can be checked on 

individual relations without computing a join. 
–  There is always a lossless-join, dependency-preserving 

decomposition into 3NF. 
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Third Normal Form  (3NF) 

•  If R is in BCNF, obviously in 3NF. 
•  If R is in 3NF, some redundancy is possible.  

It is a compromise, used when BCNF not 
achievable (e.g., no “good” decomposition, 
or performance considerations). 
–  Lossless-join, dependency-preserving 

decomposition of R into a collection of 3NF 
relations always possible. 



3NF 

•  Relation R with FDs F is in 3NF if, for each FD  
X → A (X ∈ R and A ∈ R) in F, one of the 
following statements is true:  
–  A ∈ X (trivial FD), or 
–  X is a superkey, or  
–  A is part of some key for R 
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If one of these two is 
satisfied for ALL FDs, then 
R is in BCNF 

Not just superkey! (why not?) 
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What Does 3NF Achieve? 
•  If 3NF is violated by X→A, one of the following holds: 

–  X is a subset of some key K (partial redundancy) 
•  We store (X, A) pairs redundantly. 

–  X is not a proper subset of any key. 
•  There is a chain of FDs  K → X → A, which means that we cannot 

associate an X value with a K value unless we also associate an A value 
with an X value. 

•  But: even if reln is in 3NF, these problems could arise. 
–  e.g., Reserves SBDC (sid, bid, date, credit_card). Keys are SBD, CBD.  

FD = {S →C,   C →S}. R is in 3NF, but for each reservation of sailor S,  
same (S, C) pair is stored. 

•  Thus, 3NF is indeed a compromise relative to BCNF. 
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Decomposition into 3NF 
•  Obviously, the algorithm for lossless join decomp 

into BCNF can be used to obtain a lossless join 
decomp into 3NF (typically, can stop earlier). 

•  To ensure dependency preservation, one idea: 
–  If  X → Y  is not preserved,  add relation XY. 
–  Problem is that XY may violate 3NF!  

•  Refinement:  Instead of the given set of FDs F, 
use a minimal cover for F. 
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Minimal Cover for a Set of FDs 
•  Minimal cover  G for a set of FDs F: 

–  Closure of F = closure of G. 
–  Right hand side of each FD in G is a single attribute. 
–  If we modify G by deleting an FD or by deleting 

attributes from an FD in G, the closure changes. 
•  Intuitively, every FD in G is needed, and “as small 

as possible’’ in order to get the same closure as F. 
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Obtaining Minimal Cover 

•  Step 1: Put the FDs in a standard form (i.e. 
right-hand side should contain only single 
attribute) 

•  Step 2: Minimize the left side of each FD 
•  Step 3: Delete redundant FDs  



•  Find minimal cover for F = {ABH → CK, 
A → D, C → E, BGH → L, L → AD, E → 
L, BH → E}  
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•  Step 1: Make RHS of each FD into a single 
attribute:  

 
F = {ABH → C, ABH → K, A → D, C → E, 
BGH → L, L → A, L → D, E → L, BH → E}  
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•  F = {ABH → C, ABH → K, A → D, C → E, BGH → L, L → A, L 
→ D, E → L, BH → E} 

•  Step 2: Eliminate redundant attributes from LHS, e.g. Can an 
attribute be deleted from ABH → C?  
–  Compute (AB)+, (BH)+, (AH)+ and see if any of them contains C. (Why?) 

–  (AB)+ = ABD, (BH)+ = ABCDEHKL, (AH)+ = ADH. Since C ∈ (BH)+, BH 
→ C is entailed by F. So A is redundant in ABH → C. Similarly, A is also 
redundant in ABH → K. Check further to see if B or H is redundant as well. 

–  Similarly, for BGH → L, G is redundant since L ∈ (BH)+. 
  
–  F = {BH → C, BH → K, A → D, C → E, BH → L, L → A, L → D, E → L, 

BH → E} 
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•  F = {BH → C, BH → K, A → D, C → E, BH → L, L → A, L 
→ D, E → L, BH → E} 

•  Step 3: Delete redundant FDs from F. 

–  If F – {f} infers f, then f is redundant, i.e. if f is X → A, then check if X+ 
using F – f still contains A. If it does, then it means X → A can be inferred 
by other FDs. 

–  E.g. For BH → L, (BH)+ (not using BH → L) = ACDEKL, which 
contains L. This means BH → L can be inferred by other FDs, so it’s a 
redundant FD. 

–  In fact, BH → L can be inferred by BH → E, E → L.  
–  Check other FDs using the same algorithm. 

•  Note: the order of Step 2 and Step 3 should not be exchanged. 
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What to do with Minimal Cover? 
•  After obtaining the minimal cover, for each FD X→ A in 

the minimal cover that is not preserved, create a table 
consisting of XA (so we can check dependency in this new 
table, i.e. dependency is preserved). 

•  Why is this new table guaranteed to be in 3NF (whereas if 
we created the new table from F, it might not?) 
–  Since X → A is in the minimal cover, Y → A does not hold for 

any Y that is a strict subset of X. 
•  So X is a key for XA (satisfies condition #2) 
•  If any other dependencies hold over XA, the right side can involve 

only attributes in X because A is a single attribute (satisfies condition 
#3).  
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Comparison of BCNF and 3NF 

•  It is always possible to decompose a relation into a set of  
relations that are in 3NF such that: 
–  the decomposition is lossless 
–  the dependencies are preserved 

•  It is always possible to decompose a relation into a set of 
relations that are in BCNF such that: 
–  the decomposition is lossless 
–  it may not be possible to preserve dependencies. 
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Normalization Review 
•  Identify all FD’s in F+ 
•  Identify candidate keys 
•  Identify (strongest, or specific) normal forms 

–  BCNF, 3NF 
•  Schema decomposition 

–  When to decompose 
–  How to check if a decomposition is lossless-join and/or dependency 

preserving 
•  Use projection of F+ to check for dependency preservation 

–  Decompose into: 
•  Lossless-join 
•  Dependency preserving 

–  Use minimal cover 



Normalization Theory -  
Practice Questions 
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Example 

A B C 
1 1 2 
1 1 3 
2 2 3 
2 2 2 

FDs with A as 
the left side: 

Satisfied by the 
relation? 

A→A Yes (trivial FD) 
A→B Yes 
A→C No: tuples 1&2 
AB →A Yes (trivial FD) 
AC →B Yes 
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Example 
Let F={ A → BC, B →C }. Is C →AB in F+? 
Answer: No. Either of the following 2 

reasons is ok: 
Reason 1) C+=C, and does not include AB.   
Reason 2) We can find a relation instance 

such that it satisfies F but does not satisfy 
C → AB. A B C 

1 1 2 
2 1 2 
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List all the non-trivial FDs in F+ 

•  Given F={ A → B, B → C}. Compute F+ 

(with attributes A, B, C). 

A B C AB AC BC ABC 
A √ √ √ √ √ √ 
B √ √ 
C 
AB √ √ √ √ 
AC √ √ √ √ 
BC 
ABC 

Attribute closure 

A+=ABC 
B+=BC 
C+=C 
AB+=ABC 
AC+=ABC 
BC+=BC 
ABC+=ABC 
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Example 
•  Given F={ A → B, B → C}. Find a relation that 

satisfies F: 

A B C 
1 1 2 
2 1 2 

•  Given F={ A → B, B → C}. Find a relation that 
satisfies F but does not satisfy B → A. Well, the 
above example suffices. 

•  Can you find an instance that satisfies F but not 
A → C? No. Because A → C is in F+ 
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Examples 
R(A, B, C, D, E),  
F = {A → B, C → D} 
 
Candidate key: ACE. How do we know? 
 
Intuitively,  
- A is not determined by any other attributes (like E), 
and A has to be in a candidate key (because a 
candidate key has to determine all the attributes). 
-  Now if A is in a candidate key, B cannot be in the same 
candidate key, since we can drop B from the candidate 
without losing the property of being a “key”. 
-  So B cannot be in a candidate key 
-  Same reasoning apply to others attributes. 
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Example 
R(A, B, C, D, E),  
F = {A → B, C → D} [Same as previous] 
 
Which normal form? 
 
Not in BCNF. This is the case where all attributes in 
the FDs appear in R. We consider A, and C to see if 
either is a superkey of not. Obviously, neither A nor 
C is a superkey, and hence R is not in BCNF. More 
precisely, we have A → B is in F+ and non-trivial,  
but A is not a superkey of R. 
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Example 

R(A, B, C, D, E) 
F = {A → B, C → D} [Same as previous] 
 
Which normal form? 
 
We already know that it’s not in BCNF. 
Not in 3NF either. We have A → B is in F+ and non-trivial,  
but A is not a superkey of R. Furthermore, B is not 
in any candidate key (since the only candidate key 
is ACE). 



34 

Example 

•  R(A,B,F), F = {AC → E, B → F}. 
•  Candidate key? AB 
•  BCNF? No, because of B → F (B is not a 

superkey). 
•  3NF? No, because of B → F (F is not part of a 

candidate key). 
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Example 

•  R(D, C, H, G), F = {A → I, I → A} 
•  Candidate key? DCHG 
•  BCNF? Yes 
•  3NF? Yes 
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Example 
•  R(A, B, C, D, E, G, H) 
     F={AB → C, AC → B, B → D, BC → A, E → G} 
 
•  Candidate keys?  

–  H has to be in all candidate keys 
–  E has to be in all candidate keys 
–  G cannot be in any candidate key (since E is in all candidate keys already). 
–  Since AB → C, AC → B and BC → A, we know no candidate key can 

have ABC together. 
–  AEH, BEH, CEH are not superkeys. 
–  Try ABEH, ACEH, BCEH. They are all superkeys. And we know they are 

all candidate keys (since above properties) 
–  These are the only candidate keys: (1) each candidate key either contains 

A, or B, or C since no attributes other than A,B,C determine A, B, C, and 
(2) if a candidate key contains A, then it must contain either B, or C, and 
so on. 
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Example 
•  Same as previous 
•  Not in BCNF, not in 3NF 
•  Decomposition: 

Using B → D 

ABCDEGH 

BD ABCEGH 

ABC ABEGH 

Using AB → C EG ABEH 

Using E → G 

R(A, B, C, D, E, G, H) 
F={AB → C, AC → B, B → D, 
BC → A, E → G} 
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Example 
•  R(A, B, C, D, E, G, H) 
    F={AB → C, AC → B, B → D, BC → A, E → 

G} 
•  Decomposition: BD, ABC, EG, ABEH 
•  Why good decomposition? 

–  They are all in BCNF 
–  Lossless-join decomposition 
–  All dependencies are preserved. 
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Example 

•  R(A, B, D, E) decomposed into R1(A, B, D), R2
(A, B, E) 

•  F={AB → DE} 
•  It is a dependency preserving decomposition! 

–  AB → D can be checked in R1 

–  AB → E can be checked in R2 
–  {AB → DE} is equivalent to {AB → D, AB → E} 


