
1

Schema Refinement &
Normalization Theory 2

Week 15

2

How do we know R is in BCNF?
•  If R has only two attributes, then it is in

BCNF
•  If F only uses attributes in R, then:

– R is in BCNF if and only if for each X → Y in
F (not F+!), X is a superkey of R, i.e., X → R is
in F+ (not F!).

3

Checking for BCNF Violations
•  List all non-trivial FDs
•  Ensure that left hand side of each FD is a

superkey
•  We have to first find all the keys!

4

Checking for BCNF Violations
•  Is Courses(course_num, dept_name, course_name,

classroom, enrollment, student_name, address) in BCNF?
•  FDs are:

–  course_num, dept_name → course_name
–  course_num, dept_name → classroom
–  course_num, dept_name → enrollment

•  What is (course_num, dept_name)+?
–  {course_num, dept_name, course_name, classroom, enrollment}

•  Therefore, the key is
{course_num, dept_name, course_name, classroom, enrollment,
student_name, address}

•  The relation is not in BCNF

5

BCNF and Dependency Preservation

•  In general, there may not be a dependency
preserving decomposition into BCNF.

•  Example: schema CSZ (city, street_name,
zip_code) with FDs: CS → Z, Z → C

 (city, street_name) → zip_code
 zip_code → city

•  Can’t decompose while preserving CS → Z,
but CSZ is not in BCNF.

6

Example Regarding Dependency
Preservation

•  R = (A, B, C)
F = {A → B, B → C)
–  Can be decomposed in two different ways

•  R1 = (A, B), R2 = (B, C)
–  Lossless-join decomposition:

 R1 ∩ R2 = {B} and B → BC
–  Dependency preserving

•  R1 = (A, B), R2 = (A, C)
–  Lossless-join decomposition:

 R1 ∩ R2 = {A} and A → AB
–  Not dependency preserving

(cannot check B → C without computing R1 R2)

7

Dependency Preserving Decomposition
•  Consider CSJDPQV, C is key, JP → C and

SD → P.
–  BCNF decomposition: CSJDQV and SDP
–  Problem: Checking JP → C requires a join!

•  Dependency preserving decomposition
(Intuitive):
–  If R is decomposed into X, Y and Z, and we

enforce the FDs that hold on X, on Y and on Z,
then all FDs that were given to hold on R must
also hold. (Avoids Problem (3))

8

What FD on a decomposition?
•  Projection of set of FDs F: If R is

decomposed into X, ... the projection of F
onto X (denoted FX) is the set of FDs U →
V in F+ (closure of F) such that U, V are in
X.

9

Dependency Preserving Decompositions
(Contd.)

•  Decomposition of R into X and Y is dependency preserving
if (FX union FY) + = F +

–  i.e., if we consider only dependencies in the closure F + that can be
checked in X without considering Y, and in Y without considering
X, these imply all dependencies in F +.

•  Important to consider F +, not F, in this definition:
–  ABC, A → B, B → C, C → A, decomposed into AB and BC.
–  Is this dependency preserving? Is C → A preserved?????

•  Dependency preserving does not imply lossless join:
–  ABC, A → B, decomposed into AB and BC.

•  And vice-versa!

10

Another example
•  Assume CSJDPQV is decomposed into

 SDP, JS, CJDQV
It is not dependency preserving
w.r.t. the FDs: JP → C, SD → P and J → S.

•  However, it is a lossless join decomposition.
•  In this case, adding JPC to the collection of relations gives

us a dependency preserving decomposition.
•  JPC tuples stored only for checking FD!

11

Summary of BCNF
•  If a relation is in BCNF, it is free of redundancies that can

be detected using FDs. Thus, trying to ensure that all
relations are in BCNF is a good heuristic.

•  If a relation is not in BCNF, we can try to decompose it
into a collection of BCNF relations.
–  It is always possible to decompose a relation into a set of

relations that are in BCNF such that:
•  the decomposition is lossless
•  it may not be possible to preserve dependencies.

12

Next: Third Normal Form
•  There are some situations where

–  BCNF is not dependency preserving, and
–  efficient checking for FD violation on updates is

important
•  Solution: define a weaker normal form, called

Third Normal Form (3NF)
–  Allows some redundancy (with resultant problems; we

will see examples later)
–  But functional dependencies can be checked on

individual relations without computing a join.
–  There is always a lossless-join, dependency-preserving

decomposition into 3NF.

13

Third Normal Form (3NF)

•  If R is in BCNF, obviously in 3NF.
•  If R is in 3NF, some redundancy is possible.

It is a compromise, used when BCNF not
achievable (e.g., no “good” decomposition,
or performance considerations).
–  Lossless-join, dependency-preserving

decomposition of R into a collection of 3NF
relations always possible.

3NF

•  Relation R with FDs F is in 3NF if, for each FD
X → A (X ∈ R and A ∈ R) in F, one of the
following statements is true:
–  A ∈ X (trivial FD), or
–  X is a superkey, or
–  A is part of some key for R

14

If one of these two is
satisfied for ALL FDs, then
R is in BCNF

Not just superkey! (why not?)

15

What Does 3NF Achieve?
•  If 3NF is violated by X→A, one of the following holds:

–  X is a subset of some key K (partial redundancy)
•  We store (X, A) pairs redundantly.

–  X is not a proper subset of any key.
•  There is a chain of FDs K → X → A, which means that we cannot

associate an X value with a K value unless we also associate an A value
with an X value.

•  But: even if reln is in 3NF, these problems could arise.
–  e.g., Reserves SBDC (sid, bid, date, credit_card). Keys are SBD, CBD.

FD = {S →C, C →S}. R is in 3NF, but for each reservation of sailor S,
same (S, C) pair is stored.

•  Thus, 3NF is indeed a compromise relative to BCNF.

16

Decomposition into 3NF
•  Obviously, the algorithm for lossless join decomp

into BCNF can be used to obtain a lossless join
decomp into 3NF (typically, can stop earlier).

•  To ensure dependency preservation, one idea:
–  If X → Y is not preserved, add relation XY.
–  Problem is that XY may violate 3NF!

•  Refinement: Instead of the given set of FDs F,
use a minimal cover for F.

17

Minimal Cover for a Set of FDs
•  Minimal cover G for a set of FDs F:

–  Closure of F = closure of G.
–  Right hand side of each FD in G is a single attribute.
–  If we modify G by deleting an FD or by deleting

attributes from an FD in G, the closure changes.
•  Intuitively, every FD in G is needed, and “as small

as possible’’ in order to get the same closure as F.

18

Obtaining Minimal Cover

•  Step 1: Put the FDs in a standard form (i.e.
right-hand side should contain only single
attribute)

•  Step 2: Minimize the left side of each FD
•  Step 3: Delete redundant FDs

•  Find minimal cover for F = {ABH → CK,
A → D, C → E, BGH → L, L → AD, E →
L, BH → E}

19

•  Step 1: Make RHS of each FD into a single
attribute:

F = {ABH → C, ABH → K, A → D, C → E,
BGH → L, L → A, L → D, E → L, BH → E}

20

•  F = {ABH → C, ABH → K, A → D, C → E, BGH → L, L → A, L
→ D, E → L, BH → E}

•  Step 2: Eliminate redundant attributes from LHS, e.g. Can an
attribute be deleted from ABH → C?
–  Compute (AB)+, (BH)+, (AH)+ and see if any of them contains C. (Why?)

–  (AB)+ = ABD, (BH)+ = ABCDEHKL, (AH)+ = ADH. Since C ∈ (BH)+, BH
→ C is entailed by F. So A is redundant in ABH → C. Similarly, A is also
redundant in ABH → K. Check further to see if B or H is redundant as well.

–  Similarly, for BGH → L, G is redundant since L ∈ (BH)+.

–  F = {BH → C, BH → K, A → D, C → E, BH → L, L → A, L → D, E → L,

BH → E}

21

•  F = {BH → C, BH → K, A → D, C → E, BH → L, L → A, L
→ D, E → L, BH → E}

•  Step 3: Delete redundant FDs from F.

–  If F – {f} infers f, then f is redundant, i.e. if f is X → A, then check if X+
using F – f still contains A. If it does, then it means X → A can be inferred
by other FDs.

–  E.g. For BH → L, (BH)+ (not using BH → L) = ACDEKL, which
contains L. This means BH → L can be inferred by other FDs, so it’s a
redundant FD.

–  In fact, BH → L can be inferred by BH → E, E → L.
–  Check other FDs using the same algorithm.

•  Note: the order of Step 2 and Step 3 should not be exchanged.

22

23

What to do with Minimal Cover?
•  After obtaining the minimal cover, for each FD X→ A in

the minimal cover that is not preserved, create a table
consisting of XA (so we can check dependency in this new
table, i.e. dependency is preserved).

•  Why is this new table guaranteed to be in 3NF (whereas if
we created the new table from F, it might not?)
–  Since X → A is in the minimal cover, Y → A does not hold for

any Y that is a strict subset of X.
•  So X is a key for XA (satisfies condition #2)
•  If any other dependencies hold over XA, the right side can involve

only attributes in X because A is a single attribute (satisfies condition
#3).

24

Comparison of BCNF and 3NF

•  It is always possible to decompose a relation into a set of
relations that are in 3NF such that:
–  the decomposition is lossless
–  the dependencies are preserved

•  It is always possible to decompose a relation into a set of
relations that are in BCNF such that:
–  the decomposition is lossless
–  it may not be possible to preserve dependencies.

25

Normalization Review
•  Identify all FD’s in F+
•  Identify candidate keys
•  Identify (strongest, or specific) normal forms

–  BCNF, 3NF
•  Schema decomposition

–  When to decompose
–  How to check if a decomposition is lossless-join and/or dependency

preserving
•  Use projection of F+ to check for dependency preservation

–  Decompose into:
•  Lossless-join
•  Dependency preserving

–  Use minimal cover

Normalization Theory -
Practice Questions

27

Example

A B C
1 1 2
1 1 3
2 2 3
2 2 2

FDs with A as
the left side:

Satisfied by the
relation?

A→A Yes (trivial FD)
A→B Yes
A→C No: tuples 1&2
AB →A Yes (trivial FD)
AC →B Yes

28

Example
Let F={ A → BC, B →C }. Is C →AB in F+?
Answer: No. Either of the following 2

reasons is ok:
Reason 1) C+=C, and does not include AB.
Reason 2) We can find a relation instance

such that it satisfies F but does not satisfy
C → AB. A B C

1 1 2
2 1 2

29

List all the non-trivial FDs in F+

•  Given F={ A → B, B → C}. Compute F+

(with attributes A, B, C).

A B C AB AC BC ABC
A √ √ √ √ √ √
B √ √
C
AB √ √ √ √
AC √ √ √ √
BC
ABC

Attribute closure

A+=ABC
B+=BC
C+=C
AB+=ABC
AC+=ABC
BC+=BC
ABC+=ABC

30

Example
•  Given F={ A → B, B → C}. Find a relation that

satisfies F:

A B C
1 1 2
2 1 2

•  Given F={ A → B, B → C}. Find a relation that
satisfies F but does not satisfy B → A. Well, the
above example suffices.

•  Can you find an instance that satisfies F but not
A → C? No. Because A → C is in F+

31

Examples
R(A, B, C, D, E),
F = {A → B, C → D}

Candidate key: ACE. How do we know?

Intuitively,
- A is not determined by any other attributes (like E),
and A has to be in a candidate key (because a
candidate key has to determine all the attributes).
-  Now if A is in a candidate key, B cannot be in the same
candidate key, since we can drop B from the candidate
without losing the property of being a “key”.
-  So B cannot be in a candidate key
-  Same reasoning apply to others attributes.

32

Example
R(A, B, C, D, E),
F = {A → B, C → D} [Same as previous]

Which normal form?

Not in BCNF. This is the case where all attributes in
the FDs appear in R. We consider A, and C to see if
either is a superkey of not. Obviously, neither A nor
C is a superkey, and hence R is not in BCNF. More
precisely, we have A → B is in F+ and non-trivial,
but A is not a superkey of R.

33

Example

R(A, B, C, D, E)
F = {A → B, C → D} [Same as previous]

Which normal form?

We already know that it’s not in BCNF.
Not in 3NF either. We have A → B is in F+ and non-trivial,
but A is not a superkey of R. Furthermore, B is not
in any candidate key (since the only candidate key
is ACE).

34

Example

•  R(A,B,F), F = {AC → E, B → F}.
•  Candidate key? AB
•  BCNF? No, because of B → F (B is not a

superkey).
•  3NF? No, because of B → F (F is not part of a

candidate key).

35

Example

•  R(D, C, H, G), F = {A → I, I → A}
•  Candidate key? DCHG
•  BCNF? Yes
•  3NF? Yes

36

Example
•  R(A, B, C, D, E, G, H)
 F={AB → C, AC → B, B → D, BC → A, E → G}

•  Candidate keys?

–  H has to be in all candidate keys
–  E has to be in all candidate keys
–  G cannot be in any candidate key (since E is in all candidate keys already).
–  Since AB → C, AC → B and BC → A, we know no candidate key can

have ABC together.
–  AEH, BEH, CEH are not superkeys.
–  Try ABEH, ACEH, BCEH. They are all superkeys. And we know they are

all candidate keys (since above properties)
–  These are the only candidate keys: (1) each candidate key either contains

A, or B, or C since no attributes other than A,B,C determine A, B, C, and
(2) if a candidate key contains A, then it must contain either B, or C, and
so on.

37

Example
•  Same as previous
•  Not in BCNF, not in 3NF
•  Decomposition:

Using B → D

ABCDEGH

BD ABCEGH

ABC ABEGH

Using AB → C EG ABEH

Using E → G

R(A, B, C, D, E, G, H)
F={AB → C, AC → B, B → D,
BC → A, E → G}

38

Example
•  R(A, B, C, D, E, G, H)
 F={AB → C, AC → B, B → D, BC → A, E →

G}
•  Decomposition: BD, ABC, EG, ABEH
•  Why good decomposition?

–  They are all in BCNF
–  Lossless-join decomposition
–  All dependencies are preserved.

39

Example

•  R(A, B, D, E) decomposed into R1(A, B, D), R2
(A, B, E)

•  F={AB → DE}
•  It is a dependency preserving decomposition!

–  AB → D can be checked in R1

–  AB → E can be checked in R2
–  {AB → DE} is equivalent to {AB → D, AB → E}

