Schema Refinement \& Normalization Theory

Functional Dependencies

Week 13

What's the Problem

- Consider relation obtained (call it SNLRHW)

Hourly_Emps(ssn, name, lot, rating, hrly_wage, hrs_worked)

- What if we know rating determines hrly_wage?

S	N	L	R	W	H
$123-22-3666$	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
$131-24-3650$	Smethurst	35	5	7	30
$434-26-3751$	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Redundancy

- When part of data can be derived from other parts, we say redundancy exists.
- Example: the hrly_wage of Smiley can be derived from the hrly_wage of Attishoo because they have the same rating and we know rating determines hrly_wage.
- Redundancy exists because of of the existence of integrity constraints (e.g., FD: $\boldsymbol{R} \rightarrow \boldsymbol{W}$.

What's the problem, again

- Update anomaly: Can we change W in just the 1st tuple of SNLRWH?
- Insertion anomaly: What if we want to insert an employee and don't know the hourly wage for his rating?
- Deletion anomaly: If we delete all employees with rating 5, we lose the information about the wage for rating 5 !

What do we do?

- Since constraints, in particular functional dependencies, cause problems, we need to study them, and understand when and how they cause redundancy.
- When redundancy exists, refinement is needed.
- Main refinement technique: decomposition (replacing $A B C D$ with, say, $A B$ and $B C D$, or $A C D$ and $A B D$).
- Decomposition should be used judiciously:
- Is there reason to decompose a relation?
- What problems (if any) does the decomposition cause?

What do we do? Decomposition

S	N	L	R	W	H
$123-22-3666$	Attishoo	48	8	10	40
$231-31-5368$	Smiley	22	8	10	30
$131-24-3650$	Smethurst	35	5	7	30
$434-26-3751$	Guldu	35	5	7	32
$612-67-4134$	Madayan	35	8	10	40

$=$| S | N | L | R | H |
| :--- | :--- | :--- | :--- | :--- |
| $123-22-3666$ | Attishoo | 48 | 8 | 40 |
| $231-31-5368$ | Smiley | 22 | 8 | 30 |
| $131-24-3650$ | Smethurst | 35 | 5 | 30 |
| $434-26-3751$ | Guldu | 35 | 5 | 32 |
| $612-67-4134$ | Madayan | 35 | 8 | 40 |\quad| R | W |
| :--- | :--- | :--- |
| 8 | 10 |
| 5 | 7 |

Refining an ER Diagram

- 1st diagram translated: Employees(S,N,L,D,S2) Departments(D,M,B)
- Lots associated with employees.

- Suppose all employees in a dept are assigned the same After: lot: D \rightarrow L
- Can fine-tune this way: Employees2(S,N,D,S2) Departments(D,M,B,L)

Functional Dependencies (FDs)

- A functional dependency (FD) has the form: $\mathrm{X} \rightarrow \mathrm{Y}$, where X and Y are two sets of attributes.
- Examples: rating \rightarrow hrly_wage, $\mathrm{AB} \rightarrow \mathrm{C}$
- The FD $\mathrm{X} \rightarrow \mathrm{Y}$ is satisfied by a relation instance r if:
- for each pair of tuples t 1 and t 2 in r :

$$
t 1 \cdot X=t 2 \cdot X \text { implies } t 1 . Y=t 2 . Y
$$

- i.e., given any two tuples in r, if the X values agree, then the Y values must also agree. (X and Y are sets of attributes.)
- Convention: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ etc denote sets of attributes, and A , B, C, etc denote attributes.

Functional Dependencies (FDs)

- The FD holds over relation name R if, for every allowable instance r of R, r satisfies the FD.
- An FD, as an integrity constraint, is a statement about all allowable relation instances.
- Must be identified based on semantics of application.
- Given some instance $r l$ of R, we can check if it violates some FD f or not
- But we cannot tell if f holds over R by looking at an instance!
- Cannot prove non-existence (of violation) out of ignorance
- This is the same for all integrity constraints!

Example: Constraints on Entity Set

- Consider relation obtained from Hourly_Emps:
- Hourly_Emps (ssn, name, lot, rating, hrly_wage, hrs_worked)
- Notation: We will denote this relation schema by listing the attributes: SNLRWH
- This is really the set of attributes $\{\mathrm{S}, \mathrm{N}, \mathrm{L}, \mathrm{R}, \mathrm{W}, \mathrm{H}\}$.
- Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly_Emps for SNLRWH)
- Some FDs on Hourly_Emps:
- ssn is the key: $\mathrm{S} \rightarrow$ SNLRWH
- rating determines hrly_wage: $\mathrm{R} \rightarrow \mathrm{W}$

One more example

A	B	C
1	1	2
1	1	3
2	1	3
2	1	2

How many possible FDs totally on this relation instance?

FDs with A as the left side:	Satisfied by the relation instance?
$\mathrm{A} \rightarrow \mathrm{A}$	yes
$\mathrm{A} \rightarrow \mathrm{B}$	yes
$\mathrm{A} \rightarrow \mathrm{C}$	No
$\mathrm{A} \rightarrow \mathrm{AB}$	yes
$\mathrm{A} \rightarrow \mathrm{AC}$	No
$\mathrm{A} \rightarrow \mathrm{BC}$	No
$\mathrm{A} \rightarrow \mathrm{ABC}$	No

Violation of FD by a relation

- The FD X $\rightarrow \mathrm{Y}$ is NOT satisfied by a relation instance rif:
- There exists a pair of tuples t 1 and t 2 in r such that

$$
t 1 . X=t 2 . X \text { but } t 1 . Y \neq t 2 . Y
$$

- i.e., we can find two tuples in r, such that X values agree, but Y values don't.

Some other FDs

FD	Satisfied by the relation instance?
$\mathrm{C} \rightarrow \mathrm{B}$	yes
$\mathrm{C} \rightarrow \mathrm{AB}$	No
$\mathrm{B} \rightarrow \mathrm{C}$	No
$\mathrm{B} \rightarrow \mathrm{B}$	Yes
$\mathrm{AC} \rightarrow \mathrm{B}$	Yes [note!]
\ldots	\ldots

Relationship between FDs and Keys

- Given R(A, B, C).
$-\mathrm{A} \rightarrow \mathrm{ABC}$ means that A is a key.
- In general,
$-\mathrm{X} \rightarrow \mathrm{R}$ means X is a (super)key.
- How about key constraint?
- ssn \rightarrow did

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
- ssn \rightarrow did, did \rightarrow lot implies ssn \rightarrow lot
$-A \rightarrow B C$ implies $A \rightarrow B$
- An FD f is logically implied by a set of FDs F if f holds whenever all FDs in F hold.
- $\mathrm{F}^{+}=$closure of F is the set of all FDs that are implied by F.

Armstrong's axioms

- Armstrong' s axioms are sound and complete inference rules for FDs!
- Sound: all the derived FDs (by using the axioms) are those logically implied by the given set
- Complete: all the logically implied (by the given set) FDs can be derived by using the axioms.

Reasoning about FDs

- How do we get all the FDs that are logically implied by a given set of FDs?
- Armstrong' s Axioms (X, Y, Z are sets of attributes):
- Reflexivity:
- If $\mathrm{X} \supseteq \mathrm{Y}$, then $\mathrm{X} \rightarrow \mathrm{Y}$
- Augmentation:
- If $\mathrm{X} \rightarrow \mathrm{Y}$, then $\mathrm{XZ} \rightarrow \mathrm{YZ}$ for any Z
- Transitivity:
- If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{Y} \rightarrow \mathrm{Z}$, then $\mathrm{X} \rightarrow \mathrm{Z}$

A	B	C
1	1	2
2	1	3
2	1	3
1	1	2

Example of using Armstrong' s Axioms

- Couple of additional rules (that follow from AA):
- Union: If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{X} \rightarrow \mathrm{Z}$, then $\mathrm{X} \rightarrow$ YZ
- Decomposition: If $\mathrm{X} \rightarrow \mathrm{YZ}$, then $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{X} \rightarrow \mathrm{Z}$
- Derive the above two by using Armstrong's axioms!

Derive Union

- Show that

If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{X} \rightarrow \mathrm{Z}$, then $\mathrm{X} \rightarrow \mathrm{YZ}$

Derive Decomposition

- Show that

If $X \rightarrow Y Z$, then $X \rightarrow Y$ and $X \rightarrow Z$

Another Useful Rule: Accumulation Rule

- If $\mathrm{X} \rightarrow \mathrm{YZ}$ and $\mathrm{Z} \rightarrow \mathrm{W}$, then $\mathrm{X} \rightarrow \mathrm{YZW}$

Proof:

Derivation Example

- $R=(A, B, C, G, H, I)$

$$
F=\{A \rightarrow B ; A \rightarrow C ; C G \rightarrow H ; C G \rightarrow I ; B \rightarrow H\}
$$

- some members of F^{+}(how to derive them?)
$-A \rightarrow H$
$-A G \rightarrow I$
- $C G \rightarrow H I$

Procedure for Computing F^{+}

- To compute the closure of a set of functional dependencies F :

$$
F^{+}=F
$$

repeat
for each functional dependency f in F^{+} apply reflexivity and augmentation rules on f add the resulting functional dependencies to F^{+}
for each pair of functional dependencies f_{1} and f_{2} in F^{+} if f_{1} and f_{2} can be combined using transitivity then add the resulting functional dependency to F^{+}
until F^{+}does not change any further

NOTE: We shall see an alternative procedure for this task later

Example on Computing F +

- $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{CD} \rightarrow \mathrm{E}\}$
- Step 1: For each f in F , apply reflexivity rule
- We get: $\mathrm{CD} \rightarrow \mathrm{C} ; \mathrm{CD} \rightarrow \mathrm{D}$
- Add them to F :
- $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{CD} \rightarrow \mathrm{E} ; \mathrm{CD} \rightarrow \mathrm{C} ; \mathrm{CD} \rightarrow \mathrm{D}\}$
- Step 2: For each f in F, apply augmentation rule
- From $\mathrm{A} \rightarrow \mathrm{B}$ we get: $\mathrm{A} \rightarrow \mathrm{AB} ; \mathrm{AB} \rightarrow \mathrm{B} ; \mathrm{AC} \rightarrow \mathrm{BC} ; \mathrm{AD}$ $\rightarrow \mathrm{BD} ; \mathrm{ABC} \rightarrow \mathrm{BC} ; \mathrm{ABD} \rightarrow \mathrm{BD} ; \mathrm{ACD} \rightarrow \mathrm{BCD}$
- From $\mathrm{B} \rightarrow \mathrm{C}$ we get: $\mathrm{AB} \rightarrow \mathrm{AC} ; \mathrm{BC} \rightarrow \mathrm{C} ; \mathrm{BD} \rightarrow \mathrm{CD}$; $\mathrm{ABC} \rightarrow \mathrm{AC} ; \mathrm{ABD} \rightarrow \mathrm{ACD}$, etc etc.
- Step 3: Apply transitivity on pairs of f's
- Keep repeating... You get the idea

Reasoning About FDs (Contd.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in \# of attrs!)
- Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs F. An efficient check:
- Compute attribute closure of X (denoted X^{+}) wrt F :
- Set of all attributes Z such that $\mathrm{X} \rightarrow \mathrm{Z}$ is in F^{+}
- There is a linear time algorithm to compute this.
- Check if Y is in X^{+}
- Does $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{CD} \rightarrow \mathrm{E}\}$ imply $\mathrm{A} \rightarrow \mathrm{E}$?
- i.e, is $\mathrm{A} \rightarrow \mathrm{E}$ in the closure F^{+}? Equivalently, is E in A^{+}?

Computing X^{+}

- Input F (a set of FDs), and X (a set of attributes)
- Output: Result= X^{+}(under F)
- Method:
- Step 1: Result :=X;
- Step 2: Take $\mathrm{Y} \rightarrow \mathrm{Z}$ in F , and Y is in Result, do:

Result := Result $\cup Z$

- Repeat step 2 until Result cannot be changed and then output Result.

Example of Attribute Closure X^{+}

- Does $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{CD} \rightarrow \mathrm{E}\}$ imply $\mathrm{A} \rightarrow$ E?
- i.e, is $\mathrm{A} \rightarrow \mathrm{E}$ in the closure F^{+}? Equivalently, is E in A^{+}?

Step 1: Result = A
Step 2: Consider $A \rightarrow B$, Result $=A B$
Consider $\mathrm{B} \rightarrow \mathrm{C}$, Result $=\mathrm{ABC}$
Consider $\mathrm{CD} \rightarrow \mathrm{E}, \mathrm{CD}$ is not in ABC , so stop
Step 3: $\mathrm{A}^{+}=\{\mathrm{ABC}\}$
E is NOT in A^{+}, so $\mathrm{A} \rightarrow \mathrm{E}$ is NOT in F^{+}

Example of computing X^{+}

$\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{AC} \rightarrow \mathrm{D}, \mathrm{AB} \rightarrow \mathrm{C}\} ?$

What is X^{+}for $\mathrm{X}=\mathrm{A}$? (i.e. what is the attribute closure for A ?)

Answer: $\mathrm{A}^{+}=\mathrm{ABCD}$

Example of Attribute Closure

$$
\begin{aligned}
& R=(A, B, C, G, H, I) \\
& F=\{A \rightarrow B ; A \rightarrow C ; C G \rightarrow H ; C G \rightarrow I ; B \rightarrow H\}
\end{aligned}
$$

- $(A G)^{+}=$?
- Answer: ABCGHI
- Is $A G$ a candidate key?
- This question involves two parts:

1. Is AG a super key?
$-\quad$ Does $A G \rightarrow R ?==$ Is $(\mathrm{AG})^{+} \supseteq \mathrm{R}$
2. Is any subset of AG a superkey?
$-\quad$ Does $A \rightarrow R ?==$ Is $(\mathrm{A})^{+} \supseteq \mathrm{R}$
$-\quad$ Does $G \rightarrow R$? $==$ Is $(\mathrm{G})^{+} \supseteq \mathrm{R}$

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
- To test if X is a superkey, we compute X^{+}, and check if X^{+}contains all attributes of R.
- Testing functional dependencies
- To check if a functional dependency $\mathrm{X} \rightarrow \mathrm{Y}$ holds (or, in other words, is in F^{+}), just check if $\mathrm{Y} \subseteq \mathrm{X}^{+}$.
- That is, we compute X^{+}by using attribute closure, and then check if it contains Y.
- Is a simple and cheap test, and very useful
- Computing closure of F

Computing F^{+}

- Given $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}\}$. Compute F^{+}(with attributes $\mathrm{A}, \mathrm{B}, \mathrm{C})$.

Step 1: Construct an empty matrix, with all Possible combinations of attributes in the rows

And columns

	A	B	C	AB	AC	BC	ABC
A							
B							
C							
AB							
AC							
BC							
ABC							

Step 3: Fill in the matrix using the results from Step 2

Step 2: Compute the attribute closures for all attribute/ combination of attributes

Attribute closure
$\mathrm{A}^{+}=?$
$\mathrm{~B}^{+}=?$
$\mathrm{C}^{+}=?$
$\mathrm{AB}^{+}=?$
$\mathrm{AC}^{+}=?$
$\mathrm{BC}^{+}=?$
$\mathrm{ABC}^{+}=?$

Computing F^{+}

- Given $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}\}$. Compute F^{+}(with attributes $\mathrm{A}, \mathrm{B}, \mathrm{C}$).

We'll do an example on A^{+}.
Step 1: Result = A
Step 2: Consider $A \rightarrow B$, Result $=A \cup B=A B$
Consider $\mathrm{B} \rightarrow \mathrm{C}$, Result $=\mathrm{AB} \cup \mathrm{C}=\mathrm{ABC}$
Step 3: $\mathrm{A}^{+}=\{\mathrm{ABC}\}$

Computing F^{+}

- Given $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}\}$. Compute F^{+}(with attributes $\mathrm{A}, \mathrm{B}, \mathrm{C}$).

Step 1: Construct an empty matrix, with all Possible combinations of attributes in the rows
And columns

	A	B	C	AB	AC	BC	ABC
A	$\sqrt{ }$						
B							
C							
$:$							

Step 3: Fill in the matrix using the results from Step 2. We have $\mathrm{A}^{+}=\mathrm{ABC}$. Now fill in the row for A . Consider the first column. Is A part of A^{+}? Yes, so check it. Is B part of A^{+}? Yes, so check it... and so on.

Step 2: Compute the attribute closures for all attribute/ combination of attributes

Attribute closure
$\mathrm{A}^{+}=\mathrm{ABC}$
$\mathrm{B}^{+}=?$
$\mathrm{C}^{+}=?$
$\mathrm{AB}^{+}=?$
$\mathrm{AC}^{+}=?$
$\mathrm{BC}^{+}=?$
$\mathrm{ABC}^{+}=?$

Computing F^{+}

- Given $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}\}$. Compute F^{+}(with attributes $\mathrm{A}, \mathrm{B}, \mathrm{C})$.

	A	B	C	AB	AC	BC	ABC
A	\checkmark						
B		\checkmark	\checkmark			\checkmark	
C			\checkmark				
AB	\checkmark						
AC	\checkmark						
BC		\checkmark	\checkmark			\checkmark	
ABC	\checkmark						

Attribute closure
$\mathrm{A}^{+}=\mathrm{ABC}$
$\mathrm{B}^{+}=\mathrm{BC}$
$\mathrm{C}^{+}=\mathrm{C}$
$\mathrm{AB}^{+}=\mathrm{ABC}$
$\mathrm{AC}^{+}=\mathrm{ABC}$
$\mathrm{BC}^{+}=\mathrm{BC}$
$\mathrm{ABC}^{+}=\mathrm{ABC}$

- An entry with $\sqrt{ }$ means FD (the row) \rightarrow (the column) is in F^{+}.
- An entry gets $\sqrt{ }$ when (the column) is in (the row) ${ }^{+}$

Computing F^{+}

Step 4: Derive rules.

	A	B	C	AB	AC	BC	ABC
A	$\sqrt{ }$						
B		$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$	
C			$\sqrt{ }$				
AB	$\sqrt{ }$						
AC	$\sqrt{ }$						
BC		$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$	
ABC	$\sqrt{ }$						

Attribute closure
$\mathrm{A}^{+}=\mathrm{ABC}$
$\mathrm{B}^{+}=\mathrm{BC}$
$\mathrm{C}^{+}=\mathrm{C}$
$\mathrm{AB}^{+}=\mathrm{ABC}$
$\mathrm{AC}^{+}=\mathrm{ABC}$
$\mathrm{BC}^{+}=\mathrm{BC}$
$\mathrm{ABC}^{+}=\mathrm{ABC}$

- An entry with $\sqrt{ }$ means FD (the row) \rightarrow (the column) is in F^{+}.
- An entry gets $\sqrt{ }$ when (the column) is in (the row) ${ }^{+}$

Check if two sets of FDs are equivalent

- Two sets of FDs are equivalent if they logically imply the same set of FDs.
- i.e., if $\mathrm{F}_{1}^{+}=\mathrm{F}_{2}^{+}$, then they are equivalent.
- For example, $\mathrm{F}_{1}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{A} \rightarrow \mathrm{C}\}$ is equivalent to $\mathrm{F}_{2}=\{\mathrm{A} \rightarrow \mathrm{BC}\}$
- How to test? Two steps:
- Every FD in F_{1} is in F_{2}^{+}
- Every FD in F_{2} is in $\mathrm{F}_{1}{ }^{+}$
- These two steps can use the algorithm (many times) for X^{+}

Summary

- Constraints give rise to redundancy
- Three anomalies
- FD is a "popular" type of constraint
- Satisfaction \& violation
- Logical implication
- Reasoning
- Armstrong's Axioms
- FD inference/derivation
- Computing the closure of $\mathrm{FD}^{\prime} \mathrm{s}\left(\mathrm{F}^{+}\right)$
- Check for existence of an FD
- By computing the Attribute closure

Normal Forms

- The first question: Is any refinement needed?
- Normal forms:
- If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/ minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
- Consider a relation R with 3 attributes, ABC .
- No FDs hold: There is no redundancy here.
- Given $\mathrm{A} \rightarrow \mathrm{B}$: Several tuples could have the same A value, and if so, they'll all have the same B value!

Normal Forms

- First normal form (1NF)
- Every field must contain atomic values, i.e. no sets or lists.
- Essentially all relations are in this normal form
- Second normal form (2NF)
- Any relation in 2NF is also in 1NF
- All the non-key attributes must depend upon the WHOLE of the candidate key rather than just a part of it.
- It is only relevant when the key is composite, i.e., consists of several fields.
- e.g. Consider a relation:
- Inventory(part, warehouse, quantity, warehouse_address).
- Suppose \{part, warehouse\} is a candidate key.
- warehouse_address depends upon warehouse alone - 2NF violation
- Solution: decompose

Normal Forms

- Boyce-Codd Normal Form (BCNF)
- Any relation in BCNF is also in 2NF
- Third normal form (3NF)
- Any relation in BCNF is also in 3NF

Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if for each nontrivial FD $\mathrm{X} \rightarrow \mathrm{A}$ in F, \mathbf{X} is a super key for \mathbf{R} (i.e., $\mathrm{X} \rightarrow \mathrm{R}$ in F^{+}).
- An FD X \rightarrow A is said to be "trivial" if $\mathrm{A} \in \mathrm{X}$.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are key constraints.
- If BCNF:
- No "data" in R can be predicted using FDs alone. Why:
- Because X is a (super)key, we can't have two different tuples that agree on the X value

Suppose we know that this instance satisfies $\mathrm{X} \rightarrow \mathrm{A}$. This situation cannot arise if the relation is in BCNF.

X	Y	A
x	y 1	a
x	y 2	$?$

Decomposition of a Relation Schema

- When a relation schema is not in BCNF: decompose.
- Suppose that relation R contains attributes $A 1$... An. A decomposition of R consists of replacing R by two or more relations such that:
- Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
- Every attribute of R appears as an attribute of at least one of the new relations.
- Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.

Decomposition example

S	N	L	R	W	H
$123-22-3666$	Attishoo	48	8	10	40
$231-31-5368$	Smiley	22	8	10	30
$131-24-3650$	Smethurst	35	5	7	30
$434-26-3751$	Guldu	35	5	7	32
$612-67-4134$	Madayan	35	8	10	40

$=$| S | N | L | R | H |
| :--- | :--- | :--- | :--- | :--- |
| $123-22-3666$ | Attishoo | 48 | 8 | 40 |
| $231-31-5368$ | Smiley | 22 | 8 | 30 |
| $131-24-3650$ | Smethurst | 35 | 5 | 30 |
| $434-26-3751$ | Guldu | 35 | 5 | 32 |
| $612-67-4134$ | Madayan | 35 | 8 | 40 |

Original relation (not stored in DB!)

Decomposition (in the DB)

Problems with Decompositions

- There are three potential problems to consider:
(1) Some queries become more expensive.
- e.g., How much did sailor Attishoo earn? (earn = W*H)
(2) Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
- Fortunately, not in the SNLRWH example.
(3) Checking some dependencies may require joining the instances of the decomposed relations.
- Fortunately, not in the SNLRWH example.
- Tradeoff: Must consider these issues vs. redundancy.

Example of problem 2

Student_ID	Name	Dcode	Cno	Grade
$123-22-3666$	Attishoo	INFS	501	A
$231-31-5368$	Guldu	CS	102	B
$131-24-3650$	Smethurst	INFS	614	B
$434-26-3751$	Guldu	INFS	614	A
$434-26-3751$	Guldu	INFS	612	C

Name	Dcode	Cno	Grade			
Attishoo	INFS	501	A			
Guldu	CS	102	B			
Smethurst	INFS	614	B			
Guldu	INFS	614	A			
Guldu	INFS	612	C	\quad	Student_ID	Name
:---	:---	:---				
$123-22-3666$	Attishoo					
$231-31-5368$	Guldu					
$131-24-3650$	Smethurst					
$434-26-3751$	Guldu					

Lossless Join Decompositions

- Decomposition of R into R_{1} and R_{2} is losslessjoin w.r.t. a set of FDs F if, for every instance r that satisfies F , we have:

$$
\pi_{R_{1}}(r) \triangleright \triangleleft \pi_{R_{2}}(r)=r
$$

- It is always true that

$$
r \subseteq \pi_{R_{1}}(r) \triangleright \triangleleft \pi_{R_{2}}(r)
$$

- In general, the other direction does not hold! If it does, the decomposition is lossless-join.

Example (lossy decomposition)

Example (lossless join decomposition)

We have $(A B \cap B C) \rightarrow B C$

Lossless Join Decomposition

- The decomposition of R into R_{1} and R_{2} is lossless-join wrt F if and only if F^{+}contains:
$-R_{1} \cap R_{2} \rightarrow R_{1}$, or
$-\mathrm{R}_{1} \cap \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}$
- In particular, the decomposition of R into (UV) and (R-V) is lossless-join if $\mathrm{U} \rightarrow \mathrm{V}$ holds on R
- assume U and V do not share attributes.
- WHY?

Decomposition

- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem (2))

Decomposition into BCNF

- Recall that for $\mathrm{X} \rightarrow \mathrm{A}$ in F over R to satisfy BCNF requirement, one of the followings must be true:
- XA are not all in R, or
$-\mathrm{X} \rightarrow \mathrm{A}$ is trivial, i.e. A is in X , or
-X is a superkey, i.e. $\mathrm{X} \rightarrow \mathrm{R}$ is in F^{+}
- Consider relation R with FDs F. If $\mathrm{X} \rightarrow \mathrm{A}$ in F over R violates BCNF , i.e.,
- XA are all in R, and
$-A$ is not in X, and
$-\mathrm{X} \rightarrow \mathrm{R}$ is not in F^{+}
\rightarrow non-trivial FD
$\rightarrow \mathrm{X}$ is not a superkey

Decomposition into BCNF

- Consider relation R with FDs F. If $\mathrm{X} \rightarrow \mathrm{A}$ in F over R violates BCNF , i.e.,
- XA are all in R, and
$-A$ is not in X, and
$-X \rightarrow R$ is not in F^{+}
\rightarrow non-trivial FD
$\rightarrow X$ is not a (super)key
- Then: decompose R into R - A and XA.
- Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.

BCNF Decomposition Example

- $R=(A, B, C)$

$$
F=\{A \rightarrow B ; B \rightarrow C\}
$$

$$
\operatorname{Key}=\{A\}
$$

- R is not in BCNF ($B \rightarrow C$ but B is not a superkey)
- Decomposition

$$
\begin{aligned}
& -R_{1}=(B, C) \\
& -R_{2}=(A, B)
\end{aligned}
$$

BCNF Decomposition Example 2

- Assume relation schema CSJDPQV:

Contracts(contract_id, supplier, project, dept, part, qty, value)

- key C, JP $\rightarrow \mathrm{C}, \mathrm{SD} \rightarrow \mathrm{P}, \mathrm{J} \rightarrow \mathrm{S}$
- To deal with SD $\rightarrow \mathrm{P}$, decompose into SDP, CSJDQV.
- To deal with $\mathrm{J} \rightarrow \mathrm{S}$, decompose CSJDQV into JS and CJDQV
- A tree representation of the decomposition:

BCNF Decomposition

- In general, several dependencies may cause violation of BCNF. The order in which we "deal with" them could lead to very different sets of relations!

How do we know R is in BCNF ?

- If R has only two attributes, then it is in BCNF
- If F only uses attributes in R, then:
-R is in BCNF if and only if for each $\mathrm{X} \rightarrow \mathrm{Y}$ in $\mathrm{F}\left(\boldsymbol{n o t} \boldsymbol{F}^{+}!\right)$, X is a superkey of R , i.e., $\mathrm{X} \rightarrow \mathrm{R}$ is in $\mathrm{F}^{+}(\operatorname{not} \mathrm{F}!)$.

Checking for BCNF Violations

- List all non-trivial FDs
- Ensure that left hand side of each FD is a superkey
- We have to first find all the keys!

Checking for BCNF Violations

- Is Courses(course_num, dept_name, course_name, classroom, enrollment, student_name, address) in BCNF?
- FDs are:
- course_num, dept_name \rightarrow course_name
- course_num, dept_name \rightarrow classroom
- course_num, dept_name \rightarrow enrollment
- What is (course_num, dept_name) ${ }^{+}$?
- \{course_num, dept_name, course_name, classroom, enrollment\}
- Therefore, the key is
\{course_num, dept_name, course_name, classroom, enrollment, student_name, address\}
- The relation is not in BCNF

