
1

CS 450

SQL - Views

Views
•  In some cases, it is not desirable for all users to see the

entire logical model (that is, all the actual relations stored
in the database.)

•  Consider a person who needs to know an instructors name
and department, but not the salary. This person should see
a relation described, in SQL, by
 select ID, name, dept_name
 from instructor

•  A view provides a mechanism to hide certain data from
the view of certain users.

•  Any relation that is not of the conceptual model but is
made visible to a user as a “virtual relation” is called a
view.

View Definition
•  A view is defined using the create view statement

which has the form

•  Once a view is defined, the view name can be used to
refer to the virtual relation that the view generates.

•  View definition is not the same as creating a new
relation by evaluating the query expression
–  Rather, a view definition causes the saving of an expression;

the expression is substituted into queries using the view.

Update/Drop View Definition
•  You can update view definition without dropping it

first by using the CREATE OR REPLACE VIEW
statement.

•  To drop a view

Example Views
•  A view of instructors without their salary

 CREATE VIEW faculty AS
 SELECT ID, name, dept_name
 FROM instructor

•  Find all instructors in the Biology department
 SELECT name
 FROM faculty
 WHERE dept_name = ‘Biology’

•  Create a view of department salary totals
 CREATE VIEW departments_total_salary(dept_name, total_salary) AS
 SELECT dept_name, SUM (salary)
 FROM instructor
 GROUP BY dept_name;

Views Defined Using Other Views
•  CREATE VIEW physics_fall_2009 AS

 SELECT course.course_id, sec_id, building, room_number
 FROM course, section
 WHERE course.course_id = section.course_id
 AND course.dept_name = ’Physics’
 AND section.semester = ’Fall’
 AND section.year = ’2009’;

•  CREATE VIEW physics_fall_2009_watson AS

 SELECT course_id, room_number
 FROM physics_fall_2009
 WHERE building= ’Watson’;

View Expansion

•  Expand use of a view in a query/another
view

CREATE VIEW physics_fall_2009_watson AS
(SELECT course_id, room_number
FROM (SELECT course.course_id, building, room_number
 FROM course, section
 WHERE course.course_id = section.course_id
 AND course.dept_name = ’Physics’
 AND section.semester = ’Fall’
 AND section.year = ’2009’)
WHERE building= ’Watson’;

Views Defined Using Other Views
•  One view may be used in the expression defining

another view
•  A view relation v1 is said to depend directly on a

view relation v2 if v2 is used in the expression
defining v1

•  A view relation v1 is said to depend on view
relation v2 if either v1 depends directly to v2 or
there is a path of dependencies from v1 to v2

•  A view relation v is said to be recursive if it
depends on itself.

View Expansion
•  A way to define the meaning of views defined in

terms of other views.
•  Let view v1 be defined by an expression e1 that may

itself contain uses of view relations.
•  View expansion of an expression repeats the

following replacement step:
 repeat

 Find any view relation vi in e1
 Replace the view relation vi by the expression defining vi
 until no more view relations are present in e1

•  As long as the view definitions are not recursive, this
loop will terminate

Update Data in a View

•  A view in Oracle is created by joining one or more tables.
When you update record(s) in a view, it updates the
records in the underlying tables that make up the view.

•  e.g. Add a new tuple to faculty view which we defined
earlier
 INSERT INTO faculty VALUES (’30765’, ’Green’, ’Music’);

 This insertion must be represented by the insertion of the
tuple
 (’30765’, ’Green’, ’Music’, null)

 into the instructor relation.

Some Updates cannot be Translated Uniquely
•  CREATE VIEW instructor_info AS

 SELECT ID, name, building
 FROM instructor, department
 WHERE instructor.dept_name= department.dept_name;

•  INSERT INTO instructor_info VALUES (’69987’, ‘White’, ‘Taylor’);

•  Which department, if multiple departments in Taylor?
•  What if no department is in Taylor?

•  Most SQL implementations allow updates only on simple
views
–  The from clause has only one database relation.
–  The select clause contains only attribute names of the relation,

and does not have any expressions, aggregates, or distinct
specification.

–  Any attribute not listed in the select clause can be set to null
–  The query does not have a group by or having clause.

And Some Not at All

•  CREATE VIEW history_instructors AS
 SELECT *
 FROM instructor
 WHERE dept_name= ’History’;

•  What happens if we insert (’25566’, ’Brown’, ’Biology’,
100000) into history_instructors?

What Happens If the Underlying
Table(s) Are Dropped?

•  The view continue to exist even after the
table(s) that the view is based on are
dropped.

•  However, if we try to query the view after
the table(s) have been dropped, we get a
message saying that the view has errors.

•  Once we recreate the table(s), the view is
fine again.

13

Materialized Views

•  Materializing a view: create a physical
table containing all the tuples in the result of
the query defining the view

•  If relations used in the query are updated,
the materialized view result becomes out of
date
– Need to maintain the view, by updating the

view whenever the underlying relations are
updated.

Transactions
•  Unit of work
•  Atomic transaction

–  either fully executed or rolled back as if it never
occurred

•  Isolation from concurrent transactions
•  Transactions begin implicitly

–  Ended by commit work or rollback work

•  But default on most databases: each SQL statement
commits automatically
–  Can turn off auto commit for a session (e.g. using API)
–  In SQL:1999, can use: begin atomic …. end

•  Not supported on most databases

