
1

SQL Constraints and Triggers

SQL Constraints

•  Constraints
– Primary Key (covered)
– Foreign Key (covered)
– General table constraints
– Domain constraints
– Assertions

•  Triggers

Primary Key Constraints

•  Every table should have a primary key
•  When a primary key constraint is created it

specifies that:
– The attributes of the primary key cannot be null
– The primary key must be unique

•  Violating a primary key causes the violating
update to be rejected

Foreign Key Constraints
•  Represents a relationship between two tables
•  If a table R contains a foreign key on attributes
{a} that references table S:
– {a} generally correspond to the primary key of S

•  Must have the same number of attributes, and
•  The same domains

– Any value for {a} in R must also exist in S
except that

•  If {a} is not part of the primary key of R it may be null
– There may be values for {a} in S that are not in R

Foreign Key Specification
•  Foreign keys specify the actions to be taken if

referenced records are updated or deleted
– For example, create a foreign key in Account that

references Branch
•  Assign accounts of a deleted branch to the Fairfax

branch
•  Cascade any change in branch names

Cascading Changes

•  It is possible that there can be a chain of
foreign key dependencies
–  e.g. branches, accounts, transactions

•  A cascading deletion in one table may cause
similar deletions in a table that references it
–  If any cascading deletion or update causes a

violation, the entire transaction is aborted

Referencing non-Primary Keys

•  By default SQL foreign keys reference the
primary key (of the referenced table)

•  It is possible to reference a list of (non-
primary-key) attributes
– The list must be specified after the name of the

referenced table
– The specified list of attributes must be declared

as a candidate key of the referenced table

General Constraints
•  A general or table constraint is a constraint

over a single table
–  Included in a table's CREATE TABLE

statement
– Table constraints may refer to other tables

•  Defined with the CHECK keyword followed
by a description of the constraint
– The constraint description is a Boolean

expression, evaluating to true or false
–  If the condition evaluates to false the update is

rejected

Creating Constraints in Oracle (review)
•  Say you want to restrict the values of GPA

(0 < GPA <= 4.0)

•  Approach 1: Specify constraint when
defining the table

9

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa REAL check(gpa <= 4.0 AND gpa > 0));

Creating Constraints
•  Approach 2: After CREATING TABLE,

use ALTER TABLE

10

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa REAL);

ALTER TABLE Students
ADD CONSTRAINT check_gpa CHECK(gpa > 0 AND gpa <= 4.0);

To specify a set of allowed values, do something like this (using either approach):
 … CHECK(gender=‘M’ OR gender=‘F’)

Complex Constraint Example
•  Check that a customer's age is greater than 18,

and that a customer is not an employee
CREATE TABLE Customer

 (SSN CHAR(11),
 age INTEGER,

 income REAL,
 PRIMARY KEY (SSN),
 CONSTRAINT CustAge CHECK (age > 18),
 CONSTRAINT notEmp CHECK (SSN NOT IN
 (SELECT empSSN
 FROM Employee)));

However, nested subquery not allowed for check constraint in Oracle (or most DBMSs).

Alternative: Trigger (later)

You can give the constraint a name

Domain Constraints

•  New domains can be created using the
CREATE DOMAIN statement
– Each such domain must have an underlying

source type (i.e. an SQL base type)
– A domain must have a name, base type, a

restriction, and a default optional value
•  The restriction is defined with a CHECK statement

•  Domains are part of the DB schema but are
not attached to individual table schema

Domain Constraint Example
•  Create a domain for minors, who have ages

between 0 and 18
– Make the default age 10

CREATE DOMAIN minorAge INTEGER DEFAULT 10
 CHECK (VALUE > 0 AND VALUE <= 18)

Using Domain Constraints
•  A domain can be used instead of one of the base

types in a CREATE TABLE statement
–  Comparisons between two domains are made in terms of

the underlying base types
•  e.g. comparing an age with an account number domain simply

compares two integers

•  The SQL:1999 standard introduced syntax for distinct
types
–  Types are distinct so that values of different types cannot

be compared
•  Not supported by Oracle

–  Create a table that holds the domain values instead, and
reference this table

Creating Types

•  The SQL CREATE TYPE clause defines
new types
– To create distinct age and account number types:

• CREATE TYPE Ages AS INTEGER
• CREATE TYPE Accounts AS INTEGER

– Assignments, or comparisons between ages and
account numbers would now be illegal

•  Although it is possible to cast one type to another
•  Types and domains are similar. Domains can have

constraints, such as not null, specified on them.

Create Type Example
•  Suppose you have address attributes (street,

city, state, zip) for customers. You can
create a type for Address:

•  Once defined, you can use the new type to

create tables

16

CREATE OR REPLACE TYPE full_address_type AS OBJECT
(

 Street VARCHAR2(80),
 City VARCHAR2(80),
 State CHAR(2),
 Zip VARCHAR2(10));
)

Create Type Example

17

CREATE OR REPLACE TYPE full_address_type AS OBJECT
(
 Street VARCHAR2(80),
 City VARCHAR2(80),
 State CHAR(2),
 Zip VARCHAR2(10));
);

CREATE TABLE Customer
(
 full_name full_name_type,
 full_address full_address_type
);

INSERT INTO Customer VALUES
(
 full_name(‘John’, ‘Smith’),
 full_address(‘4400 University Dr’, ‘Fairfax’, ‘VA’, ‘22030’)
);

Deferring Constraint Checking

•  For circular references, or the chicken-and-
egg problems:

18

CREATE TABLE chicken (cID INT PRIMARY KEY,"
 eID INT REFERENCES egg(eID));"
"
CREATE TABLE egg(eID INT PRIMARY KEY,"
 cID INT REFERENCES chicken(cID));"

Deferring Constraint Checking

•  To get around this, create tables without
foreign key constraints, then alter table:

19

CREATE TABLE chicken(cID INT PRIMARY KEY,"
 eID INT);"
CREATE TABLE egg(eID INT PRIMARY KEY,"
 cID INT);"
"
ALTER TABLE chicken ADD CONSTRAINT chickenREFegg"
 FOREIGN KEY (eID) REFERENCES egg(eID)"
 INITIALLY DEFERRED DEFERRABLE;"
"
ALTER TABLE egg ADD CONSTRAINT eggREFchicken"
 FOREIGN KEY (cID) REFERENCES chicken(cID)"
 INITIALLY DEFERRED DEFERRABLE;"

Deferring Constraint Checking,
Cont’d

20

CREATE TABLE chicken(cID INT PRIMARY KEY,"
 eID INT);"
CREATE TABLE egg(eID INT PRIMARY KEY,"
 cID INT);"
"
ALTER TABLE chicken ADD CONSTRAINT chickenREFegg"
 FOREIGN KEY (eID) REFERENCES egg(eID)"
 INITIALLY DEFERRED DEFERRABLE;"
"
ALTER TABLE egg ADD CONSTRAINT eggREFchicken"
 FOREIGN KEY (cID) REFERENCES chicken(cID)"
 INITIALLY DEFERRED DEFERRABLE;"

Tells Oracle to do deferred
constraint checking until the
COMMIT point

To insert:

INSERT INTO chicken VALUES(1, 2);"
INSERT INTO egg VALUES(2, 1);"
COMMIT;"

•  To drop tables, drop the constraints first.

21

ALTER TABLE egg DROP CONSTRAINT eggREFchicken;"
ALTER TABLE chicken DROP CONSTRAINT chickenREFegg;"
"
DROP TABLE egg;"
DROP TABLE chicken;"

Deferring Constraint Checking

Assertions

•  Table constraints apply to only one table
•  Assertions are constraints that are separate

from CREATE TABLE statements
– Similar to domain constraints, they are separate

statements in the DB schema
– Assertions are tested whenever the DB is

updated
•  Therefore they may introduce significant overhead

Note: Not supported in Oracle (or anyone else…)

Example Assertion
•  Check that a branch's assets are greater than

the total account balances held in the branch

CREATE ASSERTION assetCoverage
CHECK (NOT EXISTS

 (SELECT *
 FROM Branch B
 WHERE assets <
 (SELECT SUM (A.balance)
 FROM Account A
 WHERE A.brName = B.brName)))

Assertion Limitations
•  There are some constraints that cannot be

modeled with table constraints or assertions
– What if there were participation constraints

between customers and accounts?
•  Every customer must have at least one account and

every account must be held by at least one customer

– An assertion could be created to check this
situation

•  But would prevent new customers or accounts being
added!

Triggers
•  A trigger is a procedure that is invoked by the

DBMS as a response to a specified change
•  A DB that has a set of associated triggers is

referred to as an active database
•  Triggers are available in most current

commercial DB products
– And are part of the SQL 1999 standard

•  Triggers carry out actions when their
triggering conditions are met
– Generally SQL constraints only reject transactions

Why Use Triggers?

•  Triggers can implement business rules
–  e.g. creating a new loan when a customer's

account is overdrawn
•  Triggers may also be used to maintain data

in related database tables
–  e.g. Updating derived attributes when

underlying data is changed, or maintaining
summary data

Trigger Components
•  Event (activates the trigger)

– A specified modification to the DB
•  May be an insert, deletion, or change
•  May be limited to specific tables
•  The trigger may fire before or after the transaction

•  Condition
•  Action

Trigger Components
•  Event
•  Condition (tests whether the triggers should

run)
– A Boolean expression or a query

•  If the query answer set is non-empty it evaluates to true,
otherwise false

•  If the condition is true the trigger action occurs

•  Action

Trigger Components
•  Event
•  Condition
•  Action (what happens if the trigger runs)

– A trigger's action can be very far-ranging, e.g.
•  Execute queries
•  Make modifications to the DB
•  Create new tables
•  Call host-language procedures

Triggers
•  Synchronization of the Trigger with the

activating statement (DB modification)
– Before
– After

•  Number of Activations of the Trigger
– Once per modified tuple

(FOR EACH ROW)
– Once per activating statement

(default).

Two kinds of triggers
•  Statement-level trigger: executed once for all the

tuples that are changed in one SQL statement.
	
 REFERENCING NEW TABLE AS newtuples, // Set of new tuples

 OLD TABLE AS oldtuples // Set of old tuples

•  Row-level trigger: executed once for each
modified tuple.
	
 REFERENCING OLD AS oldtuple,

 NEW AS newtuple

newtuples, oldtuple, newtuple can be used in the CONDITION
and ACTION clauses

Triggers
•  Options for the REFERENCING clause:

–  NEW TABLE: the set of tuples newly inserted
(INSERT).

–  OLD TABLE: the set of deleted or old versions of tuples
(DELETE / UPDATE).

–  OLD ROW: the old version of the tuple (FOR EACH
ROW UPDATE).

–  NEW ROW: the new version of the tuple (FOR EACH
ROW UPDATE).

•  The action of a trigger can consist of multiple
SQL statements, surrounded by BEGIN . . .
END.

Triggers in Oracle

CREATE [OR REPLACE] TRIGGER <trigger_name>
 {BEFORE|AFTER} {INSERT|DELETE|UPDATE} ON <table_name>

 [REFERENCING [NEW AS <new_row_name>] [OLD AS <old_row_name>]]
 [FOR EACH ROW [WHEN (<trigger_condition>)]]
 <trigger_body>

33

Important for Row-Level Trigger

•  The special variables NEW and OLD are available to refer
to new and old tuples respectively.
–  In the trigger body, NEW and OLD must be preceded by a colon

(":"), but in the WHEN clause, they do not have a preceding colon!
See example below.

•  The REFERENCING clause can be used to assign aliases
to the variables NEW and OLD.

•  A trigger restriction can be specified in the WHEN clause,
enclosed by parentheses. The trigger restriction is a SQL
condition that must be satisfied in order for Oracle to fire
the trigger. This condition cannot contain subqueries.
Without the WHEN clause, the trigger is fired for each
row. 34

Trigger Body

•  It’s possible for one trigger to perform an action
that triggers a second trigger, which then triggers a
third, and so on, which could potentially create an
infinite loop.

•  To avoid this situation, Oracle has placed some
restrictions on what we can do in Trigger Body,
e.g.:
–  You cannot modify the same relation whose

modification is the event triggering the trigger (or you
get a “mutable table error”).

35

Trigger Example
CREATE TRIGGER notTooManyReservations
 BEFORE INSERT ON Reserves /* Event */
 FOR EACH ROW
 DECLARE
 res_count INTEGER; /* declare res_count to be used later */
 Too_many Exception;
 BEGIN
 SELECT COUNT(*) INTO res_count /* Action */
 FROM Reserves
 WHERE sid = :NEW.sid; /* Need to put a colon before the NEW/OLD in trigger body
 (but not if used in the WHEN block */
 IF res_count > 10 THEN /* Raise exception, i.e. insertion rejected */

 RAISE Too_many;
 END IF;
 EXCEPTION
 WHEN Too_many THEN
 Raise_application_error(-20001, 'Too many reservations!');
END;
/ /* The slash is necessary in interactive tool like SQL*PLUS to activate trigger */

This trigger makes sure that a sailor has no more than 10 reservations

40

CREATE TABLE T4 (a INTEGER, b CHAR(10));
CREATE TABLE T5 (c CHAR(10), d INTEGER);

CREATE TRIGGER trig1

 AFTER INSERT ON T4
 REFERENCING NEW AS newRow
 FOR EACH ROW
 WHEN (newRow.a <= 10)
 BEGIN
 INSERT INTO T5 VALUES(:newRow.b, :newRow.a);
 END trig1;

Create a trigger that checks whether a new tuple inserted into T4
has the first attribute <= 10. If so, insert the reverse tuple into T5.

Examples from http://infolab.stanford.edu/~ullman/fcdb/oracle/or-triggers.html

Trigger Error

•  If you try to create a trigger and get the
message

 Warning: Trigger created with compilation errors.

 You can see the error messages by typing
 show errors trigger <trigger_name>;

41

Drop a Trigger

•  To drop a trigger:
 drop trigger <trigger_name>;

42

To Print Message to Screen

•  Use DBMS_OUTPUT.PUT_LINE(‘my
message’);

•  Before any messages can be printed on
screen (other than those that come with
exceptions), you must turn on serverouput
by executing the statement “set serveroutput
on” (do this after you log on to your SQL
account).

43

When Not To Use Triggers
•  Triggers were used earlier for tasks such as

–  maintaining summary data (e.g., total salary of each department)
–  Replicating databases by recording changes to special relations

(called change or delta relations) and having a separate process
that applies the changes over to a replica

•  There are better ways of doing these now:
–  Databases today provide built in materialized view facilities to

maintain summary data
–  Databases provide built-in support for replication

•  Encapsulation facilities can be used instead of triggers in many
cases
–  Define methods to update fields
–  Carry out actions as part of the update methods instead of

through a trigger

When Not To Use Triggers

•  Risk of unintended execution of triggers, for example, when
–  loading data from a backup copy
–  replicating updates at a remote site
–  Trigger execution can be disabled before such actions.

•  Other risks with triggers:
–  Error leading to failure of critical transactions that set off the

trigger
–  Cascading execution

