

CS 450

SQL - 2

2

Illustration of EXCEPT

Find the sids of all sailors who have reserved red boats but
not green boats:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
EXCEPT

SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid AND B2.color=‘green’;

Use MINUS instead of EXCEPT in Oracle

Null Values
•  It is possible for tuples to have a null value, denoted by

null, for some of their attributes
•  null signifies an unknown value or that a value does not

exist.
•  The result of any arithmetic expression involving null is

null
–  Example: 5 + null returns null

•  The predicate is null can be used to check for null values.
–  Example: Find all sailors whose ratings are null.

 SELECT S.sid
 FROM Sailors S
 where S.rating is null

4

Nested Queries
•  A nested query is a query that has another query

embedded within it; this embedded query is called the
subquery.

•  Subqueries generally occur within the WHERE clause
(but can also appear within the FROM and HAVING
clauses)

•  Nested queries are a very powerful feature of SQL. They
help us write short and efficient queries.

(Think of nested for loops in C++. Nested queries in SQL are similar)

5

Nested Query 1

Find names of sailors who have reserved boat 103

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103);

6

Nested Query 2

Find names of sailors who have not reserved boat 103

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103)

7

Nested Query 3

Find the names of sailors who have reserved a red boat

What about Find the names of sailors who have NOT reserved a red boat?

Revisit a previous query

Find names of sailors who’ve reserved a red and a green boat

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘red’
INTERSECT
SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid
 AND B2.color=‘green’;

9

10

Revisit a previous query

Find names of sailors who’ve reserved a red and a green boat

(using nested query)

12

Correlated Nested Queries…1

•  Thus far, we have seen nested queries where
the inner subquery is independent of the outer
query.

•  We can make the inner subquery depend on

the outer query. This is called correlation.

13

Correlated Nested Queries…2

Find names of sailors who have reserved boat 103

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
 FROM Reserves R
 WHERE R.bid=103 AND R.sid=S.sid);

Tests whether the set
is nonempty. If it is,
then return TRUE.

(For finding sailors who have not reserved boat 103, we
would use NOT EXISTS)

14

Correlated Nested Query - Division

Find the names of sailors who have reserved ALL boats
(DIVISION)

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS ((SELECT B.bid

 FROM Boats B)
 EXCEPT
 (SELECT R.bid
 FROM Reserves R
 WHERE R.sid = S.sid));

(For each sailor S, we check to see that the set of boats reserved by S includes

every boat)

15

Correlated Nested Query 2

Alternatively,

Find the names of sailors who have reserved ALL boats

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

 FROM Boats B
 WHERE NOT EXISTS (SELECT R.bid
 FROM Reserves R
 WHERE R.bid = B.bid AND
 R.sid = S.sid));

NOT EXISTS vs. NOT IN

employee_id employee_name manager_id
1 John 5
2 David 5
3 Joe 5
4 Brandon 5
5 Chris NULL
6 Jen 5
7 Kim 5
8 Mary 5
9 Dennis 5
10 Jim 5

Employee

NOT EXISTS vs. NOT IN

17

•  Find the number of employees who are not
managers

Try:

SELECT COUNT(*)
FROM Employee E
WHERE E.employee_id NOT IN
 (SELECT E2.manager_id
 FROM Employee E2);

NOT EXISTS vs. NOT IN

18

•  Find the number of employees who are not
managers

SELECT COUNT(*)
FROM Employee E
WHERE E.employee_id NOT IN
 (SELECT E2.manager_id
 FROM Employee E2);
COUNT = 0 (!)

NOT EXISTS vs. NOT IN
•  Find the number of employees who are not

managers
Try again:
SELECT COUNT(*)
FROM Employee E
WHERE NOT EXISTS
 (SELECT *
 FROM Employee E2

 WHERE E2.manager_id = E.employee_id);

NOT EXISTS vs. NOT IN
•  Find the number of employees who are not

managers
Try again:
SELECT COUNT(*)
FROM Employee E
WHERE NOT EXISTS
 (SELECT *
 FROM Employee E2

 WHERE E2.manager_id = E.employee_id);

COUNT = 9!

NOT EXISTS vs. NOT IN
•  Find the number of employees who are not

managers
Another option:

SELECT COUNT(*)
FROM Employee E LEFT OUTER JOIN Employee E2
 ON E.employee_id = E2.manager_id
WHERE E2.manager_id IS NULL;

NOT EXISTS vs. NOT IN

•  Performance
– NOT IN: Query performs nested full table scans
– NOT EXISTS: Query can use an index within the sub-

query.

23

UNIQUE operator

•  When we apply UNIQUE to a subquery, it returns
true if no row is duplicated in the answer to the
subquery.

•  What would the following SQL query return?

 SELECT S.sname
 FROM Sailors S
 WHERE UNIQUE (SELECT R.bid

 FROM Reserves R
 WHERE R.bid=103

 AND R.sid=S.sid)

 (All sailors with at most one reservation for boat 103.)

Note in Oracle, UNIQUE works like DISTINCT.

24

BETWEEN and AND operators

•  The BETWEEN and AND operator selects
a range of data between two values.

•  These values can be numbers, text, or dates.

25

BETWEEN and AND Example

Find the names of sailors whose age is between 25 and
35

 SELECT S.sname
 FROM Sailors S
 WHERE S.age BETWEEN 25 AND 35;

26

ANY/SOME, and ALL operators

Find sailors whose rating is better than some sailor named
Horatio

SELECT S.sid
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

 FROM Sailors S2
 WHERE S2.sname=‘Horatio’);

What if there are several sailors named Horatio?
Alternative is to use SOME, which is equivalent to ANY operator.

Definition of “Any” (or “Some”) Clause

0
5
6

(5 < any) = true

0
5
0

) = false

5

0
5 (5 ≠ any) = true (since 0 ≠ 5)

(read: 5 < any tuple in the relation)

(5 < any

) = true (5 = any

(= any) ≡ in
However, (≠ any) ≡ not in

Substitute the “any” with “some”, and you’ll get the same result.

F <comp> any r ⇔ ∃ t ∈ r such that (F <comp> t), where <comp> can be:
<, ≤, >, =, ≠

28

Using ALL operator

Find sailors whose rating is better than every sailor named
Horatio

SELECT S.sid
FROM Sailors S
WHERE S.rating > ALL(SELECT S2.rating

 FROM Sailors S2
 WHERE S2.sname=‘Horatio’);

Definition of All Clause

0
5
6

(5 < all) = false

6
10
4

) = true

5

4
6 (5 ≠ all) = true (since 5 ≠ 4 and 5 ≠ 6)

(5 < all

) = false (5 = all

(≠ all) ≡ not in
However, (= all) ≡ in

•  F <comp> all r ⇔ ∀ t ∈ r (F <comp> t)

30

Post Processing
•  Processing on the result of an SQL query:

–  Sorting: can sort the tuples in the output by any
column (even the ones not appearing in the
SELECT clause)

–  Duplicate removal
–  Example:

•  Aggregation operators

SELECT DISTINCT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103
ORDER BY S.sid ASC, S.sname DESC;

31

Aggregate operators

•  What is aggregation?
– Computing arithmetic expressions, such as

Minimum or Maximum

•  The aggregate operators supported by SQL are:
COUNT, SUM, AVG, MIN, MAX

32

Aggregate Operators

•  COUNT(A): The number of values in the column A
•  SUM(A): The sum of all values in column A
•  AVG(A): The average of all values in column A
•  MAX(A): The maximum value in column A
•  MIN(A): The minimum value in column A

(We can use DISTINCT with COUNT, SUM and AVG to compute
only over non-duplicated columns)

33

Using the COUNT operator

Count the number of sailors

 SELECT COUNT (*)
 FROM Sailors S;

34

Example of SUM operator

Find the sum of ages of all sailors with a rating of 10

 SELECT SUM (S.age)
 FROM Sailors S
 WHERE S.rating=10;

35

Example of AVG operator

Find the average age of all sailors with rating 10

 SELECT AVG (S.age)
 FROM Sailors S
 WHERE S.rating=10;

36

Example of MAX operator

Find the name and age of the oldest sailor

 SELECT S.sname, MAX(S.age)
 FROM Sailors S;

 But this is illegal in SQL!!

37

Correct SQL Query for MAX

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age = (SELECT MAX(S2.age)

 FROM Sailors S2);

38

Alternatively…

SELECT S.sname, S.age
FROM Sailors S
WHERE ROWNUM <= 1
ORDER BY S.age DESC;

39

Another Aggregate Query

 Count the number of different sailor names

 SELECT COUNT (DISTINCT S.sname)
 FROM Sailors S

