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Illustration of EXCEPT 

Find the sids of all sailors who have reserved red boats but 
not green boats: 
 
SELECT  S.sid 
FROM  Sailors S, Boats B, Reserves R 
WHERE  S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’ 
EXCEPT 

SELECT  S2.sid 
FROM  Sailors S2, Boats B2, Reserves R2 
WHERE  S2.sid=R2.sid AND R2.bid=B2.bid AND B2.color=‘green’; 

Use MINUS instead of EXCEPT in Oracle 



Null Values 
•  It is possible for tuples to have a null value, denoted by 

null, for some of their attributes 
•  null signifies an unknown value or that a value does not 

exist. 
•  The result of any arithmetic expression involving null is 

null 
–  Example:  5 + null  returns null 

•  The predicate  is null can be used to check for null values. 
–  Example: Find all sailors whose ratings are null. 

  SELECT S.sid 
 FROM Sailors S 
 where S.rating is null 
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Nested Queries 
•  A nested query is a query that has another query 

embedded within it; this embedded query is called the 
subquery. 

•  Subqueries generally occur within the WHERE clause 
(but can also appear within the FROM and HAVING 
clauses) 

 

•  Nested queries are a very powerful feature of SQL. They 
help us write short and efficient queries. 

 

(Think of nested for loops in C++. Nested queries in SQL are similar) 
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Nested Query 1 

Find names of sailors who have reserved boat 103 
 
 
SELECT  S.sname 
FROM  Sailors S 
WHERE  S.sid IN  ( SELECT  R.sid 
                                  FROM  Reserves R 
                                  WHERE  R.bid=103); 
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Nested Query 2 
 

Find names of sailors who have not reserved boat 103 
 
 
SELECT  S.sname 
FROM  Sailors S 
WHERE  S.sid NOT IN  ( SELECT  R.sid 
                                           FROM  Reserves R 
                                           WHERE  R.bid=103 ) 
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Nested Query 3 
 

Find the names of sailors who have reserved a red boat 
 
 
 
 
 
 
 
 
What about Find the names of sailors who have NOT reserved a red boat? 
 



 
Revisit a previous query 

 
Find names of sailors who’ve reserved a red and a green boat 

 
SELECT  S.sid 
FROM  Sailors S, Boats B, Reserves R 
WHERE  S.sid=R.sid AND R.bid=B.bid 
                AND B.color=‘red’ 
INTERSECT 
SELECT  S2.sid 
FROM  Sailors S2, Boats B2, Reserves R2 
WHERE  S2.sid=R2.sid AND R2.bid=B2.bid 
                AND B2.color=‘green’; 

9 
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Revisit a previous query 

 
Find names of sailors who’ve reserved a red and a green boat 

(using nested query) 
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Correlated Nested Queries…1 

•  Thus far, we have seen nested queries where 
the inner subquery is independent of the outer 
query. 

 
•  We can make the inner subquery depend on 

the outer query. This is called correlation. 
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Correlated Nested Queries…2 

Find names of sailors who have reserved boat 103 
 
 
SELECT  S.sname 
FROM  Sailors S 
WHERE  EXISTS  (SELECT  * 
                                 FROM  Reserves R 
                                 WHERE  R.bid=103 AND R.sid=S.sid); 
 
 

Tests whether the set 
is nonempty. If it is, 
then return TRUE. 

(For finding sailors who have not reserved boat 103, we   
would use NOT EXISTS) 
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Correlated Nested Query - Division 
 

Find the names of sailors who have reserved ALL boats 
(DIVISION) 
 
 
SELECT S.sname 
FROM Sailors S 
WHERE NOT EXISTS ((SELECT B.bid 

               FROM Boats B) 
               EXCEPT 
              (SELECT R.bid 
               FROM Reserves R 
               WHERE R.sid = S.sid)); 

 
 
(For each sailor S, we check to see that the set of boats reserved by S includes 

every boat) 
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Correlated Nested Query 2 

Alternatively, 
 

Find the names of sailors who have reserved ALL boats 
 
 
SELECT S.sname 
FROM Sailors S 
WHERE NOT EXISTS (SELECT B.bid 

               FROM Boats B 
               WHERE NOT EXISTS (SELECT R.bid 
               FROM Reserves R 
               WHERE R.bid = B.bid AND 
                R.sid = S.sid )); 

 
 



NOT EXISTS vs. NOT IN 

employee_id employee_name manager_id 
1 John 5 
2 David 5 
3 Joe 5 
4 Brandon 5 
5 Chris NULL 
6 Jen 5 
7 Kim 5 
8 Mary 5 
9 Dennis 5 
10 Jim 5 

Employee 



NOT EXISTS vs. NOT IN 
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•  Find the number of employees who are not 
managers 

Try: 
 
SELECT COUNT(*) 
FROM Employee E 
WHERE E.employee_id NOT IN 
                 (SELECT E2.manager_id 
                   FROM Employee E2); 



NOT EXISTS vs. NOT IN 

18 

•  Find the number of employees who are not 
managers 

 
SELECT COUNT(*) 
FROM Employee E 
WHERE E.employee_id NOT IN 
                 (SELECT E2.manager_id 
                   FROM Employee E2); 
COUNT = 0 (!) 



NOT EXISTS vs. NOT IN 
•  Find the number of employees who are not 

managers 
Try again: 
SELECT COUNT(*) 
FROM Employee E 
WHERE NOT EXISTS 
                 (SELECT * 
                   FROM Employee E2 

          WHERE E2.manager_id = E.employee_id); 



NOT EXISTS vs. NOT IN 
•  Find the number of employees who are not 

managers 
Try again: 
SELECT COUNT(*) 
FROM Employee E 
WHERE NOT EXISTS 
                 (SELECT * 
                   FROM Employee E2 

          WHERE E2.manager_id = E.employee_id); 

COUNT = 9! 



NOT EXISTS vs. NOT IN 
•  Find the number of employees who are not 

managers 
Another option: 
 
SELECT COUNT(*) 
FROM Employee E LEFT OUTER JOIN Employee E2 
            ON E.employee_id = E2.manager_id 
WHERE E2.manager_id IS NULL; 
 



NOT EXISTS vs. NOT IN 

•  Performance 
– NOT IN: Query performs nested full table scans 
– NOT EXISTS: Query can use an index within the sub-

query. 
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UNIQUE operator 

•  When we apply UNIQUE to a subquery, it returns 
true if no row is duplicated in the answer to the 
subquery. 

•  What would the following SQL query return? 

  SELECT  S.sname 
  FROM  Sailors S 
  WHERE  UNIQUE  (SELECT  R.bid 

                           FROM  Reserves R 
                                               WHERE  R.bid=103 

                           AND R.sid=S.sid) 
 
 (All sailors with at most one reservation for boat 103.) 

Note in Oracle, UNIQUE works like DISTINCT. 
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BETWEEN and AND operators 

•  The BETWEEN and AND operator selects 
a range of data between two values. 

 
•  These values can be numbers, text, or dates. 
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BETWEEN and AND Example 

Find the names of sailors whose age is between 25 and 
35 

    SELECT S.sname 
    FROM Sailors S 
    WHERE S.age BETWEEN 25 AND 35; 
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ANY/SOME, and ALL operators 

Find sailors whose rating is better than some sailor named 
Horatio 
 
SELECT S.sid 
FROM Sailors S 
WHERE S.rating > ANY (SELECT S2.rating 

                FROM Sailors S2 
        WHERE S2.sname=‘Horatio’); 
 

What if there are several sailors named Horatio? 
Alternative is to use SOME, which is equivalent to ANY operator. 



Definition of  “Any” (or “Some”) Clause 

0 
5 
6 

(5 < any ) = true 

0 
5 
0 

) = false 

5 

0 
5 (5 ≠ any ) = true (since 0 ≠ 5) 

(read:  5 < any tuple in the relation)  

(5 < any 

) = true (5 = any 

(= any) ≡ in 
However, (≠ any) ≡ not in 

Substitute the “any” with “some”, and you’ll get the same result. 

F <comp> any r ⇔ ∃ t ∈ r  such that (F <comp> t ), where <comp> can be:  
<,  ≤,  >,  =,  ≠ 
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Using ALL operator 

Find sailors whose rating is better than every sailor named 
Horatio 
 
SELECT S.sid 
FROM Sailors S 
WHERE S.rating > ALL(SELECT S2.rating 

              FROM Sailors S2 
      WHERE S2.sname=‘Horatio’); 



Definition of All Clause 

0 
5 
6 

(5 < all ) = false 

6 
10 
4 

) = true 

5 

4 
6 (5 ≠ all ) = true (since 5 ≠ 4 and 5 ≠ 6) 

(5 < all 

) = false (5 = all 

(≠ all) ≡ not in 
However, (= all) ≡ in 

•  F <comp> all r ⇔ ∀ t ∈ r  (F <comp> t) 
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Post Processing 
•  Processing on the result of an SQL query: 

–  Sorting: can sort the tuples in the output by any 
column (even the ones not appearing in the 
SELECT clause) 

–  Duplicate removal 
–  Example: 

 

•  Aggregation operators 

SELECT  DISTINCT S.sname 
FROM  Sailors S, Reserves R 
WHERE  S.sid=R.sid AND R.bid=103 
ORDER BY S.sid ASC, S.sname DESC; 
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Aggregate operators 

•  What is aggregation? 
– Computing arithmetic expressions, such as 

Minimum or Maximum 
 

•  The aggregate operators supported by SQL are: 
COUNT, SUM, AVG, MIN, MAX 
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Aggregate Operators 

•  COUNT(A): The number of values in the column A  
•  SUM(A): The sum of all values in column A 
•  AVG(A): The average of all values in column A 
•  MAX(A): The maximum value in column A 
•  MIN(A): The minimum value in column A 
 

(We can use DISTINCT with COUNT, SUM and AVG to compute  
only over non-duplicated columns) 
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Using the COUNT operator 
 

Count the number of sailors 
 
 

 SELECT  COUNT (*) 
 FROM  Sailors S; 
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Example of SUM operator 
 

Find the sum of ages of all sailors with a rating of 10 
 
 

 SELECT  SUM (S.age) 
 FROM  Sailors S 
 WHERE  S.rating=10; 
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Example of AVG operator 
 

Find the average age of all sailors with rating 10 
 
 

 SELECT  AVG (S.age) 
 FROM  Sailors S 
 WHERE  S.rating=10; 
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Example of MAX operator 

Find the name and age of the oldest sailor 
 

 SELECT S.sname, MAX(S.age) 
 FROM Sailors S; 

 
 
      But this is illegal in SQL!! 
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Correct SQL Query for MAX 

 
SELECT S.sname, S.age 
FROM Sailors S 
WHERE S.age = ( SELECT MAX(S2.age) 

                FROM Sailors S2 ); 
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Alternatively… 

 
SELECT S.sname, S.age 
FROM Sailors S 
WHERE ROWNUM <= 1 
ORDER BY S.age DESC; 
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Another Aggregate Query 

 Count the number of different sailor names 

 SELECT COUNT (DISTINCT S.sname) 
 FROM Sailors S 

 


