
1

ER to Relational Model

Professor Jessica Lin

Reduction to Relation Schemas
•  Entity sets and relationship sets can be expressed

uniformly as relation schemas that represent the
contents of the database.

•  A database which conforms to an E-R diagram
can be represented by a collection of schemas.

•  For each entity set and relationship set there is a
unique schema that is assigned the name of the
corresponding entity set or relationship set.

•  Each schema has a number of columns (generally
corresponding to attributes), which have unique
names.

3

Translating ER diagrams into Relations
We need to figure out how to translate ER diagrams into relations.

There are three cases to worry about.
•  Strong entity sets
•  Weak entity sets
•  Relationship sets

course
course_id
title
credits

section
sec_id
semester
year

sec_course

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

•  Strong entity sets

ID name salary
10101 Srinivasan 65000

12121 Wu 90000

15151 Mozart 40000

22222 Einstein 95000

This is trivial, the primary key
of the ER diagram becomes the
primary key of the relation. All
other fields are copied in (in
any order)

instructor(ID: string, name: string, salary: integer)

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

•  Strong entity sets

ID name tot_cred
98988 Tanaka 60

99001 Smith 51

90021 Jackson 12

95012 Lincoln 96

This is trivial, the primary key
of the ER diagram becomes the
primary key of the relation. All
other fields are copied in (in
any order)

student(ID: string, name: string, tot_cred: integer)

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

6

•  Relationship entity sets

•  For one-to-one relationship
sets, the relation’s primary
key can be that of either
entity set.

•  For many-to-many
relationship sets, the union of
the primary keys becomes the
relation’s primary key

•  For many-to-one or one-to-
many relationship sets, the
relation’s primary key is the
primary key of the “many”
side of the relationship set.

advisor(i_ID: string, s_ID: string)

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

i_ID s_ID
10101 98988

10101 99001

12121 98988

The“imported” key from both entity sets is
called the foreign key.

Foreign Keys, Referential Integrity

•  Foreign key : Set of fields in one relation that is used to
“refer” to a tuple in another relation. (Usually
correspond to primary key of the second relation.) Like
a `logical pointer’.

•  e.g. s_ID is a foreign key referring to student(ID):
–  advisor(i_ID: string, s_ID: string)
–  If all foreign key constraints are enforced, referential

integrity is achieved, i.e., no dangling references.
–  Can you name a data model w/o referential integrity?

7

8

9

instructor(ID: string, name: string, salary: integer)
student(ID: string, name: string, tot_cred: integer)
advisor(i_ID: string, s_ID: string)

So, this ER Model…

… maps to this database schema

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

10

advisor(s_ID: string, i_ID: string)

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

s_ID i_ID
98988 10101

99001 12121

90021 10101

•  For one-to-one relationship
sets, the relation’s primary key
can be that of either entity set.

•  For many-to-many relationship

sets, the union of the primary
keys becomes the relation’s
primary key.

•  For many-to-one or one-to-
many relationship sets, the
relation’s primary key is the
primary key of the “many” side
of the relationship set.

Suppose we add a constraint that a student can have at most one advisor…

The“imported” key from both entity sets
is called the foreign key.

11

instructor(ID: string, name: string, salary: integer)
student(ID: string, name: string, tot_cred: integer)
advisor(s_ID: string, i_ID: string)

The modified ER model…

… maps to this database schema

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

Later we’ll see how we can take advantage of the
key constraint and come up with a better design.

Let’s look at another example that involves a weak entity set.

course_id title credits

CS450 Database Concepts 3

CS484 Data Mining 3

CS310 Data Structures 3

CS101 Preview to CS 2

course(course_id : string, title: string, credits: integer)

course
course_id
title
credits

section
sec_id
semester
year

sec_course

Strong entity set: trivial case

Let’s look at another example that involves a weak entity set.

course_id sec_id semester year

CS450 001 Fall 2015

CS450 002 Fall 2015

CS310 001 Fall 2015

CS450 001 Spring 2015

section(course_id : string, sec_id: string, semester: string, year: integer)

The primary key of the relation consists
of the union of the primary key of the
strong entity set and the discriminator
of the weak entity set. The“imported”
key from the strong entity set is called
the foreign key.

All other fields are copied in (in any
order)

course
course_id
title
credits

section
sec_id
semester
year

sec_course

14

•  Relationship entity sets
course

course_id
title
credits

section
sec_id
semester
year

sec_course

?
A relationship set involving a weak entity set is treated specially.

Since sec_course has no descriptiove attributes, the sec_course schema has attributes
(course_id, sec_id, semester, year).

Every (course_id, sec_id, semester, year) combination in a sec_course relation
would also be present in the relation on schema section, and vice versa.

=> Combine them.

15

course(course_id : string, title: string, credits: integer)
section(course_id : string, sec_id: string, semester: string, year: integer)

So, this ER Model…

… maps to this database schema

course
course_id
title
credits

section
sec_id
semester
year

sec_course

Composite and Multivalued Attributes
•  Composite attributes are flattened out by

creating a separate attribute for each
component attribute
–  Example: given entity set instructor with

composite attribute name with component
attributes first_name and last_name the schema
corresponding to the entity set has two attributes
name_first_name and name_last_name
•  Prefix omitted if there is no ambiguity

•  Ignoring multivalued attributes, extended
instructor schema is
instructor(ID, first_name, middle_initial, last_name,
street_number, street_name, apt_number, city, state,
zip_code, date_of_birth)

instructor
ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ()

Composite and Multivalued Attributes
•  A multivalued attribute M of an entity E is represented by

a separate schema EM
–  Schema EM has attributes corresponding to the primary

key of E and an attribute corresponding to multivalued
attribute M

–  Example: Multivalued attribute phone_number of
instructor is represented by a schema:
 inst_phone = (ID, phone_number)

–  Each value of the multivalued attribute maps to a
separate tuple of the relation on schema EM
•  For example, an instructor entity with primary key 22222 and

phone numbers 456-7890 and 123-4567 maps to two tuples:
 (22222, 456-7890) and (22222, 123-4567)

Representing Specialization via Schemas
• Method 1:
– Form a schema for the higher-level entity
– Form a schema for each lower-level entity set,

include primary key of higher-level entity set and
local attributes
 schema attributes
 person ID, name, street, city
 student ID, tot_cred
 employee ID, salary

– Drawback?

Representing Specialization as Schemas
• Method 2:
–  Form a schema for each entity set with all local and inherited

attributes
 schema attributes
 person ID, name, street, city
 student ID, name, street, city, tot_cred
 employee ID, name, street, city, salary

–  If specialization is total, the schema for the generalized entity
set (person) not required to store information
•  Can be defined as a “view” relation containing union of

specialization relations
•  But explicit schema may still be needed for foreign key constraints

– Drawback?

Schemas Corresponding to Aggregation

• To represent aggregation, create a schema
containing
•  primary key of the aggregated relationship

•  the primary key of the associated entity set
•  any descriptive attributes

Schemas Corresponding to Aggregation
•  For example, to represent aggregation manages between relationship

works_on and entity set manager, create a schema
•  eval_for (s_ID, project_id, i_ID, evaluation_id)
•  Schema proj_guide is redundant provided we are willing to store null

values for attribute manager_name in relation on schema manages

evaluation

proj_ guide
instructor student

eval_ for

project

Practice

22

author
name
address
URL

written_by
published_by

contains

number

number

stocks

book

shopping_basket
basket_id

warehouse

basket_of
ISBN
title
year
price

code
address
phone

publisher
name
address
phone
URL

customer
email
name
address
phone

23

We have seen how to create a database
schema, how do we create an actual
database on our computers?

instructor(ID: string, name: string, salary: integer)
student(ID: string, name: string, tot_cred: integer)
advisor(s_ID: string, i_ID: string)

24

instructor(ID : string, name : string, salary: real)

…how do we create an actual database on our
computers?

We use SQL, a language that allows us to
build, modify and query databases.

SQL> CREATE TABLE instructor
 2 (ID CHAR(5),
 3 name CHAR(50),
 4 salary integer,
 5 PRIMARY KEY(ID));

Table created.

25

SQL (Structured Query Language)

•  SQL is a language that allows us to build, modify and
query databases.
•  SQL is an ANSI standard language. American National Standards Institute
•  SQL is the “engine” behind Oracle, Microsoft SQL
Server, etc.
•  Most of these systems have built GUIs on top of the
command line interface, so you don’t normally write
statements directly in SQL (although you can).

26

Creating Relations in SQL
•  Creates a student relation.

Observe that the type
(domain) of each field is
specified, and enforced by the
DBMS whenever tuples are
added or modified.

•  As another example, the
advisor table holds
information about the
advising relationship between
instructors and students.

SQL> CREATE TABLE student
 (ID CHAR(5),
 name CHAR(50),
 tot_cred integer,
 PRIMARY KEY(ID));

SQL> CREATE TABLE advisor
 (s_ID CHAR(5),
 i_ID CHAR(5),
 PRIMARY KEY(s_ID));

